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A PRECONDITIONED LOW-RANK PROJECTION METHOD WITH
A RANK-REDUCTION SCHEME FOR STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS*
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Abstract. In this study, we consider the numerical solution of large systems of linear equations
obtained from the stochastic Galerkin formulation of stochastic partial differential equations (PDEs).
We propose an iterative algorithm that exploits the Kronecker product structure of the linear systems.
The proposed algorithm efficiently approximates the solutions in low-rank tensor format. Using
standard Krylov subspace methods for the data in tensor format is computationally prohibitive
due to the rapid growth of tensor ranks during the iterations. To keep tensor ranks low over the
entire iteration process, we devise a rank-reduction scheme that can be combined with the iterative
algorithm. The proposed rank-reduction scheme identifies an important subspace in the stochastic
domain and compresses tensors of high rank on-the-fly during the iterations. The proposed reduction
scheme is a coarse-grid method in that the important subspace can be identified inexpensively in
a coarse spatial grid setting. The efficiency of the proposed method is illustrated by numerical
experiments on benchmark problems.
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1. Introduction. Consider the stochastic elliptic boundary value problem, to
find a random function u(z, §) : D x I' = R that satisfies

(L.1) L(a(z, §))(u(z, §)) = f(z) n D xT,

where L is a linear elliptic operator and a(z, £) is a positive random field parameterized
by a set of random variables £ = {&;, ..., &pr}. The problem is posed on a bounded
domain D C R? with appropriate boundary conditions. Such problems arise, for
example, from fluid flow and the transport of chemicals in flows in heterogeneous
porous media, where the permeability coefficient is modeled as a random field [14, 33].
As the solution method for (1.1), we consider the stochastic Galerkin method
[1, 2, 14], which, after discretization, leads to a large coupled deterministic system

(1.2) Au = f,

for which computations will be expensive for large-scale applications. When the coeffi-
cient a(z, ) has an affine structure depending on a finite number of random variables,
the system matrix A can be represented by a sum of Kronecker products of smaller
matrices. Matrix operations such as matrix-vector products that take advantage of
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the tensor format can be performed efficiently, which makes the use of iterative solvers
attractive. In this study, we develop a new efficient iterative solver for systems repre-
sented in the Kronecker-product structure.

In recent years, many authors started to explore the Kronecker-product structure
of such problems and developed iterative algorithms that exploit the structure to
reduce computational efforts [5, 18, 19, 21, 24, 29]. In addition, it has been shown that
the solution of (1.1) in the stochastic Galerkin setting can be approximated by a tensor
of low rank, which further reduces computational effort [3, 4]. If Krylov subspace
methods are used to compute such a solution, however, approximate solutions or
other auxiliary terms obtained during the course of an iteration may not have low
rank, and thus rank-reduction schemes are required to keep costs under control.

In this study, we will explore a variant of the generalized minimum residual
(GMRES) method combined with a rank-reduction strategy that exploits specific fea-
tures of the stochastic Galerkin formulation. The strategy we propose is a two-level
scheme that first identifies a low-dimensional subspace, obtained from a coarse-grid
spatial discretization, on which a low-rank coarse-grid tensor solution is computed.
This solution can be used to estimate the rank of the tensor solution for the desired
fine-grid solution. This information is used to define a strategy for rank reduction to
be used with iteration on the fine-grid space. We show that this strategy enhances
the efficiency of preconditioned GMRES for computing the solution.

The proposed method can be viewed as a dimension-reduction method because
it identifies a dominant subspace and computes an approximate solution in that
subspace. Other approaches developed for dimension reduction for the solutions of
stochastic partial differential equations (PDEs) include reduced basis methods [17, 25],
which construct a dominant subspace associated with parameterized models using
greedy search methods, and active subspace methods [10], which detect a subspace
of strong variability for a scalar-valued multivariate function using gradient compu-
tations. Another model reduction approach, developed in [11], identifies a dominant
subspace based on the covariance structure of the solution on the coarse grid and
uses the subspace for the fine-grid computation. The approach developed here uses
an inexpensive low-rank approximation technique to construct the desired subspace
on coarse-grid computations. Then the identified subspace is used to truncate ten-
sors of high ranks in the iteration process to construct a solution on a finer spatial
discretization.

An outline of the paper is as follows. In section 2, we review the stochastic
Galerkin method and present the Kronecker-product structure of Galerkin systems.
In section 3, we present a preconditioned projection method for computing approx-
imate solutions in low-rank tensor format. In section 4, we review the conventional
approaches and propose a coarse-grid rank-reduction scheme, which is the main con-
tribution of this work. In section 5, we illustrate the effectiveness of the low-rank
projection (LRP) method combined with the proposed truncation scheme by numer-
ical experiments on benchmark problems. In section 6, we discuss the impact of
truncation on solution statistics. Finally, in section 7 we draw some conclusions.

2. Model problems with random inputs. Consider the steady-state stochas-
tic diffusion equation with homogeneous Dirichlet boundary conditions,

(2.1)

-V - (a(z, w)Vu(z, w)) = f(z) inDxQ,
u(z,w) =0 on 0D x Q,
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where the diffusion coefficient a(z, w) is a random field and w is an elementary event
in a probability space (€2, F, P). Here, F and P are a o-algebra on {2 and a probability
measure on {2, respectively. The gradient operator V acts only on the physical domain
D. The weak form of (2.1) is to find v in V = H}(D) @ L%*(2) such that

(2.2) </D a(z, w)Vu(z, w) - Vo(z, w d:z:> </ fo(z, w > Yo(z, w) €V,

where (-) refers to expected value with respect to the probability measure on Lo(€2)
and V is equipped with the gradient norm

(2.3) \|v||2‘V=/Q/Da(z, ) Vo, )2 dz dP(w).

If a(z, w) is bounded and strictly positive,
(2.4) 0 < tmin < a(, w) < amax < +00  a.e. in D x

then the Lax—Milgram lemma can be applied to establish existence and uniqueness
of a solution u(x, w) € V of the variational problem (2.2). For the random field
a(z, w) with mean ag and variance o2, we consider a truncated Karhunen-Loéve
(KL) expansion [20],

M
(2.5) a(z, w)~ag+ o Z Vhias ()& (w)

where (A;, a;) is an eigenpair of the covariance kernel C(z, y) of the random field.
In what follows, we change notation slightly and use a(z, £), as specified on the
right-hand side of (2.5), to refer to the random diffusion coefficient, where £ is an
M-dimensional random variable with joint probability density function p(£). We let
I'= Hi\il I'; denote the joint image of £, which we refer to as the stochastic domain
The expected value of a random variable v(§) on I is then ( = [l

2.1. Stochastic Galerkin method. The stochastic Galerkin method [1, 2, 14]
seeks a finite-dimensional solution up,(z, £) € W = X}, ® Sy such that

(2.6) </ a(@, §)Vunp(z, ) - Vu(z, & d:z:> </ fo(z, g> o(x, §) e W,
D
where Xj, and Sy are finite-dimensional subspaces of Hj(D) and L2(T),

Xy, = span{¢,(2)}12; C HE(D), Sy = span{ys(6)}ns, C LA(D),

and
ne ng

(2.7) unp(@, §) =D Urstr(x)
s=1r=1

Here, {¢,} is a set of standard finite element basis functions, and {s} is a set of
basis functions for the generalized polynomial chaos expansion (PCE) [32] consisting
of products of orthonormal univariate polynomials 15 (§) = ¥a(s)(§) = Hf\il Ty (s) (i),
where {7, (5) (&)}, is a set of univariate polynomials, and a(s) = (a1 (s), ..., an(s))
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is a multi-index, where «; represents the degree of a polynomial in &;. In this study,
we set the total degree (TD) space Anr, p,

(2.8) Ant,p = {a(s) € Ni' + [la(s)llL < p},

where Ny is the set of nonnegative integers, ||a(s)|1 = Zkle ag(s), and p defines
the maximal degree of {1; Znil Then the number of PCE basis functions is ng =

dim (A, p) = (AJ\/ZJ!Z)!)! :

2.2. Stochastic Galerkin formulation in tensor notation. If the coeffi-
cients of (2.7) are ordered by grouping spatial indices together as w11, ua1, . . ., Un, 1, U12,
<y Up e, then the linear system Au = f of (1.2) can be represented in tensor product
notation [23],

M
(2.9) <G0®K0+ZGZ®KZ> u=go® fo,

=1

where ® is the Kronecker product, K; refers to the ith weighted stiffness matrix
defined via

[KO]ij :/ aOqui(a:)Vqu(x)dm, [Kl]ij :/ dl(z)V@(m)V@(z)dx, = 1, ey M,
D D
ai(x) = o/ ai(z), G; refers to the ith “stochastic” matrix defined via

(2.10) [Golij = (i()v;(8)),,  [Gilis = (G i(€)¥;(€)),, T=1,..., M,

and the vectors fy and gg are defined via

[fol: = /D foi@)dz,  [go)s = (i(€)), -
Here the Kronecker product of two matrices G € R™*™¢ and K € R"=*"= ig

GlnK ... [Ghn K
GoK = : :
Gloar K o [Gluen K

Note that {G;}M, of (2.10) are highly sparse because of the orthogonality properties
of the stochastic basis functions [13].

We will make use of an isomorphism between R™="¢ and R"=*"¢ determined by

T TIT ¢

the operators vec(-) and mat(-): u = vec(U), U = mat(u), where u = [ug , ..., uy,

R™="¢ with each u; of length n,, and U = [uy, ..., u,| € R™*"¢. In particular, (2.9)
is equivalent to its “matricized” form Y K;UGT = fogZ, and u and U can be used
interchangeably to represent a solution of the Galerkin system. A solution u can be
represented by a sum of vectors of Kronecker structure or, equivalently, U = mat(u)
can be represented by a sum of rank-one matrices,

(2.11) u:szQ@yk
k=1

Ka?

(2.12) & U=> yzl =Y., 2
k=1
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where y; € R™, z; € R™, Y., = [y1, ..., Un,] € R™ " and Z, = [z1, ..., 2x,]
€ Rme*#« A tensor of the form (2.11) is often referred to as having a canonical
decomposition [9] (e.g., x = Y% ®J_ 2], where x € R™"™, g} € R" for i =
1,... ke, j=1,...,d, and d refers to the dimension of the tensor). The tensor rank
Ky is defined as the smallest number of terms needed to represent w. In this study, the
dimension of the tensor u is two, and the tensor rank «,, of the tensor u coincides with
the rank of the matrix U. Thus, in what follows we also use x,, to refer to the rank of
u. With this notation, the stochastic Galerkin solution un,(z, ) can be represented
as

(2.13) unp(@, €) = ®(2)"Y,, ZL W(e) = (Y ®(@)" (21 9(9)),

where ® : D — R"= is given by ®(x) = [¢1(x), ..., ¢n, (z)]T and ¥ : T — R" is given
by W(&) = [1(€), ..., Yn (§)]F. As shown in [31], (2.13) corresponds to a separated
representation [7],

(2.14) (@, €)= 3 (@) (6).
=1

where ;(z) = (®(x))Ty; and 2;(¢) = (¥(£))T2,. We will use this representation to
construct a new rank-reduction operator. In the discrete model (2.13), the rank of
the solution is typically k, = min(ng, ne).

In [6, 16], it was shown that the solution to (2.9) can be approximated well by
a quantity @ of rank kg < min(ng, ne) if the system matrix and the right-hand side
have Kronecker-product structure. Thus, we seek a low-rank approximation to the
solution @ to (2.9), for which

M Ki
(2.15) Al = (Z G, ®Kl> (Z zi®gi> ~ 9o @ fo.
1=0 k=1
2.3. Basic operations in tensor notation. Here we point out a feature of the
basic operations required by Krylov subspace methods in the setting we are consider-
ing, where the operators and data of interest have tensor format. The mth step of such
methods results in the Krylov subspace, K., (A, v1) = span{vy, Avy, ..., A™ o},
which is generated using matrix-vector products and addition/subtraction of vectors.
The matrix-vector product in (2.15) can be represented as a sum of rank-one
tensors by exploiting the properties of the Kronecker product,

M Ky (M+41)ka
(2.16) Au=> N Ga@ Ky = > 4@
1=0 k=1 i=1

The latter expression in (2.16) suggests that in tensor notation, the matrix-vector
product typically results in a vector with a higher rank. Similarly, the addition of two
vectors u and v of ranks k, and k, in tensor notation gives

Ko, Ky Koy +hy
(2.17) UFv=Y @yt Y 5 00= Y %@y,
i=1 j=1 i=1
where y;y,.., = Ui and 24, = 2;, ¢ = 1, ..., Ky, so that the resulting sum may have

rank as large as K, + K,. Thus, although the goal is to find an approximate solution to
(2.9) of low rank, two of the fundamental operations used in Krylov subspace methods
tend to increase the rank of the quantities produced. Following [5], we will address
this point in the next section.
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3. A preconditioned projection method in tensor format. As is well
known, the GMRES method [28] constructs an approximate solution w,, € wug +
K (A, v1), where ug is an initial vector with residual 7o = f — Aug, v1 = ro/||7oll2;
and K, is the Krylov space. This is done by generating V;,, = [v1, ..., U], where
{vj};-"zl is an orthogonal basis for IC,,, and then computing wu,,, whose residual 7,
is orthogonal to W,,, = AV,,. The method is shown in Algorithm 1. In this section,
we discuss a variant of this method based on LRP, where advantage is taken of the
Kronecker format of the matrix A and the fact that we seek an approximation of u
with low-rank structure.

Algorithm 1 GMRES method without restarting [27].

1: set the initial solution wug
2: rg = f — A'LLO

3. U1 :=710

4: v = 171/”171“

5. for j=1,..., mdo

6: wj = Av;

7 solve (VjTVj)a = Vijj
8: ’(~)j+1 =wy = 2521 ;5
9 i1 = V1 /[T
10: end for

11: solve (WL AV,,,)y = W.hrg
12: Uy = ug + Viny

3.1. Low-rank projection method with restarting. As we observed in sec-
tion 2, matrix-vector products and vector sums in tensor structure tend to increase
the rank of the resulting objects. Thus, although we seek a solution of low rank,
straightforward use of the GMRES method may lead to approximate solutions of
higher rank than the desired solutions. This complication can be addressed using
truncation operators [5, 18, 19, 21, 29], whereby vectors of high rank are replaced
by ones of low rank. The truncation is inserted into the GMRES algorithm and is
interleaved with the basic operations such as matrix-vector product and addition so
that the ranks of the vectors used in the algorithm are kept low.

Algorithm 2 summarizes the restarted LRP method in tensor format [5]. As in the
standard Arnoldi iteration used by GMRES, a new vector is constructed by applying
the linear operator A to the previous basis vector v; and orthogonalizing the new basis
vector w; with respect to the previous basis vectors {vi}{zl. The resulting vector is
truncated to a vector ¥4, of low rank and normalized to v;1, which is then added to
the set of basis vectors. The truncation operator 7T, truncates a tensor of higher rank
to one of rank . Thus, all the basis vectors {v;}72, are of the same rank, x. The basis
vectors determine the subspace K,, = span{vy, ..., vy}, but because of truncation
the basis vectors are not orthogonal, and K., is not a Krylov subspace. However, it
is still possible to project the residual onto the subspace W,,, = span{wy, ..., wy,} to
find out whether the residual can be decreased by forming a new iterate g + V,,, 3.
Note that all of the vectors used in the entire iteration process are stored as the
product of two matrices in the form shown in (2.12). The ranks of these vectors will
be discussed below.
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Algorithm 2 Restarted LRP method in tensor format.
1: set the initial solution
2: for k=0,1,... do
3: I — f — Aﬂk

4: if ||7¢]|/]lf]| < € then

5: return uy

6: end if

7 ’[)1 = 7;(7%)

8: V1 = ’l~)1/||’l~)1||

9: for j=1,..., mdo

10: Wy = Avj

11: solve (VjTVj)a = Vijj
12: 1~}j+1 =T, (wj — Zg:1 O[il}i)
13: vj41 = U1 /|04l
14: end for

15: solve (WLAV,,)3=WZIr
16: ﬂk-&-l = ﬁ(ak + Vmﬁ)
17: end for

3.2. Preconditioned low-rank projection method. To speed the conver-
gence of the projection method, we consider a right-preconditioned system,

(3.1) AM ™o = f, @ = Mu.

For the stochastic diffusion problem, we consider M = Gy ® [N(O ~ Gy ® K as the
preconditioner, a mean-based preconditioner [23]. For the practical application of
the preconditioner, we employ algebraic multigrid methods [26], where the action of
Ky ! is replaced by f(o_ ! an application of a single V-cycle of an algebraic multigrid
method. The multigrid algorithm used point damped Jacobi smoothing with damping
parameter 0.5 and two presmoothing and two postsmoothing steps, together with
bilinear interpolation for grid transfer (as implemented in [30]). The preconditioned
matrix-vector product is then

M
AM 14 = Z
=0

Kq KRa
Gl2k®KlKo_1gk7 ﬁ:MUZZQi@)QZ‘.
k=1 =1

Note that G, ! is the identity matrix because of the orthonormality of the stochastic
basis functions. With right preconditioning and this preconditioner, the strategy for
handling tensor rank is largely unaffected by preconditioning.

4. Truncation methods. As discussed in section 3.1, in the LRP method, trun-
cation of tensors is essential for the efficient computation of approximate solutions.
In this section, we discuss the conventional approach for truncation and introduce a
new coarse-grid truncation method based on a coarse-grid solution.

4.1. Truncation based on singular values. Given a matricized vector U =
Y, ZL of rank &', a standard approach for truncation [5, 21] is to compute the singular
value decomposition (SVD) of U and compress U into an approximation of desired
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rank xk < «’. This can be done efficiently by computing QR factorizations of Y, and
ZK/ )

Y, = QyRy €R™ ' Z.,=QzR; € R"*"

Then, one can compute the SVD of Ry RL,
RyR} = UV =3 pigof,
k=1

and truncate the sum with s terms to produce

Yn:QYUnE/{ eRanK, ZH:QZVKG]R”5XH.

The truncated approximation of U is then U = ?HZE. The computational complexity
of the truncation is O((n, +ne +)(x')?) [15], which grows quadratically with respect
to x’. In the next section, we introduce a new truncation method that avoids this
computation.

4.2. Truncation based on coarse-grid rank reduction. We now propose a
coarse-grid rank-reduction strategy. We obtain insight into the rank structure of the
solution by using a coarse spatial grid computation. Then, we define a truncation
operator based on the information obtained from this coarse-grid computation.

Let u¢(z, &) represent a solution obtained on a coarse spatial grid (i.e., n, is
small). As in (2.13), u®(z, &) can be represented as

ula, €) = (8°(2))" U°U(E) = (V) 8°(2))" (2970 (¢)).

Here, we propose using Z¢ to define a truncation operator for use in the projection
method to compute a solution for the problem on a finer grid. That is, the truncation
operator 7, is defined such that, given a matricized vector U = Y,/ ZZ, of rank &/,

(4.1) T.(U) = (Yu 2L 28) (29)" =1,
where the resulting quantity U = Y, Z” is of rank ,
Y, =Y Z52¢ e RXF 7, = 7¢ € R"e¥",

The desired rank « is determined such that the relative residual || f¢ — A%u®*||2/]| f¢|l2
is smaller than a certain tolerance €, where u * is a k-term approximation of u¢. This
truncation operation requires two matrix-matrix products, and the computational
complexity of truncating a vector from ' to k is O(k’'k(n, + ne)). Note that with
the proposed truncation strategy, the fine-grid computation is equivalent to applying
GMRES to Y M K,UG:Z(25)T = fogl.

For efficient coarse-grid computation, we use the proper generalized decomposi-
tion (PGD) method developed in [22, 31], which computes a separated representation
of a coarse-grid solution,

(4.2) ut (@, &) =Y @)z (€).
i=1



S836 KOOKJIN LEE AND HOWARD C. ELMAN

With the stochastic Galerkin discretization, each function can be represented as

@) =S 3065 @), 2O =3 2Pne).
k=1 =1

As a result, as in (2.13),
w6 = (T @) (29 (o).

where Y,¢ = [§(1), ..., )] € R*>*% and Z¢ = [z, ..., 2(®)] € R"** are coefficient
matrices such that the ith elements of §U) and 2\9) are ggj ) and Zgj ), respectively.
Now, the discrete solution U in (4.2) is approximated by U%" = Ye(zo)T, and we
can obtain Z¢ by computing the SVD of U% "= UXVT, and, as a result, Z¢ = V. We
briefly explain how the PGD method computes a k-term approximation in the next
section.

4.3. Proper generalized decomposition method. The PGD method is a
successive rank-one approximation method. That is, the method incrementally iden-
tifies the function pairs (g;(z), Z;(§)) of (4.2) one at a time. Once i such pairs have
been computed, the next pair (g;+1, Zi+1) is sought in X, x Sps by imposing Galerkin
orthogonality with respect to the tangent manifold of the set of rank-one elements at
gi+1gi+17 which is {gi+1§ + Ugi-&-l; v € Xy, < € SM} find ﬂi+151'+1 such that for all
(’U7 C) € Xh X SMv

(4.3)
</D a(@, )V (u®i + §is1Zip1) - v(§i+14+vzi+1)> — </D f(gi+1g+vgi+l)>.

It follows from (4.3) that each component of a pair (¢;+1, Z;+1) can be computed by
solving two coupled problems: a deterministic problem (4.4) and a stochastic problem
(4.5). The deterministic problem is as follows: given Z; 41, find ;11 € X}, such that

(4.4)
</ a(@, )V (u®" + Jip1Zip1) - V(¢§5i+1)> = </ f¢§5i+1>, j=1 ..., ng.
D D

The first basis function z; can be chosen arbitrarily at the beginning of the PGD
method. The finite element discretization of w;y; yields a linear system of order nf.
Analogously, the stochastic problem starts with ¢;,1 and finds Z;1; € Sy such that
(4.5)

</ a(@, OV (u" + Jip1Zi41) 'V(§i+1¢j)> = </ f@i+11/)j>7 J=1, ..., ne.
D D

Since Z;y1 is approximated by the PCE, ng unknowns have to be determined by
solving a linear system of order ng.

Solutions of these sets of x systems of order ng and x systems of order n¢ produce
the k-term approximation to the solution. The PGD method seeks solution pairs until
the relative residual of the computed solution satisfies a given tolerance,

(4.6) 1€ = A% "2/l 2 < €
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The accuracy of the s-term approximation can also be improved by solving a set of
k coupled equations: given {g;}7 ,, find {Z;}/; such that
(4.7)

</Da(.’l:, f)v(u(ﬁ))-V(giwj>>:</ngiwj>, i=1,..., K j=1,..., ne

This update requires the solution of a linear system of order xn¢. For the stochastic
diffusion problems, the update problem is solved once at the end of the PGD method.
Note that the update problem could also be formulated for finding the deterministic
parts {u;}i; if n, < ng, which requires a solution of a linear system of order xn,.

With the proposed truncation strategy, Algorithm 3 summarizes the entire pro-
cedure to compute a solution on a finer grid.

Algorithm 3 Preconditioned LRP method with the coarse-grid rank reduction.

1: Compute u® " that satisfies W < €° using the PGD method

2: Compute Z¢ such that U * = Y,¢(Z¢)T and define T, (U) = (UZ¢) (2¢)"
3: Run Algorithm 2 with £ = AM~!, f, and T,

5. Numerical experiments. In this section, we present the results of numeri-
cal experiments in which the proposed iterative solver is applied to some benchmark
problems. The implementation of the spatial discretization is based on the incom-
pressible flow and iterative solver software (IFISS) package [30]. Example problems
are posed on a square domain, and ¢ is the spatial discretization parameter (i.e.,
ne = (2° 4+ 1)2).

For a(z, &) in (2.5), we consider independent random variables {;};2; that are
uniformly distributed over [—v/3, v/3], ap = 1, and, unless otherwise specified, o =
0.05. As the covariance kernel, we use

(5.1) Cle, y) = 0% exp < ot 71 y2> |
Y Y

where v is the correlation length. The number of terms M in the truncated expansion
(2.5) is determined such that 95% of the total variance is captured by M terms (i.e.,
(sz\il i)/ (O i) > 0.95). We use bilinear @1 elements to generate the finite
element basis and Legendre polynomials as the stochastic basis functions because the
underlying random variables have a uniform distribution. The default setting of the
maximal polynomial degree p is 3.

5.1. Stochastic diffusion problem. We consider the steady-state stochastic
diffusion equation in (2.6) on a domain D = [0, 1] x [0, 1] with forcing term f(z) =1
and homogeneous Dirichlet boundary conditions u(z, w) =0 on dD x T

Coarse spatial grid computation. We compute x-term approximations using
the PGD method on a coarser spatial grid. Here £¢ is the refinement level for the
coarse grid, and n¢ is the number of degrees of freedom in the corresponding spatial
domain excluding boundary nodes. We discuss choices of coarse spatial grid in section
5.3. Table 1 shows the rank x of solutions that satisfy the tolerance €® for varying
correlation lengths v and M and the computation time t.. In PGD, the linear systems
arising from (4.4), (4.5), and (4.7) are solved using the MATLAB backslash operator.

Fine spatial grid computation. With the truncation operator 7, from (4.1)
obtained from the coarse-grid solution (i.e., Z¢), we solve the same stochastic diffu-
sion problems on finer spatial grids ¢ = {7, 8, 9}. For the fine-grid low-rank solutions,
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TABLE 1
Rank (k) of coarse-grid solutions satisfying €¢ of (4.6), and CPU time (t.) for coarse-grid
computation using the PGD method, for varying v and M.

€ =10"° €€ =106
v 4 3 2.5 2 4 3 2.5 2
M, ng 5,56 7,120 10,286 15, 816 5,56 7,120 10,286 15, 816
ng (£°) 225(4) 225(4)  961(5)  961(5) 225(4) 225(4)  961(5)  961(5)
Rank(k) 25 40 65 115 35 65 100 210
CPU time(t.) 2.49 3.47 8.35 45.08 2.93 5.04 14.83 162.71
TABLE 2

CPU times to compute low-rank solutions of the diffusion equation for e¢ = e = 10> using the
preconditioned LRP method. Numbers of GMRES cycles are shown in parentheses.

ne(£) M=5 M=7 M=10 M=15 tsetup
1292 | tg 4.12 (1) 7.22 (1)  18.79 (1) 86.29 (1) 1.76
(7) t 8.35 12.43 28.88 132.15
9572 | tp | 12.55 (1) 2470 (1) 7471 (1) 33045 (1) || 10.16
(8) t 25.17 38.37 93.20 385.59
5132 | tp | 92.83 (1) 10242 (1) 353.07 (1) 2717.03 (1) || 92.41
9) t | 147.17 197.87 453.71 2854.62

we use the rank x obtained from the coarse-grid solutions. For example, the third
column of Table 2 shows the time required to find solutions of rank 25 satisfying the
relative residual tolerance 107> when the number of terms in (2.5) is M = 5. In
Algorithm 2, we set m = 8 (like restarted GMRES(8)). In examining performance,
we identify the number of cycles, k, performed for the outer for-loop in Algorithm
2; this means that the number of matrix-vector products (i.e., the number of times
line 10 is executed) is mk. Tables 2 and 3 show the number of cycles, k, and the
computation time in seconds needed to compute approximate solutions with ¢ = 107°
and 107, respectively (see line 4 of Algorithm 2). Here, t is the total time and iy
excludes the time to compute the coarse-grid solution, ¢.. The fine-grid computation
time, tf, consists of algorithm execution time and preconditioner setup time, tsetyp-
The execution times show “textbook” behavior; i.e., they grow linearly with the size
of the spatial grid.! Note that the computational cost for the coarse-grid computation
becomes negligible as the size of the problem becomes larger. If the required memory
for running Algorithm 2 exceeds the resources of our computing environment, solu-
tions cannot be computed, and we denote these cases by OoM for “Out-of-Memory.”
Table 4 shows the number of degrees of freedom of the fine spatial grid problems for
varying stochastic dimensions, M.

In these experiments and in all those described below, we used € = € (the stopping
tolerance specified in line 4 of Algorithm 2), and for this choice, the solver always
satisfied the stopping criterion. We also tested both larger € and smaller €. For
€ > ¢, the solver sometimes failed to satisfy the stopping criterion. For ¢¢ < €, the
solver was robust but consistently more expensive.

Example problems with varying o and p. We examine the rank structure of

L An exception to this statement is when both M and n, are large. For these cases, the problem
does not fit into physical memory, and memory swap-in/out time dominates the execution time.
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TABLE 3
CPU times to compute low-rank solutions of the diffusion equation for e¢ = e = 106 using the
preconditioned LRP method. Numbers of GMRES cycles are shown in parentheses.

N (£) M=5 M=1 M =10 M =15 tsetup
1292 | ty 5.40 (1)  12.50 (1) 35.09 (1)  233.54 (1) 1.79
(7) t 10.14 19.32 51.69 398.06
2572 | ty | 17.23 (1)  46.07 (1)  137.19 (1) 1004.40 (1) || 10.53
(8) ¢ 30.55 61.41 162.90 1177.68
5132 | tp | 7037 (1) 21712 (1) 122577 (1) OoM 92.81
9) t | 166.24 315.18 1333.63 OoM
TABLE 4

Number of degrees of freedom of the fine-grid discretizations with p = 3 for varying spatial grid
refinement level, £, and number of random variables, M.

¢ M=5 M=1 M =10 M =15
7 931,806 1,996,020 4,759,326 13,579,056
8 | 3,608,744 7,925,880 18,800,014 53,895,984
9 | 14,737,464 31,580,280 75,266,334 214,745,904

the numerical solutions of the stochastic diffusion problems and assess the performance
of the proposed solution algorithm for different values of maximal degree of stochastic
polynomial p in (2.8) and variance o2 of the random field a(z, £). As in the previous
numerical experiments, we first identify the rank structure and define the truncation
operator from coarse-grid computation. Then we solve the same problems on a finer
grid by using the proposed LRP method with the coarse-grid rank-reduction scheme.

Table 5 shows the computation time needed to compute approximate solutions of
the stochastic diffusion problems with M = 7 for varying maximal polynomial degree
p. The required ranks of the approximate solutions are not affected by the number of
terms in the polynomial expansion. However, the computation time is increased for
the polynomial expansion with higher maximal polynomial degree because the size
of {Gi}M, and the size of the stochastic part of the solution becomes larger as the
number of terms in the PCE is increased.

Table 6 shows the computation time ¢ needed to compute approximate solutions
of the stochastic diffusion problems that satisfy tolerances 10~° and 10~% for varying
variance, 2. In general, the example problem with a larger variance requires a higher
rank to satisfy the stopping tolerance, which, therefore, requires more computational
effort.

Comparison to a truncation operator based on singular values. We
compare the performance of the proposed solver to the preconditioned LRP method
combined with the conventional truncation operator from [19]. Table 7 shows the
computation time required to compute approximate solutions using the conventional
and new truncation strategies. The total computation time, ¢, of the LRP method
with the coarse-grid rank reduction includes both coarse-grid, t., and fine-grid, ¢y,
computations. The LRP method with the SVD-based truncation operator, which is
implemented based on [5], does not require a coarse-grid computation and can start
with any arbitrary initial guess for rank x. For these computations, we used the values
of rank identified in the coarse-grid computations, which are illustrated in Table 1,
for the initial rank.



S840 KOOKJIN LEE AND HOWARD C. ELMAN

TABLE 5
CPU time t to compute low-rank solutions of the diffusion equation for € = e = 10~° and 10~6
using the preconditioned LRP method for varying mazimal polynomial degree p (stochastic degrees
of freedom, ng¢, are shown in parentheses).

=€ = 1075 (k = 40) €€=¢€= 10" (k = 65)
ne(f) | p=3(120) p=4(330) p=5(792) || p=3(120) p=4(330) p=5(792)
1292(7) 12.43 15.55 21.56 19.32 23.42 38.49
257%(8) 38.37 44.27 56.79 61.41 69.17 91.10
513%(9) 197.87 217.38 252.39 315.18 322.86 383.89
TABLE 6

CPU time t and rank x to compute low-rank solutions of the diffusion equation for ¢¢ = ¢ = 1072
and 10~6 using the preconditioned LRP method for varying o.

e=10"° e=10"°

o Ng M=5 M=T7 M=10 M=15 M=5 M=T7 M=10 M=15
k=15 k=20 k=235 K =055 k=20 k=30 Kk =50 k=285
0.01 1292 7.28 8.65 15.01 45.69 7.87 10.81 20.76 83.07
2572 21.47 26.08 47.21 135.75 23.30 31.94 66.92 240.98
5132 130.93  150.85 236.34 922.87 137.98  173.03 333.70  1893.89
k=25 K=40 K=65 k=115 k=35 K=65 K=100 K=210
0.05 1292 8.35 12.43 28.88 132.15 10.14 19.32 51.69 398.06
2572 25.17 38.37 93.20 385.59 30.55 61.41 162.90  1177.68
5132 147.17  197.87 453.71  2854.62 166.24  315.18  1333.63 OoM

k=35 K=60 kK=100 &~ =180 k=50 k=85 Kk=145 -
01 1292 9.78 17.24 50.70 297.35 8.79 28.37 113.53 OoM
2572 29.98 54.94 157.76 866.41 41.69 94.48 356.50 OoM
5132 164.48  273.33  1324.47 OoM 208.15  515.29  2902.95 OoM

PGD as a solver on a finer spatial grid. The PGD method could be applied
directly to the fine-grid problems. We assess the performance of the PGD method for
computing fine-grid solutions in Table 8, which shows the rank and computation time
for computing approximate solutions that satisfy the tolerances 10~° and 1076 using
PGD on a finer spatial grid. For the LRP method, we record total computation time,
t, which includes coarse-grid computation, t.; AMG preconditioner setup, tsetyp; and
fine-grid computation time, t;. We compare the rank and the computation time for
computing solutions using the PGD method and the proposed projection method.
The proposed LRP method runs faster and requires somewhat smaller ranks than the
PGD method.

Remark. We also tested the techniques compared in Tables 7 and 8 for different
values of 0, 0 = 0.01 and 0.1, with similar results. Indeed, the performance of LRP-
coarse is more favorable for the larger value o = 0.1.

5.2. Stochastic convection-diffusion problem. For a second benchmark prob-
lem, we consider the steady-state convection-diffusion equation defined on D = [—1, 1]x
[—1, 1] with nonhomogeneous Dirichlet boundary conditions, constant vertical wind
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TABLE 7
CPU times to compute low-rank solutions of the diffusion equation for ¢¢ = ¢ = 1075 and
1076 wsing the preconditioned LRP methods with the coarse-grid rank reduction and the singular
value-based truncation on the level 8 spatial grid (i.e., ng = 2572).

Solver M=5 M=7 M=10 M=15 M =20
¢ = 10-5 LRP-SVD tsvp | 55.04 108.11  284.27 1280.65 5691.19
LRP-coarse t 25.17 38.37 93.20 385.59  1943.49
¢ — 106 LRP-SVD tsvp | 76.03 198.20 564.12 5131.32 OoM
LRP-coarse t 30.55 61.41 162.90 1177.68 OoM

TABLE 8

CPU times to compute low-rank solutions of the diffusion equation for e¢ = ¢ = 10~5 and
1076 using the PGD method and the preconditioned LRP methods on the level 8 spatial grid (i.e.,
Nge = 2572).

Solver M=5 M=7 M=10 M=15 M =20
PGD K 25 45 65 125 195
10-5 t 43.78 109.72 228.73 940.69 3066.87
€ =
2 4 11 1
LRP-coarse " 5 0 65 5 80
t 25.17 38.37 93.20 385.59 1943.49
PGD K 40 70 110 225 OoM
10-6 t 74.43 214.82 533.10 2713.70 OoM
€ =
1 21 M
LRP-coarse K 35 65 00 0 Oo
t 30.55 61.41 162.90 1177.68 OoM

w=(0,1),and f =0,

vV - (a(z, §Vu(z, &)+ 0 - Vu(z, &) = f(z,&) inDxT,

(5.2)
u(x, &) =gp(x) on 0D x T,

where gp(z) is determined by

B (z, 1) =z, (x, 1) =0,
(5.3) gp(x) = { ggDD(_1, y) = —1, Zi(L y) =1,

where the latter two approximations hold except near y = 1, and v is the viscosity
parameter. We consider the convection-dominated case (i.e., v < 1) and employ the
streamline-diffusion method for stabilization [8]. Here, we define the element Péclet
number

I (K P

(54) Pk: 2w )

where ||Wy||2 is the ¢3 norm of the wind at the element centroid and hy, is a measure
of the element length in the direction of the wind. Note that the solution has an
exponential boundary layer near y = 1, where the value of the solution dramatically
changes essentially from —1 to 0 on the left and from +1 to 0 on the right [12]. Figure
1 illustrates the mean of solutions (u(x,&)), computed on the level 6 spatial grid and
corresponding contour plots for varying viscosity parameter, v.

Given a(z, €) in (2.5), we again discretize (5.2) using the finite element method
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v =1/20 v =1/200 v =1/600
mean solution mean solution mean solution

contour plot contour plot contour plot

Fic. 1. Mean solutions and contour plots on the level 6 spatial grid for varying v.
and the generalized PCE. The result is a linear system in tensor product notation

M
(5.5) <G0®VK0—|—ZG1®VK1+G0®N+G0®S>u=go®f07
=1

where the convection term N and the streamline-diffusion term S are given by
Ny = [ @ Voi(e)s, @)z,
D

) =6 / T Ven)(i@ - Voy)da,
k=1

(
D

N, is the number of elements in the finite element discretization, and

h 1\ .
(5.6) 5 = STaTs (1 - PT) it P, > 1,
0 if P, < 1.

As the preconditioner, we choose M ~ Go®(Ko+N+S), where the action of (Ko+N+
S)~1 is replaced by application of a single V-cycle of an AMG method. In the PGD
method, the nonhomogeneous Dirichlet boundary condition is handled by introducing

an extended affine space [22] u® & up.+u® *, where up. is the boundary nodal function

such as upe = Y 4 cop u,(cbc)qﬁk (). For the stochastic convection-diffusion problems,

the update problems (4.7) need to be solved more often to compute an approximate
solution of a desired accuracy with fewer terms.

Numerical results. To cope with the existence of the exponential boundary
layer in the solution, we use vertically stretched spatial grids. We examine the per-
formance of the LRP method for varying viscosity parameter v, and we set m = 10
for Algorithm 2. Tables 9 and 10 show x computed by the PGD method, coarse-
grid computation time t., and fine-grid computation time ¢ to compute approximate
solutions on fine spatial grids ¢ = {7, 8, 9} satisfying 107° and 1076, respectively.
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TABLE 9

5843

CPU times to compute low-rank solutions of the convection-diffusion equation for €€ = e = 102

using the preconditioned LRP methods for varying v.

parentheses.
vo| e M=5 M=1 M =10 M =15 tsetup
Ll 25 35 55 65*
L te 2.56 4.83 26.34 58.92*
20 7]y 5.73 (1) 9.47 (1)  24.86 (1) 72.29 (1) 6.14
8 |ty | 2052(1) 36.66 (1)  98.72 (1)  248.31 (1) 30.57
9 | ¢ty | 84.55(1) 152.69 (1) 592.63 (1) 1953.52 (2) || 338.28
Ll 20 25 45 55*
te 2.94 3.12 16.28 47.24%
o5 | T | tf 5.06 (1) 7.28 (1)  18.90 (1) 60.66 (1) 6.34
8 |ty | 1687 (1)  26.36 (1)  74.26 (1)  202.29 (1) 35.52
9 |ty | 121.98 (2) 201.62 (2) 74592 (2) 3079.24 (2) || 341.41
5| . 20 25 45 50
L te 2.91 4.79 16.54 46.85
200017 ¢y 5.16 (1) 7.21 (1)  16.57 (1) 53.97 (1) 6.35
tp | 1757 (1) 25.05 (1)  63.56 (1)  175.30 (1) 35.89
9 | t; | 123.73 (2) 200.10 (2) 605.50 (2) 2568.41 (2) || 344.87
5|k 20 20 35 451
te 2.94 3.79 12.49 82.06
o5 ty 8.61 (2) 9.84 (2)  26.97 (2) 85.01 (2) 6.09
tp | 3155(2) 3774 (2) 111.31(2)  298.49 (2) 34.93
9 | t; | 13345 (2) 158.01 (2) 512.88 (2) 2080.60 (2) || 342.12
6| " 20 20 35 45
L te 9.79 13.20 34.47 94.79
600 ty 827 (2)  10.07 (2)  26.91 (2) 82.30 (2) 6.14
tp | 3194 (2)  39.84 (2) 109.25 (2)  295.25 (2) 33.25
9 | t; | 343.80 (2) 163.90 (2) 506.42 (2) 1977.83 (2) || 342.98

Numbers of GMRES cycles are shown in

Underlined numbers in the spatial grid level indicate cases where streamline diffusion

is not needed.

When the viscosity parameter is small (i.e., ¥ = 1/600), the coarse-grid compu-

tation requires the x-term approximation on a relatively fine spatial grid (i.e., £ = 6).
The exponential boundary layer gets narrower as the viscosity parameter gets smaller,
which requires the use of a finer spatial grid for the coarse-grid computation. If the
coarse-grid computation is performed on coarser spatial grids, it fails to identify the
rank structure of solutions and to yield a proper truncation operator. Analogously,
when the number of terms, M, in the KL expansion (2.5) is large, the coarse-grid
computation has to be done on a relatively fine spatial grid because the KL expan-
sion contains more spatially oscillatory terms. In the last columns of Table 9 and 10,
* and t indicate that the coarse-grid solutions are computed on the level 5 and the
level 6 spatial grid, respectively.

Comparison to a truncation operator based on singular values. We again
compare the performance of the proposed solver to the preconditioned LRP method
combined with the conventional truncation operator, i.e., the SVD-based truncation
operator. Table 11 shows the computation time required to compute approximate
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TABLE 10
CPU times to compute approzimate solutions of the convection-diffusion equation for e = e =
1076 using the preconditioned LRP methods for varying v. Numbers of GMRES cycles are shown
in parentheses.

v |2 M=5 M=7 M =10 M =15 tsetup
Al F 35 50 75 105*
L te 3.31 9.17 60.51 194.33*
20 [7 ty 13.92 (2)  27.47 (2) 80.78 (2) 275.96 (2) 6.14
8 | ty | 5245(2) 106.11 (2)  311.59 (2)  1042.40 (2) 30.57
9 | t; | 220.67 (2) 534.61 (2) 2694.26 (2)  8101.20 (2) || 338.28
Al F 30 40 65 95*
te 2.83 6.25 38.39 155.83*
s | 7]ty 12.34 (2)  21.28 (2) 65.02 (2) 239.91 (2) 6.34
8 | ty | 46.67(2)  85.66 (2)  255.79 (2) 895.81 (2) 35.52
9 | ty | 273.45 (3) 549.82 (3) 3069.96 (3) 10963.03 (3) || 341.41
5| F 25 40 60 85
L te 3.46 8.57 38.35 122.49
200 7 ty 10.52 (2)  21.43 (2) 56.36 (2) 204.09 (2) 6.35
ty | 39.39 (2)  84.14 (2)  219.36 (2) 732.88 (2) 35.89
t; | 226.83 (3) 547.62 (3) 2627.98 (3)  9284.60 (3) || 344.87
5| " 25 35 55 751
te 3.49 6.63 30.50 151.467
5 | 7] tr 10.44 (2)  17.96 (2) 50.96 (2) 161.58 (2) 6.09
ty | 40.02 (2)  70.82(2)  204.71 (2) 610.23 (2) 34.93
t; | 239.04 (3) 441.73 (3) 2106.30 (3)  7817.82 (3) || 342.12
6l " 30 35 45 65
L te 17.99 22.03 47.44 140.01
600 ty 17.74 (3)  26.56 (3) 56.25 (3) 281.27 (3) 6.14
ty | 4839 (2) 7440 (2)  153.35 (2) 506.84 (2) 33.25
t; | 281.27 (3) 462.52 (3) 1184.74 (3)  6261.34 (3) || 342.98

solutions using the conventional and the new truncation strategy. When the LRP
method with SVD-based truncation operator is used, initial values for rank s in Al-
gorithm 2 are obtained from coarse-grid computations of the proposed rank-reduction
strategy.

5.3. Choices of coarse spatial grid. Finally, we discuss criteria for choosing
the coarse grid used to generate truncation operators. The basic idea is that the
coarse grid needs to be fine enough so that important features of the problem are
represented. This quality is problem dependent, and we outline what is needed for
the two types of problems we examined.

First, consider the diffusion equation of section 5.1. The issue is the oscillatory
nature of components of the random field a(z, £). In the KL expansion (2.5), the
eigenpairs, {(\;, a;(z))},, can be obtained by solving the integral equation

(5.7) /D Cl(z, y)a;(y)dy = \a;(z), i=1,..., M,

where C(z, y) is the covariance kernel (5.1). Since the kernel is separable, the eigen-

functions of the integral problem (5.7) can be represented as a;(z) = aj, (xl)a? (z2),
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TABLE 11
CPU times to compute low-rank solutions of the convection-diffusion equation for e¢ = e = 102
and 10~6 wusing the preconditioned LRP methods with coarse-grid rank reduction and the singular
value-based truncation on the level 8 spatial grid (i.e., ng = 2572).

Viscosity (v) Solver M=5 M=7 M=10 M=15
1/20 LRP-SVD tsvp 68.45  100.83 201.34 438.25
LRP-coarse t 54.06 72.08 154.79 338.21

1/100 LRP-SVD tsvD 93.91  121.89 295.27 655.71
LRP-coarse t 55.28 64.36 125.88 285.94

c—10-5 1/200 LRP-SVD tsvp 90.70  122.56 251.60 574.68
LRP-coarse t 55.42 66.08 115.68 258.97

1/400 LRP-SVD tsvp 91.11  107.47 221.32 475.60
LRP-coarse t 69.01 76.63 158.07 416.36

1/600 LRP-SVD tsvp 90.33  103.44 218.35 484.08
LRP-coarse t 75.26 86.48 176.93 422.85

1/20 LRP-SVD tsvp | 132.08 234.15 570.56  1748.43
LRP-coarse t 86.74  145.86 401.83  1267.71

1/100 LRP-SVD tsyvp | 121.88  196.66 471.11  1479.80
LRP-coarse t 84.97  126.77 329.52  1088.05

c— 10-6 1/200 LRP-SVD tsyvp | 106.79  188.76 416.52  1203.78
LRP-coarse t 77.79  128.96 293.30 892.18

1/400 LRP-SVD tsyp | 107.12  168.01 380.01 1015.88
LRP-coarse t 78.04  112.55 269.48 797.50

1/600 LRP-SVD tsvD 122.44 231.07 421.76 1208.88
LRP-coarse t 97.00 129.87 234.00 670.90

where {a;}p>, and {a}}52, are the eigenfunctions of the one-dimensional integral
problem (i.e., [, exp(—|z; — yi|/v)al (y)dy = Nya,(x1), | = 1, 2). The eigenvalues,
{\i}M | are in decreasing order, and J; is the ith largest value of products )\}C)\ﬁ for
k,j=1,2,.... Analytic expressions for the one-dimensional eigenfunctions are given
in [14] as, for [ =1, 2,

al(z) = cos(&km)/ /% n SIQHsz for even k,

1 sind
al(z) = sin(t‘),”;x)/ 5 S U for odd k,

(5.8)

204,

where 05, and 0} are the solutions of

1—Gtan Q =0 and 0*—|—1tan 0— =0,
c 2 c 2

respectively, when the one-dimensional integral problem is posed on [f%, %] As i in
the KL expansion (2.5) increases, the eigenfunctions a;(z) become more oscillatory
over the spatial domain (i.e., 8 or 05 becomes larger), so that finer coarse spatial
grids are required to capture the oscillatory features of the KL expansion. Table 12
shows the largest value of {6y, 65} of the eigenfunctions in the KL expansion, the half-

wavelength of the functions from (5.8), and our choice of coarse spatial grid refinement
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Largest values of 0, or 05 of eigenfunctions (5.8) in the KL expansion, required grid refinement
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TABLE 12

level £¢, half-wavelength 7/0, and element size h® = 2-¢¢ for different values of M.

M 3 5 7 10 15 20
max(0x, 67) | 325  6.36 949  12.63  18.90  25.19
wavelength/2 | .97 49 33 25 17 12
¢ (h°) 3(5) 4(5) 4() 5(z5) 5(z) 6(5)

<u(x.£)> .

— (=38
—w - L=5
—-G--L=4

0.4 1

1 1 1 1 1
0.9 0.92 0.94 0.96 0.98 1 1.02

F1G. 2. Mean solutions (u(x, £)), atx = 1 and y = [0.9, 1] illustrating the exponential boundary
layer for varying spatial grid refinement level £ = {4, 5, 8} (top), and lengths in the y-direction of
the first few elements from y = 1 (bottom).

levels, (¢, for different values of M. With these coarse grids, there are approximately
eight grid points per half-wave, enough to capture the qualitative character of the
wave.

We turn now to the convection-diffusion equation of section 5.2. This problem
has the same diffusion coefficient (2.5) as the diffusion problem, but in addition its
solution has an exponential boundary layer. In particular, for small v, the width of
the layer is smaller than the finest interval needed to represent the eigenfunctions in
(2.5), and in this case the coarse grid must be finer than that needed for the diffusion
problem (whose solution is smooth). In Figure 2, the top plot illustrates the mean
solutions (u(z, &)), of the weak formulation of (5.2) at « = 1, which are computed on
two coarse spatial grids ¢ = {4, 5} using PGD and a fine spatial grid ¢ = 8 using the
proposed method, with viscosity parameter v = ﬁ and M = 10 random variables.
The bottom plot shows the lengths of the first few elements in the y-direction near
y = 1 for these refinement levels. If the level-4 spatial grid is used for the coarse-
grid computation (i.e., £ = 4, bottom line in Figure 2), the width of the exponential
boundary layer is much narrower than the length of the smallest element, and the
coarse-grid solution gives a poor representation of the boundary layer. When this
coarse grid is used to construct the truncation operator, the proposed scheme fails to
compute an accurate approximate solution on a fine spatial grid (i.e., £ = 8, top line
in Figure 2). On the other hand, the level-5 spatial grid (i.e., £ = 5, middle line in
Figure 2) is fine enough for the coarse-grid solution to represent the character of the
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exponential layer, and with this coarse grid, the resulting proposed scheme efficiently
computes an accurate fine-grid solution.

Although this discussion shows that some a priori knowledge of the problem is
needed to identify the coarse-grid operator, in general this information is not difficult
to come by. In particular, we are assuming that the expansion (2.5) is known, and
it is straightforward to identify the resolution needed to represent its components,
for example, by examining one-dimensional cross-sections of them. If, as for the
convection-diffusion problem, some knowledge of the solution is needed, this can be
obtained cheaply from the solution of a deterministic problem derived from the mean
of the diffusion coefficient; indeed, for the convection-diffusion problem, the boundary
layer for the deterministic solution has essentially the same character as that of the
stochastic solution, whose mean is shown in Figure 2.

6. Statistical computation. In this section, we explore the impact of trunca-
tion on statistical quantities associated with the solutions. In particular, we examine
the mean and the variance of the solution wu,(z, ), which are defined as

(61) = E[“hp]v 0'5 = E[(uhp - M)Z]v
where E[| = [.-p(£)d¢ refers to the expectation. Let ug;ﬂl) refer to the discrete
solution (of form (2.7)) obtained from a full-rank solution of (2.9) (i.e., with no trun-

cation), and let uszw) refer to that obtained using Algorithm 3. We will examine the

low . . . .
accuracy of ugw ) by comparing its mean and variance to those of a reference solution

ug;f) as follows:

(6.2) N = | ttret — tiow |2 < [ ttrer — posant|l2 + || gt — Hiow |2,

(6.3) No = ||012L,ref - 03,1ow||2 < ||Ui,ref - O—Z,fuIIHQ + ||0-12L,fu11 - Ui,lowH%

where the norm in (6.2)-(6.3) is the £, norm (e.g., [|ull2 = ([, p(x)2dz)?). For these

tests, ug;“) and uggw) were computed using a fixed discretization on a spatial grid

(¢ = 7) and polynomial degree p = 3 for the stochastic discretization, and uglrpef) was

computed using the larger polynomial degree p = 5.2 Thus, for the means in (6.2),
Lref — Mfull Tepresents an approximate to the discretization error, and g — fiow
is the error caused by the low-rank approximation, which we refer to as the bias.
Note that the mean and the variance of the stochastic Galerkin solution (2.7) can
be computed easily by exploiting the orthonormality of the basis functions (i.e., for
w(§) =32 withi(§), p=wElh] = uy, and o = 371, wP E[YF] = 3507, uf).

Figure 3 shows the results for various tolerances € and two examples of the
diffusion problem (2.1) (with M = 5 and M = 7 in (2.5)) and one example of the
convection-diffusion problem (5.2) with M = 5. In all cases, it can be seen that the
error for the low-rank solution is somewhat larger than the discretization error for
large €¢ (and this is caused by the bias), but the bias is significantly smaller than the
tolerance €. The bias is negligible for ¢ = 1077,

7. Conclusion. We have studied iterative solvers for low-rank solutions of sto-
chastic Galerkin systems of stochastic partial differential equations. In particular, we
have explored LRP methods in tensor format for linear systems of Kronecker-product

2We also computed a more accurate reference solution with p = 7 for the moderate-dimensional
problem (i.e., the diffusion problem (2.1) with M = 5) and found the results to be virtually identical.
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F1G. 3. Errors in the mean and the variance of the low-rank approxzimate solutions shown in
(6.2) and (6.3) for the stochastic diffusion problem (a)—(d) and the stochastic convection-diffusion

problem (e)—(f).

structure. For the computational efficiency of the projection methods, basis vectors
and iterates in the projection methods are forced to have low rank, which is achieved
by a coarse-grid rank-reduction strategy. We have examined the performance of this
strategy with two classes of benchmark problems: stochastic diffusion problems and
stochastic convection-diffusion problems. For both problem classes, the rank structure
of the solution can be identified by an inexpensive coarse-grid computation, and with
the resulting coarse-grid rank-reduction strategy, the LRP method is more efficient
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than methods for which the truncation operator is based on singular values.
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