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Abstract. We study efficient solution methods for stochastic eigenvalue problems arising from
discretization of self-adjoint partial differential equations with random data. With the stochastic
Galerkin approach, the solutions are represented as generalized polynomial chaos expansions. A
low-rank variant of the inverse subspace iteration algorithm is presented for computing one or sev-
eral minimal eigenvalues and corresponding eigenvectors of parameter-dependent matrices. In the
algorithm, the iterates are approximated by low-rank matrices, which leads to significant cost sav-
ings. The algorithm is tested on two benchmark problems, a stochastic diffusion problem with some
poorly separated eigenvalues, and an operator derived from a discrete stochastic Stokes problem
whose minimal eigenvalue is related to the inf-sup stability constant. Numerical experiments show
that the low-rank algorithm produces accurate solutions compared to the Monte Carlo method, and
it uses much less computational time than the original algorithm without low-rank approximation.
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1. Introduction. Approaches for solving stochastic eigenvalue problems can be
broadly divided into non-intrusive methods, including Monte Carlo methods and
stochastic collocation methods [1, 30], and intrusive stochastic Galerkin methods.
The Galerkin approach gives parametrized descriptions of the eigenvalues and eigen-
vectors, represented as expansions with stochastic basis functions. A commonly used
framework is the generalized polynomial chaos (gPC) expansion [40]. A direct projec-
tion onto the basis functions will result in large coupled nonlinear systems that can
be solved by a Newton-type algorithm [6, 13]. Alternatives that do not use nonlinear
solvers are stochastic versions of the (inverse) power methods and subspace iteration
algorithms [16, 17, 26, 34, 38]. These methods have been shown to produce accurate
solutions compared with the Monte Carlo or collocation methods. However, due to
the extra dimensions introduced by randomness, solving the linear systems, as well as
other computations, can be expensive. In this paper, we develop new efficient solu-
tion methods that use low-rank approximations for the stochastic eigenvalue problems
with the stochastic Galerkin approach.

Low-rank methods have been explored for solution of stochastic/parametrized
partial differential equations (PDEs) and high-dimensional PDEs. Discretization of
such PDEs gives large, sparse, and in general structured linear systems. Iterative
solvers construct approximate solutions of low-rank matrix or tensor structure so
that the matrix-vector products can be computed cheaply. Combined with rank com-
pression techniques, the iterates are forced to stay in low-rank format. This idea
has been used with Krylov subspace methods [2, 5, 20, 23] and multigrid methods
[9, 15]. The low-rank solution methods solve the linear systems to a certain accuracy
with much less computational effort and facilitate the treatment of larger problem
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scales. Low-rank iterative solvers were also used in [3, 4] for optimal control problems
constrained by stochastic PDEs.

In this study, we use the stochastic Galerkin approach to compute gPC expan-
sions of one or more minimal eigenvalues and corresponding eigenvectors of parameter-
dependent matrices, arising from discretization of stochastic self-adjoint PDEs. Our
work builds on the results in [26, 34]. We devise a low-rank variant of the stochastic
inverse subspace iteration algorithm, where the iterates and solutions are approx-
imated by low-rank matrices. In each iteration, the linear system solves required
by the inverse iteration algorithm are performed by low-rank iterative solvers. The
orthonormalization and Rayleigh quotient computations in the algorithm are also
computed with the low-rank representation. To test the efficiency of the proposed
algorithm, we consider two benchmark problems, a stochastic diffusion problem and
a Schur complement operator derived from a discrete stochastic Stokes problem. The
diffusion problem has some poorly separated eigenvalues and we show that a general-
ization of Rayleigh-Ritz refinement for the stochastic problem can be used to obtain
good approximations. A low-rank geometric multigrid method is used for solving the
linear systems. For the Stokes problem, the minimal eigenvalue of the Schur com-
plement operator is the square of the parametrized inf-sup stability constant for the
Stokes operator. Each step of the inverse iteration entails solving a Stokes system
for which a low-rank variant of the MINRES method is used. We demonstrate the
accuracy of the solutions and efficiency of the low-rank algorithms by comparison
with the Monte Carlo method and the full subspace iteration algorithm without using
low-rank approximation.

We note that a low-rank variant of locally optimal block preconditioned conju-
gate gradient method was studied in [21] for eigenvalue problems from discretization
of high-dimensional elliptic PDEs. Another dimension reduction technique is the re-
duced basis method. This idea is used in [11, 18, 25], where the eigenvectors are
approximated from a linear space spanned by carefully selected sample “snapshot”
solutions via, for instance, a greedy algorithm that minimizes an a posteriori error
estimator. Inf-sup stability problems were also studied in [19, 32] in which lower
and upper bounds for the smallest eigenvalue of a stochastic Hermitian matrix are
computed using successive constraint methods in the reduced basis context.

The rest of the paper is organized as follows. In section 2 we review the stochas-
tic inverse subspace iteration algorithm for computing several minimal eigenvalues
and corresponding eigenvectors of parameter-dependent matrices. In section 3 we
introduce the idea of low-rank approximation in this setting, and discuss how compu-
tations in the inverse subspace iteration algorithm are done efficiently with quantities
in low-rank format. The stochastic diffusion problem and the stochastic Stokes prob-
lem are discussed in sections 4 and 5, respectively, with numerical results showing the
effectiveness of the low-rank algorithms. Conclusions are drawn in the last section.

2. Stochastic inverse subspace iteration. Let (Ω,F ,P) be a probability
triplet where Ω is a sample space with σ-algebra F and probability measure P. Define
a random variable ξ : Ω → Γ ⊂ Rm with uncorrelated components and let µ be the
induced measure on Γ. Consider the following stochastic eigenvalue problem: find ne
minimal eigenvalues λs(ξ) and corresponding eigenvectors us(ξ) such that

(2.1) A(ξ)us(ξ) = λs(ξ)us(ξ), s = 1, 2, . . . , ne,

almost surely, where A(ξ) is a matrix-valued random variable. We will use a version
of stochastic inverse subspace iteration studied in [26, 34] for solution of (2.1). The
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approach derives from a stochastic Galerkin formulation of subspace iteration, which
is based on projection onto a finite-dimensional subspace of L2(Γ) spanned by the
gPC basis functions {ψk(ξ)}nξk=1. These functions are orthonormal, with

(2.2) 〈ψiψj〉 = E[ψiψj ] =

∫
Γ

ψi(ξ)ψj(ξ)dµ = δij ,

where 〈·〉 is the expected value, and δij is the Kronecker delta. The stochastic Galerkin
solutions are expressed as expansions of the gPC basis functions,

(2.3) λs(ξ) =

nξ∑
r=1

λsrψr(ξ), us(ξ) =

nξ∑
j=1

usjψj(ξ).

We briefly review the stochastic subspace iteration method in the case where A(ξ)
admits an affine expansion with respect to components of the random variable ξ:

(2.4) A(ξ) = A0 +

m∑
l=1

Alξl

where each Al is an nx × nx deterministic matrix, obtained from, for instance, finite
element discretization of a PDE operator. The matrix A0 is the mean value of A(ξ).
Such a representation can be obtained from a Karhunen-Loève (KL) expansion [24] of
the stochastic term in the problem (see (4.2)). Let {us,(i)(ξ)}nes=1 be a set of approxi-
mate eigenvectors obtained at the ith step of the inverse subspace iteration. Then at
step i+ 1, one needs to solve

(2.5) 〈Avs,(i+1)ψk〉 = 〈us,(i)ψk〉, k = 1, 2, . . . , nξ,

for {vs,(i+1)}nes=1 and compute {us,(i+1)}nes=1 via orthonormalization. If ne = 1, for
the latter requirement, vs,(i+1) is normalized so that ||us,(i+1)||2 = 1 almost surely. If
ne > 1, a stochastic version of the Gram-Schmidt process is applied and the resulting
vectors {us,(i+1)}nes=1 satisfy 〈us,(i+1), ut,(i+1)〉Rnx = δst almost surely, where 〈·, ·〉Rnx
is the Euclidean inner product in Rnx . With the iterates expressed as gPC expansions,

for instance, us,(i)(ξ) =
∑nξ
j=1 u

s,(i)
j ψj(ξ), collecting the nξ equations in (2.5) for each

s yields an nxnξ × nxnξ linear system

(2.6)

m∑
l=0

(Gl ⊗Al)vs,(i+1) = us,(i)

where ⊗ is the Kronecker product, each Gl is an nξ×nξ matrix with [Gl]kj = 〈ξlψkψj〉
(ξ0 ≡ 1 and G0 = I), and

(2.7) us,(i) =


u
s,(i)
1

u
s,(i)
2
...

u
s,(i)
nξ

 ∈ Rnxnξ .

Note that the matrices {Gl} are sparse due to orthogonality of the gPC basis functions
[10, 28]. The initial iterate is given by solving the mean problem A0ū

s = λ̄sūs, and

(2.8) us,(0) =


ūs

0
...
0

 .
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The complete algorithm is summarized as Algorithm 2.1. The details of the compu-
tations in steps 4 and 7 are given in (3.6), (3.12), and (3.13) below.

Algorithm 2.1: Stochastic inverse subspace iteration

1: initialization: initial iterate us,(0).
2: for i = 0, 1, 2, . . . do
3: Solve the stochastic Galerkin system (2.6) for vs,(i+1), s = 1, 2, . . . , ne.

4: If ne = 1, compute us,(i+1) by normalization. Otherwise, apply a
stochastic Gram-Schmidt process for orthonormalization.

5: Check convergence.

6: end
7: Compute eigenvalues using a Rayleigh quotient.

3. Low-rank approximation. In this section we discuss the idea of low-rank
approximation and how this can be used to reduce the computational costs of Algo-
rithm 2.1. The size of the Galerkin system (2.6) is in general large and solving the
system can be computationally expensive. We utilize low-rank iterative solvers where
the iterates are approximated by low-rank matrices and the system is efficiently solved
to a specified accuracy. In addition, low-rank forms can be used to reduce the costs
of the orthonormalization and Rayleigh quotient computations in the algorithm.

3.1. System solution. For any random vector x(ξ) with expansion x(ξ) =∑nξ
j=1 xjψj(ξ) where each xj is a vector of length nx, let

(3.1) X = mat(x) = [x1, x2, . . . , xnξ ] ∈ Rnx×nξ .

Then the Galerkin system
∑m
l=0(Gl ⊗Al)x = f is equivalent to the matrix form

(3.2)

m∑
l=0

AlXG
T
l = F = mat(f).

Let X(i) = mat(x(i)) be the ith iterate computed by an iterative solver applied to
(3.2), and suppose X(i) is represented as the product of two rank-κ matrices, i.e.,
X(i) = Y (i)Z(i)T , where Y (i) ∈ Rnx×κ, Z(i) ∈ Rnξ×κ. If this factored form is used
throughout the iteration without explicitly forming X(i), then the matrix-vector prod-
uct (Gl ⊗Al)x will have the same structure,

(3.3) AlX
(i)GTl = (AlY

(i))(GlZ
(i))T ,

and it is only necessary to compute AlY
(i) and GlZ

(i). If κ� min(nx, nξ), this means
that the computational costs of the matrix operation are reduced from O(nxnξ) to
O((nx + nξ)κ). On the other hand, summing terms with the factored form tends to
increase the rank, and rank compression techniques must be used in each iteration

to force the matrix rank κ to stay low. In particular, if X
(i)
1 = Y

(i)
1 Z

(i)T
1 , X

(i)
2 =

Y
(i)
2 Z

(i)T
2 , where Y

(i)
1 ∈ Rnx×κ1 , Z

(i)
1 ∈ Rnξ×κ1 , Y

(i)
2 ∈ Rnx×κ2 , Y

(i)
2 ∈ Rnξ×κ2 , then

(3.4) X
(i)
1 +X

(i)
2 = [Y

(i)
1 , Y

(i)
2 ][Z

(i)
1 , Z

(i)
2 ]T .

The addition gives a matrix of rank κ1 + κ2 in the worst case. Rank compression can
be achieved by an SVD-based truncation operator X̃(i) = T (X(i)) so the matrix X̃(i)
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has a much smaller rank than X(i) [20]. Specifically, we compute QR factorizations
Y (i) = QYRY and Z(i) = QZRZ and an SVD RYR

T
Z = Ŷ diag(σ1, . . . , σκ)ẐT where

σ1, . . . , σκ are the singular values in decreasing order. We can truncate to a rank-κ̃
matrix by dropping the terms corresponding to small singular values with a relative

criterion
√
σ2
κ̃+1 + · · ·+ σ2

κ ≤ εrel

√
σ2

1 + · · ·+ σ2
κ or an absolute one κ̃ = max{κ̃ |

σκ̃ ≥ εabs}. In Matlab notation, the truncated matrix is X̃(i) = Ỹ (i)Z̃(i)T with

(3.5) Ỹ (i) = QY Ŷ (:, 1 : κ̃), Z̃(i) = QZẐ(:, 1 : κ̃)diag(σ1, . . . , σκ̃).

Low-rank approximation and truncation have been used for Krylov subspace
methods [5, 20, 23] and multigrid methods [9]. More details can be found in these ref-
erences. We will use examples of such solvers for linear systems arising in eigenvalue
computations, as discussed in sections 4 and 5.

3.2. Normalization. In Algorithm 2.1, if ne = 1, the solution vs,(i+1)(ξ) is
normalized so that ||us,(i+1)(ξ)||2 = 1 almost surely. With the superscripts omitted,
assume u(ξ) =

∑nξ
j=1 ujψj(ξ) is the normalized random vector constructed from v(ξ).

This expansion can be computed using sparse grid quadrature {ξ(q), η(q)}nqq=1, where

{η(q)} are the weights [12]:

(3.6) uj = 〈u(ξ)ψj(ξ)〉 =

〈
v(ξ)

‖v(ξ)‖2
ψj(ξ)

〉
≈

nq∑
q=1

v(ξ(q))

‖v(ξ(q))‖2
ψj(ξ

(q))η(q).

Suppose the “matricized” version of the expansion coefficients of v(ξ) is represented
in low-rank form

(3.7) V = [v1, v2, . . . , vnξ ] = YvZ
T
v ,

where Yv ∈ Rnx×κv , Zv ∈ Rnξ×κv . With Ψ(ξ(q)) = [ψ1(ξ(q)), ψ2(ξ(q)), . . . , ψnξ(ξ
(q))]T ,

we have

(3.8) v(ξ(q)) =

nξ∑
j=1

vjψj(ξ
(q)) = VΨ(ξ(q)) = YvZ

T
v Ψ(ξ(q)).

Let U = [u1, u2, . . . , unξ ]. Then (3.6) yields

(3.9) [U ]:,j = uj =

nq∑
q=1

YvZ
T
v Ψ(ξ(q))

‖YvZTv Ψ(ξ(q))‖2
ψj(ξ

(q))η(q),

and

(3.10) U =

nq∑
q=1

YvZ
T
v Ψ(ξ(q))

‖YvZTv Ψ(ξ(q))‖2
Ψ(ξ(q))T η(q).

Thus, the matrix U can be expressed as an outer product of two low-rank matrices
U = YuZ

T
u with

(3.11) Yu = Yv ∈ Rnx×κv , Zu =

nq∑
q=1

Ψ(ξ(q))(Ψ(ξ(q))TZv)

‖Yv(ZTv Ψ(ξ(q)))‖2
η(q) ∈ Rnξ×κv .
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This implies that the expansion coefficients of the normalized vector u(ξ) can be
written as a low-rank matrix with the same rank as the analogous matrix associated
with v(ξ). The cost of computing Zu is O((nx + nξ)nqκv).

In the general case where more than one eigenvector is computed (ne > 1), a
stochastic version of the Gram-Schmidt process is applied to compute an orthonormal
set {us,(i+1)(ξ)}nes=1 [26, 34]. With the superscript (i+1) omitted, the process is based
on the following calculation

(3.12) us(ξ) = vs(ξ)−
s−1∑
t=1

χts(ξ) = vs(ξ)−
s−1∑
t=1

〈vs(ξ), ut(ξ)〉Rnx
〈ut(ξ), ut(ξ)〉Rnx

ut(ξ)

for s = 2, . . . , ne. If the random vectors are represented as low-rank matrices as
in (3.7), the computational cost of the process can be reduced from O(nxnξnq) to
O((nx + nξ)nqκ) for some κ� min(nx, nξ).

3.3. Rayleigh quotient. The Rayleigh quotient in step 7 of Algorithm 2.1 is
computed (only once) after convergence of the inverse subspace iteration to find the
eigenvalues. Given a normalized eigenvector u(ξ) of problem (2.1), the computation
of the stochastic Rayleigh quotient

(3.13) λ(ξ) = u(ξ)TA(ξ)u(ξ)

involves two steps:
(1) Compute matrix-vector product w(ξ) = A(ξ)u(ξ) where w(ξ) =

∑nξ
k=1 wkψk(ξ)

and wk = 〈Auψk〉. In Kronecker product form,

(3.14) w =

m∑
l=0

(Gl ⊗Al)u.

If u has low-rank representation U = YuZ
T
u , then

(3.15) W =

m∑
l=0

(AlYu)(ZuGl)
T .

(2) Compute eigenvalue λ(ξ) = u(ξ)Tw(ξ) where λ(ξ) =
∑nξ
r=1 λrψr(ξ) and λr =

〈uTwψr〉. Equivalently,

(3.16) λr = 〈G̃r, H〉Rnξ×nξ =

nξ∑
j,k=1

[G̃r]jkHjk

where Hjk = uTj wk and thus H = UTW = Zu(Y Tu Yw)ZTw . The matrices

{G̃r}
nξ
r=1 are sparse with [G̃r]jk = 〈ψrψjψk〉. In fact, if the basis functions

are written as products of univariate polynomials, i.e.,

(3.17) ψr(ξ) = ψr1(ξ1)ψr2(ξ2) · · ·ψrm(ξm),

then [G̃r]jk is nonzero only if |jl−kl| ≤ rl ≤ jl+kl and rl+ jl+kl is even for
all 1 ≤ l ≤ m [10]. This observation greatly reduces the cost of assembling
the matrices {G̃r}. For example, if m = 11, the degree of the gPC basis
functions is p ≤ 3, and nξ = (m + p)!/(m!p!) = 364, then with the above
rule, a total of 31098 nonzero entries must be computed, instead of the much
larger number n3

ξ = 48228544 if the sparsity of {G̃r} is not used.
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3.4. Convergence criterion. To check convergence, we can look at the mag-
nitude of the residual

(3.18) rs(ξ) = A(ξ)us(ξ)− λs(ξ)us(ξ), s = 1, 2, . . . , ne.

Alternatively, without computing the Rayleigh quotient at each iteration, error assess-
ment can be done using the relative difference of the gPC coefficients of two successive
iterates, i.e.,

(3.19) ε
s,(i)
∆u =

1

nξ

nξ∑
k=1

‖us,(i)k − us,(i−1)
k ‖2

‖us,(i−1)
k ‖2

.

However, in the case of clustered eigenvalues (that is, if two or more eigenvalues
are close to each other), the convergence of the inverse subspace iteration for single
eigenvectors will be slow. Instead, we look at the angle between the eigenspaces [7]
in two consecutive iterations

(3.20) θ(i)(ξ) = ∠(span(u1,(i)(ξ), . . . , une,(i)(ξ)), span(u1,(i−1)(ξ), . . . , une,(i−1)(ξ))).

The expected value E[θ(i)] is taken as error indicator and is also calculated using
sparse grid quadrature

(3.21) ε
(i)
θ = E[θ(i)] ≈

nq∑
q=1

θ(i)(ξ(q))η(q).

At each quadrature point, θ(i)(ξ(q)) is evaluated by Matlab function subspace for
the largest principle angle.

4. Stochastic diffusion equation. In this section we consider the following
elliptic equation with Dirichlet boundary conditions

(4.1)

{
−∇ · (a(x, ω)∇u(x, ω)) = λ(ω)u(x, ω) in D × Ω

u(x, ω) = 0 on ∂D × Ω

where D is a two-dimensional spatial domain and Ω is a sample space. The uncertainty
in the problem is introduced by the stochastic diffusion coefficient a(x, ω). Assume
that a(x, ω) is bounded and strictly positive and admits a truncated KL expansion

(4.2) a(x, ω) = a0(x) +

m∑
l=1

√
βlal(x)ξl(ω),

where a0(x) is the mean function, (βl, al(x)) is the lth eigenpair of the covariance
function, and {ξl} are a collection of uncorrelated random variables. The weak form
is to find (u(x, ξ), λ(ξ)) such that for any v(x) ∈ H1

0 (D),

(4.3)

∫
D
a(x, ξ)∇u(x, ξ) · ∇v(x)dx = λ(ξ)

∫
D
u(x, ξ)v(x)dx

almost surely.
Finite element discretization in the physical domainD with basis functions {φi(x)}

gives

(4.4) K(ξ)u(ξ) = λ(ξ)Mu(ξ)
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where K(ξ) =
∑m
l=0Klξl, and

(4.5)

[Kl]ij =

∫
D

√
βlal(x)∇φi(x) · ∇φj(x)dx,

[M ]ij =

∫
D
φi(x)φj(x)dx, i, j = 1, 2, . . . , nx,

with β0 = 1 and ξ0 ≡ 1. The result is a generalized eigenvalue problem where the
matrix M on the right-hand side is deterministic. With the Cholesky factorization
M = LLT , (4.4) can be converted to standard form

(4.6) A(ξ)w(ξ) = λ(ξ)w(ξ),

where A(ξ) = L−1K(ξ)L−T , w(ξ) = LTu(ξ).
We use stochastic inverse subspace iteration to find ne minimal eigenvalues of

(4.6). As discussed in section 2, the linear systems to be solved in each iteration are
in the form

(4.7)

m∑
l=0

(Gl ⊗ (L−1KlL
−T ))vs,(i+1) = us,(i), s = 1, 2, . . . , ne.

Let vs,(i) = (I ⊗ LT )v̂s,(i). Then (4.7) is equivalent to

(4.8)

m∑
l=0

(Gl ⊗Kl)v̂
s,(i+1) = (I ⊗ L)us,(i).

4.1. Low-rank multigrid. We developed a low-rank geometric multigrid me-
thod in [9] for solving linear systems with the same structure as (4.8). The complete
algorithm for solving

(4.9) A (X) =

m∑
l=0

KlXG
T
l = F

is given in Algorithm 4.1. All the iterates are expressed in low-rank form, and trun-
cation operations are used to compress the ranks of the iterates. Trel and Tabs are
truncation operators with a relative tolerance εrel and an absolute tolerance εabs, re-
spectively. In each iteration, one V-cycle is applied to the residual equation. On the
coarse grids, coarse versions of {Kl} are assembled while the matrices {Gl} stay the
same. The prolongation operator is P = I ⊗ P , where P is the same prolongation
matrix as in a standard geometric multigrid solver, and the restriction operator is
R = I ⊗ PT . The smoothing operator S is based on a stationary iteration, and is
also a Kronecker product of two matrices. The grid transfer and smoothing opera-
tions do not affect the rank. For instance, for any matrix iterate in low-rank form
X(i) = Y (i)Z(i)T ,

(4.10) P(X(i)) = (PY (i))(IZ(i))T .

On the coarsest grid (h = h0), the system is solved with direct methods.
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Algorithm 4.1: Low-rank multigrid method

1: initialization: i = 0, R(0) = F in low-rank format, r0 = ‖F‖F
2: while r > tol ∗ r0 & i ≤ maxit do
3: C(i) = Vcycle(A, 0, R(i))

4: X̃(i+1) = X(i) + C(i), X(i+1) = Tabs(X̃
(i+1))

5: R̃(i+1) = F −A (X(i+1)), R(i+1) = Tabs(R̃
(i+1))

6: r = ‖R(i+1)‖F , i = i+ 1

7: end

8: function Xh = Vcycle(Ah, Xh
0 , F

h)
9: if h == h0 then

10: solve A h(Xh) = Fh directly
11: else
12: Xh = Smooth(Ah, Xh

0 , F
h)

13: R̃h = Fh −A h(Xh), Rh = Trel(R̃
h)

14: R2h = R(Rh)

15: C2h = Vcycle(A2h, 0, R2h)

16: Xh = Xh + P(C2h)

17: Xh = Smooth(Ah, Xh, Fh)

18: end

19: end

20: function X = Smooth(A,X,F )
21: for ν steps do

22: X̃ = X + S (F −A (X)), X = Trel(X̃)
23: end

24: end

4.2. Rayleigh-Ritz refinement. It is known that in the deterministic case with
a constant diffusion coefficient, (4.4) typically has repeated eigenvalues [8], for exam-
ple, λ2 = λ3. The parametrized versions of these eigenvalues in the stochastic problem
will be close to each other. In the deterministic setting, Rayleigh-Ritz refinement is
used to accelerate the convergence of subspace iteration when some eigenvalues have
nearly equal modulus and the convergence to individual eigenvectors is slow [36, 37].
Assume that a Hermitian matrix S has eigendecomposition

(4.11) S = V ΛV T = V1Λ1V
T
1 + V2Λ2V

T
2

where Λ = diag(λ1, λ2, . . . , λnx) with eigenvalues in increasing order and V = [V1, V2]
is orthogonal. Let the column space of Q be a good approximation to that of V1. Such
an approximation is obtained from the inverse subspace iteration. The Rayleigh-Ritz
procedure computes

(1) Rayleigh quotient T = QTSQ, and
(2) eigendecomposition T = WΣWT .

Then Σ and QW represent good approximations to Λ1 and V1.
The stochastic inverse subspace iteration algorithm produces solutions {usSG(ξ)}

expressed as gPC expansions as in (2.3) and sample eigenvectors are easily computed.
The sample eigenvalues are generated from the stochastic Rayleigh quotient (3.13).
However, in the case of poorly separated eigenvalues, the sample solutions obtained



10 H. C. ELMAN AND T. SU

this way are not accurate enough. Experimental results that demonstrate this are
given in subsection 4.3, see Table 4.2. Instead, we use a version of the Rayleigh-
Ritz procedure to generate sample eigenvalues and eigenvectors with more accuracy.
Specifically, a parametrized Rayleigh quotient T (ξ) is computed using the approach
of subsection 3.3, with

(4.12) [T ]st(ξ) = usSG(ξ)TA(ξ)utSG(ξ), s, t = 1, 2, . . . , ne.

Then one can sample the matrix T , and for each realization ξ(r), solve a small (ne ×
ne) deterministic eigenvalue problem T (ξ(r)) = W (ξ(r))Σ(ξ(r))W (ξ(r))T to get better
approximations for the minimal eigenvalues and corresponding eigenvectors:

(4.13)
λ̃sSG(ξ(r)) = [Σ(ξ(r))]ss,

ũsSG(ξ(r)) = [u1
SG(ξ(r)), u2

SG(ξ(r)), . . . , uneSG(ξ(r))][W (ξ(r))]:,s.

The effectiveness of this procedure will also be demonstrated in subsection 4.3, see
Table 4.3.

4.3. Numerical experiments. Consider a two-dimensional domainD = [−1, 1]2.
Let the spatial discretization consist of piecewise bilinear basis functions on a uniform
square mesh. The number of spatial degrees of freedom is nx = (2/h − 1)2 where h
is the mesh size. Define the grid level nc such that 2/h = 2nc . In the KL expansion
(4.2), we use an exponential covariance function

(4.14) r(x, y) = σ2exp

(
−1

b
‖x− y‖1

)
and (βl, al(x)) is the lth eigenpair of r(x, y). The correlation length b affects the
decay of the eigenvalues {βl}. The number of random variables m is chosen so that
(
∑m
l=1 βl)/(

∑∞
l=1 βl) ≥ 95%. Take the standard deviation σ = 0.01, the mean function

a0(x) ≡ 1.0, and {ξl} to be independent and uniformly distributed on [−
√

3,
√

3]m.
Legendre polynomials are used for gPC basis functions, whose total degree does not
exceed p = 3. The number of gPC basis functions is nξ = (m + p)!/(m!p!). For the
quadrature rule in subsection 3.2, we use a Smolyak sparse grid with Gauss Legendre
quadrature points and grid level 4. For m = 11, the number of sparse grid points is
2096.

We apply low-rank stochastic inverse subspace iteration to compute three min-
imal eigenvalues (ne = 3) and corresponding eigenvectors for (4.4). The smallest
20 eigenvalues for the mean problem K0u = λMu are plotted in Figure 4.1a. For
the stochastic problem, the three smallest eigenvalues consist of one isolated smallest
eigenvalue λ1(ξ) and (as mentioned in the previous subsection) two eigenvalues λ2(ξ)
and λ3(ξ) that have nearly equal modulus. For the inverse subspace iteration, we take

ε
(i)
θ in (3.21) as error indicator and use a stopping criterion ε

(i)
θ ≤ tolisi = 10−5. The

low-rank multigrid method of subsection 4.1 is used to solve the system (4.8), where
damped Jacobi iteration is employed for the smoothing opeator S = ωsdiag(A )−1 =
ωs(I ⊗K−1

0 ) with weight ωs = 2/3. Two smoothing steps are applied (ν = 2). We
also use the idea of inexact inverse iteration methods [14, 22] so that in the first few
steps of subspace iteration, the systems (2.6) are solved with milder error tolerances
than in later steps. Specifically, we set the multigrid tolerance as

(4.15) tol(i)mg = max{min{10−2 ∗ ε(i−1)
θ , 10−3}, 10−6},
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and truncation tolerances ε
(i)
abs = 10−2 ∗ tol(i)mg, εrel = 10−2 [9]. This is shown to be

useful in reducing the computational costs while not affecting the convergence of the
subspace iteration algorithm (see Figure 4.1b).

Table 4.1 shows the ranks of the multigrid solutions in each iteration. It indicates
that all the systems solved have low-rank approximate solutions (nx = 3969, nξ =
364). With the inexact solve, the solutions have much smaller ranks in the first
few iterations. In the last row of Table 4.1 are the numbers of multigrid steps itmg

required to solve (4.8) for s = 1; similar numbers of multigrid steps are required for
s = 2, 3. In addition, in Algorithm 2.1 an absolute truncation operator with εabs =
10−8 is applied after the computations in (3.12) and (3.14) (both require addition
of quantities represented as low-rank matrices in implementation) to compress the
iterate ranks. Rayleigh-Ritz refinement discussed in subsection 4.2 is used to obtain
good approximations to individual sample eigenpairs.

(a) (b)

Fig. 4.1. (a): Smallest 20 eigenvalues of the mean problem. (b): Reduction of the error

indicator ε
(i)
θ for an adaptive multigrid tolerance (4.15) and a fixed tolerance tolmg = 10−6. nc = 6,

m = 11.

Table 4.1
Iterate ranks after the multigrid solve and numbers of multigrid steps required in the inverse

subspace iteration algorithm. nc = 6, m = 11.

(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Rank
u1 11 12 12 12 22 29 39 44 44 49 49 49 49 49
u2 11 12 13 14 23 28 43 49 52 54 54 54 54 54
u3 11 12 13 14 20 27 42 46 50 53 53 52 52 52

itmg 3 4 4 5 5 5 6 6 6 7 7 7 7 7
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To show the accuracy of the low-rank stochastic Galerkin solutions, we compare
them with reference solutions from Monte Carlo simulation. The stochastic Galerkin
method produces a surrogate stochastic solution expressed with gPC basis functions
that can be easily sampled. The Monte Carlo solutions are computed by the eigs

function from Matlab, which uses the implicitly restarted Arnoldi method to com-
pute several minimal eigenvalues [33]. For both methods, we use the same sample
values {ξ(r)} of the random variables to generate sample eigenvalues and eigenvec-
tors. Define the relative errors

(4.16)

ελs =
1

nr

nr∑
r=1

|λsSG(ξ(r))− λsMC(ξ(r))|
|λsMC(ξ(r))|

,

εus =
1

nr

nr∑
r=1

‖usSG(ξ(r))− usMC(ξ(r))‖2
‖usMC(ξ(r))‖2

,

where λsSG and usSG denote the stochastic Galerkin sample solutions (they are replaced

by λ̃sSG and ũsSG in (4.13) if Rayleigh-Ritz refinement is used), λsMC and usMC are the
Monte Carlo solutions, nr is the sample size, and s = 1, 2, . . . , ne. We use a sample
size nr = 10000.

We examine the accuracy for the three smallest eigenvalues obtained from inverse
subspace iteration when they are computed both with and without Rayleigh-Ritz
refinement. Table 4.2 shows the results (for one spatial mesh size) when Rayleigh-
Ritz refinement is not used. It can be seen that (the poorly separated) eigenvalues
λ2 and λ3 are significantly less accurate than λ1, and that the eigenvectors u2 and
u3 are highly inaccurate. In contrast, Table 4.3 (with results for three mesh sizes)
demonstrates dramatically improved accuracy when refinement is done. In all cases,
convergence takes 14 iterations.

Table 4.2
Relative differences between low-rank stochastic Galerkin solutions (without Rayleigh-Ritz re-

finement) and Monte Carlo solutions. nc = 6, m = 11.

ελ1 4.8393× 10−10 εu1 2.1494× 10−7

ελ2 1.4036× 10−4 εu2 3.2531× 10−1

ελ3 1.4021× 10−4 εu3 3.2530× 10−1

Table 4.3
Relative differences between low-rank stochastic Galerkin solutions (with Rayleigh-Ritz refine-

ment) and Monte Carlo solutions. m = 11.

nc 6 7 8

ελ1 4.8399× 10−10 4.8443× 10−10 4.8443× 10−10

ελ2 1.8641× 10−9 1.8457× 10−9 1.7780× 10−9

ελ3 1.7027× 10−9 1.6849× 10−9 1.6599× 10−9

εu1 1.1390× 10−7 1.8688× 10−7 3.8872× 10−7

εu2 5.8266× 10−6 6.0491× 10−6 6.4745× 10−6

εu3 5.8641× 10−6 6.0874× 10−6 6.5181× 10−6

The efficiency of the low-rank algorithm is demonstrated by comparison with (i)
stochastic inverse subspace iteration without using low-rank approximation, which
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we call the full-rank stochastic Galerkin method, with the same tolerances tolisi and
tolmg, and (ii) the Monte Carlo method with a stopping tolerance 10−5 for the eigs

function. The cost for computing stochastic Galerkin solutions consists of two parts,
tsolve, the time required by inverse subspace iteration to compute the parametrized
solution, and tsample, the time to produce the sample solutions. (In the parlance of
reduced basis methods [39], the first part can be viewed as an offline computation.)
As shown in Table 4.4, once the parametrized solution is available, it is inexpensive
to generate the sample solutions. The low-rank approximation greatly reduces both
tsolve and tsample of the stochastic Galerkin approach, especially as the mesh size gets
refined. The total time required by low-rank stochastic Galerkin is much less than
that for the Monte Carlo method, whereas the full-rank counterpart can be more
expensive than Monte Carlo.

Table 4.4
Time comparison (in seconds) between stochastic Galerkin method and Monte Carlo simulation

for various nc. b = 4.0, m = 11, nξ = 364.

nc 6 7 8
nx 3969 16129 65025

low-rank SG
tsolve 262.50 852.86 3261.03
tsample 5.49 16.07 78.94

full-rank SG
tsolve 464.78 2230.01 20018.75
tsample 25.22 104.46 422.36

MC 500.73 2154.56 11563.40

Table 4.5 shows the performance of the stochastic Galerkin approach for various
nξ, the number of degrees of freedom in the stochastic part. As expected, the Monte
Carlo method is basically unaffected by the number of random variables in the KL
expansion, whereas the cost of the stochastic Galerkin method increases as the number
of parameters m increases. The advantage of the stochastic Galerkin approach is
clearer in the cases where m is moderate. As the spatial mesh is refined (e.g., nc = 8),
the low-rank stochastic Galerkin method becomes more efficient compared to Monte
Carlo in all cases. The effectiveness of the low-rank algorithm is obvious for m = 16
where the full-rank stochastic Galerkin method becomes too expensive or requires too
much memory.

5. Stochastic Stokes equation. The second example of a stochastic eigenvalue
problem that we consider is used to estimate the inf-sup stability constant associated
with a discrete stochastic Stokes problem. Consider the following stochastic incom-
pressible Stokes equation in a two-dimensional domain

(5.1)

{
−∇ · (a(x, ω)∇~u(x, ω)) +∇p(x, ω) = ~0 in D × Ω

∇ · ~u(x, ω) = 0 in D × Ω

with a Dirichlet inflow boundary condition ~u(x, ω) = ~uD(x) on ∂DD × Ω and a Neu-
mann outflow boundary condition a(x, ω)∇~u(x, ω)·~n−p(x, ω)~n = ~0 on ∂DN×Ω. Such
problems and more general stochastic Navier–Stokes equations have been studied in
[29, 35]. As in the diffusion problem, we assume that the stochastic viscosity a(x, ω)
is represented by a truncated KL expansion (4.2) with random variables {ξl}ml=1. The
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Table 4.5
Time comparison (in seconds) between stochastic Galerkin method and Monte Carlo simulation

for various m.

m(b) 8(5.0) 11(4.0) 16(3.0)
nξ 165 364 969

low-rank SG
tsolve 345.54 852.86 2627.54
tsample 12.88 16.07 22.80

full-rank SG
tsolve 662.66 2230.01 13103.24
tsample 46.02 104.46 253.55

MC 2069.57 2154.56 2394.18

(a) nc = 7, nx = 16129

m(b) 8(5.0) 11(4.0) 16(3.0)
nξ 165 364 969

low-rank SG
tsolve 1553.11 3261.03 8474.34
tsample 56.88 78.94 100.32

full-rank SG
tsolve 4725.65 20018.75 out of
tsample 211.88 422.36 memory

MC 11254.36 11563.40 12047.61

(b) nc = 8, nx = 65025

weak formulation of the problem is: find ~u(x, ξ) and p(x, ξ) satisfying

(5.2)


∫
D
a(x, ξ)∇~u(x, ξ) : ∇~v(x)− p(x, ξ)∇ · ~v(x) dx = 0∫

D
q(x)∇ · ~u(x, ξ) dx = 0

almost surely for any ~v(x) ∈ H1
0 (D)2 (zero boundary conditions on ∂DD) and q(x) ∈

L2(D). Here ∇~u : ∇~v is a componentwise scalar product (∇ux1 · ∇vx1 +∇ux2 · ∇vx2

for two-dimensional (ux1
, ux2

)). Finite element discretization with basis functions

{~φi(x)} for the velocity field and {ϕk(x)} for the pressure field results in a linear
system in the form

(5.3)

(
K(ξ) BT

B 0

)(
~u(ξ)
p(ξ)

)
=

(
f
g

)
,

where K(ξ) =
∑m
l=0Klξl, and

(5.4)

[Kl]ij =

∫
D

√
βlal(x)∇~φi(x) : ∇~φj(x)dx,

[B]kj = −
∫
D
ϕk(x)∇ · ~φj(x)dx,

for i, j = 1, 2, . . . , nu and k = 1, 2, . . . , np. The Dirichlet boundary condition is
incorporated in the right-hand side.

We are interested in the parametrized inf-sup stability constant γ(ξ) for the dis-
crete problem. Evaluation of the inf-sup constant for various parameter values plays
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an important role for a posteriori error estimation for reduced basis methods [27, 39].
For this, we exploit the fact that γ(ξ) has an algebraic interpretation [8]

(5.5) γ2(ξ) = min
q(ξ)6=0

〈BK(ξ)−1BT q(ξ), q(ξ)〉Rnp
〈Mq(ξ), q(ξ)〉Rnp

where M is the mass matrix with [M ]ij =
∫
D ϕi(x)ϕj(x), i, j = 1, 2, . . . , np. Thus,

finding γ(ξ) is equivalent to finding the smallest eigenvalue of the generalized eigen-
value problem

(5.6) BK(ξ)−1BT q(ξ) = λ(ξ)Mq(ξ)

associated with the stochastic pressure Schur complement BK(ξ)−1BT . This can be
written in standard form as

(5.7) L−1BK(ξ)−1BTL−Tw(ξ) = λ(ξ)w(ξ)

where M = LLT is a Cholesky factorization, and w(ξ) = LT q(ξ).
The eigenvalue problem (5.7) does not have exactly the same form as (2.1), since

it involves the inverse of K(ξ). If we use the stochastic inverse iteration algorithm to
compute the minimal eigenvalue of (5.7), then each iteration requires solving

(5.8) 〈L−1BK−1BTL−T v(i+1)ψk〉 = 〈u(i)ψk〉, k = 1, 2, . . . , nξ,

for v(i+1)(ξ). We can reformulate (5.8) to take advantage of the Kronecker prod-
uct structure and low-rank solvers. Let z(ξ) = −K(ξ)−1BTL−T v(i+1)(ξ) and let
v̂(i+1)(ξ) = L−T v(i+1)(ξ). Then (5.8) is equivalent to the coupled system

(5.9) 〈(Kz +BT v̂(i+1))ψk〉 = 0, 〈Bzψk〉 = 〈−Lu(i)ψk〉, k = 1, 2, . . . , nξ.

As discussed in section 2, the random vectors are expressed as gPC expansions. Thus,
(5.9) can be written in Kronecker product form as a discrete Stokes system for coef-
ficient vectors z, v̂(i+1),

(5.10)

(∑m
l=0(Gl ⊗Kl) I ⊗BT
I ⊗B 0

)(
z

v̂(i+1)

)
=

(
0

−(I ⊗ L)u(i)

)
,

and v(i+1) = (I ⊗ LT )v̂(i+1).
In addition, for the eigenvalue problem (5.7), computing the Rayleigh quotient

(3.13) requires solving a linear system. In the first step of (3.13), for the matrix-vector
product, one needs to compute w(ξ) = K(ξ)−1û(ξ), where û(ξ) = BTL−Tu(ξ). For
the weak formulation, this corresponds to solving a linear system

(5.11)

(
m∑
l=0

Gl ⊗Kl

)
w = û.

5.1. Low-rank MINRES. We discuss a low-rank iterative solver for (5.10).
The system is symmetric but indefinite, with a positive-definite (1, 1) block. A low-
rank preconditioned MINRES method for solving A (X) = F is used and described
in Algorithm 5.1. The precondtioner is block-diagonal

(5.12) M =

(
M11 0

0 M22

)
.
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We use an approximate mean-based preconditioner [28] for the (1, 1) block: M11 =
G0 ⊗ K̂0 = I ⊗ K̂0. Here, K̂−1

0 is defined by approximation of the action of K−1
0 ,

using one V-cycle of an algebraic multigrid method (AMG) [31]. For the (2, 2) block,
we take M22 = I ⊗ diag(M). As in the multigrid method, all the quantities are in
low-rank format, and truncation operations are applied to compress matrix ranks.
Algorithm 5.1 requires the computation of inner products of two low-rank matrices
〈X1, X2〉Rnx×nξ . Let X1 = Y1Z

T
1 , X2 = Y2Z

T
2 with Y1 ∈ Rnx×κ1 , Z1 ∈ Rnξ×κ1 ,

Y2 ∈ Rnx×κ2 , Z2 ∈ Rnξ×κ2 . Then the inner product can be computed with a cost of
O((nx + nξ + 1)κ1κ2) [20]:

(5.13) 〈X1, X2〉 = trace(XT
1 X2) = trace(Z1Y

T
1 Y2Z

T
2 ) = trace((ZT2 Z1)(Y T1 Y2)).

Algorithm 5.1: Low-rank preconditioned MINRES method

1: initialization: V (0) = 0, W (0) = 0, W (1) = 0, γ0 = 0. Choose X(0), compute

V (1) = F −A (X(0)). P (1) = M−1(V (1)), γ1 =
√
〈P (1), V (1)〉. Set η = γ1,

s0 = s1 = 0, and c0 = c1 = 1.
2: for j = 1, 2, . . . do
3: P (j) = P (j)/γj
4: R̃(j) = A (P (j)), R(j) = Trel(R̃

(j))

5: δj = 〈R(j), P (j)〉
6: Ṽ (j+1) = R(j) − (δj/γj)V

(j) − (γj/γj−1)V (j−1), V (j+1) = Trel(Ṽ
(j+1))

7: P (j+1) = M−1(V (j+1))

8: γj+1 =
√
〈P (j+1), V (j+1)〉

9: α0 = cjδj − cj−1sjγj

10: α1 =
√
α2

0 + γ2
j+1

11: α2 = sjδj + cj−1cjγj
12: α3 = sj−1γj
13: cj+1 = α0/α1, sj+1 = γj+1/α1

14: W̃ (j+1) = (P (j) − α3W
(j−1) − α2W

(j))/α1, W (j+1) = Trel(W̃
(j+1))

15: X̃(j) = X(j−1) + cj+1ηW
(j+1), X(j) = Trel(X̃

(j))
16: η = −sj+1η
17: Check convergence

18: end

5.2. Numerical experiments. Consider a two-dimension channel flow on do-
main D = [−1, 1]2 with uniform square meshes. Let ∂DD = {(x1, x2) | x1 =
−1, or x2 = 1, or x2 = −1} and ∂DN = {(x1, x2) | x1 = 1}. Define grid level
nc so that 2/h = 2nc , where h is the mesh size. We use the Taylor-Hood method for

finite element discretization with biquadratic basis functions {~φi(x)} for the velocity
field and bilinear basis functions {ϕk(x)} for the pressure field. For the velocity field
the basis functions are in the form

{(
φi(x)

0

)
,
(

0
φi(x)

)}
, where {φi(x)} are scalar-value

biquadratic basis functions. The number of degrees of freedom in the spatial dis-
cretization is nx = nu + np where np = (2nc + 1)2. Assume the viscosity a(x, ξ) has
a KL expansion with the same specifications as in the diffusion problem. For the
quadrature rule in subsection 3.2, we use a Smolyak sparse grid with Gauss Legendre
quadrature points and grid level 4.
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We use stochastic inverse iteration algorithm to find the minimal eigenvalue of
(5.6). The eigenvalues of BK−1

0 BT q = λMq are plotted in Figure 5.1a with nc = 3.
It shows that the minimal eigenvalue is isolated from the larger ones. For the inverse

iteration, we take ε
(i)
θ in (3.21) as error indicator and use a stopping criterion ε

(i)
θ ≤

tolisi = 10−5. The error tolerance for the MINRES solver tol
(i)
minres is set as in (4.15).

Figure 5.1b shows the convergence of the low-rank MINRES method for different
relative truncation tolerances εrel. It indicates the accuracy that MINRES can achieve

is related to εrel. In the numerical experiments we use ε
(i)
rel = 10−1 ∗ tol(i)minres. In

addition, we have observed that in many cases the truncations in Lines 4, 6, 14 of
Algorithm 5.1 produce relatively high ranks, which increases the computational cost.
To handle this, we impose a bound on the ranks κ of the outputs of these truncation
operators such that κ ≤ nξ/5 (in general nx ≥ nξ). It is shown in Figure 5.1b that the
convergence of low-rank MINRES is unaffected by this strategy. Table 5.1 shows the
ranks of the MINRES solution v̂(i) in (5.10) and numbers of MINRES steps itminres

required in each iteration. Note that the system being solved has size nxnξ × nxnξ
whereas the matricized V̂ (i) ∈ Rnp×nξ . For nc = 4 and m = 11, np = 289, nx = 2273,
nξ = 364. The ranks of the solutions are no larger than 51. For the Rayleigh
quotient, the system (5.11) is solved by a low-rank conjugate gradient method [20]
with a relative residual smaller than 10−8.

(a) (b)

Fig. 5.1. (a): Eigenvalues of BK−1
0 BT q = λMq. nc = 3. (b): Reduction of the relative

residual for the low-rank MINRES method with various truncation criteria. Solid lines: relative
tolerance εrel; dashed lines: relative tolerance εrel with rank κ ≤ nξ/5. nc = 4, m = 11.

As in the diffusion problem, we compare the results from the stochastic Galerkin
approach with those from Monte Carlo simulations. Let m = 11, p = 3, nξ = 364. We
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Table 5.1
Iterate ranks after the MINRES solve and numbers of MINRES steps required in the inverse

iteration algorithm. nc = 4, m = 11.

(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Rank 7 14 14 15 17 22 28 34 43 51 51 50 50 51 50 51
itminres 31 50 52 54 57 59 62 64 66 67 67 67 67 67 67 67

use a sample size nr = 1000. Table 5.2 shows the accuracy of the stochastic Galerkin
solutions where ελ1 and εu1 are defined in (4.16) (no Rayleigh-Ritz procedure is used
here). In all cases, convergence of the inverse iteration takes 16–18 steps.

The efficiency of the low-rank algorithm is shown in Table 5.3 by comparison
with the full-rank stochastic Galerkin method and the Monte Carlo method (with a
stopping tolerance 10−5). For the latter, the eigs function requires solving linear
systems associated with BK(ξ(r))−1BT for each sample ξ(r). This can be achieved
by computing the coefficient matrix and using a direct solver, or reformulating as a
discrete Stokes problem which is solved by a preconditioned MINRES method with a
relative residual ≤ 10−6. We use whichever is more efficient to make a fair comparison.
From Table 5.3 it is clear that the low-rank approximation enhances the efficiency of
the stochastic Galerkin approach. The cost of computing stochastic Galerkin solutions
increases more slowly than that of the Monte Carlo method as nc becomes larger.
As the mesh gets refined, the stochastic Galerkin approach becomes more efficient
compared to Monte Carlo. It should also be noted that we are using a relatively small
sample size. For nr = 10000, the computing time of Monte Carlo simulations will be
about 10 times larger; for the stochastic Galerkin approach only tsample is affected,
and that extra cost will be negligible since tsample is so small. With a smaller m = 8
in Table 5.4b, the stochastic Galerkin approach uses less time whereas Monte Carlo
is basically unaffected.

Table 5.2
Relative difference between stochastic Galerkin solutions and Monte Carlo solutions. b = 4.0,

m = 11, nξ = 364.

nc 4 5 6
ελ1 5.8717× 10−9 7.5615× 10−9 9.2116× 10−9

εu1 4.9543× 10−5 5.5996× 10−5 5.7339× 10−5

6. Summary. We studied low-rank solution methods for the stochastic eigen-
value problems. The stochastic Galerkin approach was used to compute surrogate
approximations to the minimal eigenvalues and corresponding eigenvectors, which are
stochastic functions with gPC expansions. We introduced low-rank approximations
to enhance efficiency of the stochastic inverse subspace iteration algorithm. Two
detailed benchmark problems, the stochastic diffusion problem, and an operator as-
sociated with a discrete stochastic Stokes equation, were considered for illustrating
the effectiveness of the proposed low-rank algorithm. It was confirmed in the numer-
ical experiments that the low-rank solution method produces accurate results with
much less computing time, making the stochastic Galerkin method more competitive
compared with the sample-based Monte Carlo approach.
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