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Abstract. We study an iterative low-rank approximation method for the solution of the steady-
state stochastic Navier–Stokes equations with uncertain viscosity. The method is based on lineariza-
tion schemes using Picard and Newton iterations and stochastic finite element discretizations of the
linearized problems. For computing the low-rank approximate solution, we adapt the nonlinear iter-
ations to an inexact and low-rank variant, where the solution of the linear system at each nonlinear
step is approximated by a quantity of low rank. This is achieved by using a tensor variant of the
GMRES method as a solver for the linear systems. We explore the inexact low-rank nonlinear it-
eration with a set of benchmark problems, using a model of flow over an obstacle, under various
configurations characterizing the statistical features of the uncertain viscosity, and we demonstrate
its effectiveness by extensive numerical experiments.
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1. Introduction. We are interested in the efficient computation of solutions of
the steady-state Navier–Stokes equations with uncertain viscosity. Such uncertainty
may arise from measurement error or uncertain ratios of multiple phases in porous
media. The uncertain viscosity can be modeled as a positive random field parame-
terized by a set of random variables [19, 23, 26] and, consequently, the solution of
the stochastic Navier–Stokes equations also can be modeled as a random vector field
depending on the parameters associated with the viscosity (i.e., a function of the same
set of random variables). As a solution method, we consider the stochastic Galerkin
method [1, 9] combined with the generalized polynomial chaos (gPC) expansion [28],
which provides a spectral approximation of the solution function. The stochastic
Galerkin method results in a coupled algebraic system of equations. There has been
considerable progress in development of solvers for these systems [6, 18, 20, 24, 27],
although costs may be high when the global system becomes large.

One way to address this issue is thorough use of tensor Krylov subspace methods,
which operate in tensor format and reduce the costs of matrix operations by exploiting
a Kronecker-product structure of system matrices. Variants of this approach have
been developed for the Richardson iteration [11, 15], the conjugate gradient method
[11], the BiCGstab method [11], the minimum residual method [25], and the general
minimum residual (GMRES) method [2]. Efficiencies are also obtained from the fact
that solutions can often be well approximated by low-rank objects. These ideas have
been shown to reduce costs for solving steady [13, 15] and unsteady stochastic diffusion
equations [4].

In this study, we adapt the low-rank approximation scheme to a solver for the
systems of nonlinear equations obtained from the stochastic Galerkin discretization of
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the stochastic Navier–Stokes equations. In particular, we consider a low-rank variant
of linearization schemes based on Picard and Newton iteration, where the solution of
the nonlinear system is computed by solving a sequence of linearized systems using a
low-rank variant of the GMRES method (lrGMRES) [2] in combination with inexact
nonlinear iteration [5].

We base our development of the stochastic Galerkin formulation of the stochastic
Navier–Stokes equations on ideas from [19, 23]. In particular, we consider a random
viscosity affinely dependent on a set of random variables as suggested in [19] (and
in [23], which considers a gPC approximation of the lognormally distributed viscos-
ity). The stochastic Galerkin formulation of the stochastic Navier–Stokes equations
is also considered in [3], which studies an optimal control problem constrained by
the stochastic Navier–Stokes problem and computes an approximate solution using a
low-rank tensor-train decomposition [17]. Related work [26] extends a Proper Gener-
alized Decomposition method [16] for the stochastic Navier–Stokes equations, where
a low-rank approximate solution is built from successively computing rank-one ap-
proximations. See the book [12] for an overview and other spectral approximation
approaches for models of computational fluid dynamics.

An outline of the paper is as follows. In section 2, we review the stochastic Navier–
Stokes equations and their discrete Galerkin formulations. In section 3, we present
an iterative low-rank approximation method for solutions of the discretized stochastic
Navier–Stokes problems. In section 4, we introduce an efficient variant of the inexact
Newton method, which solves linear systems arising in nonlinear iteration using low-
rank format. We follow a hybrid approach, which employs several steps of Picard
iteration followed by Newton iteration. In section 5, we examine the performance of
the proposed method on a set of benchmark problems that model the flow over an
obstacle. Finally, in section 6, we draw some conclusions.

2. Stochastic Navier–Stokes equations. Consider the stochastic Navier–Stokes
equations: Find velocity ~u(x, ξ) and pressure p(x, ξ) such that

−ν(x, ξ)∇2~u(x, ξ) + (~u(x, ξ) · ∇)~u(x, ξ) +∇p(x, ξ) = ~f(x, ξ),

∇ · ~u(x, ξ) = 0,
(1)

in D × Γ, with a boundary conditions

~u(x, ξ) = ~g(x, ξ), on ∂DDir,

ν(x, ξ)∇~u(x, ξ) · ~n− p(x, ξ)~n(x, ξ) = ~0, on ∂DNeu,

where ∂D = ∂DDir ∪ ∂DNeu. The stochasticity of the equation (1) stems from the
random viscosity ν(x, ξ), which is modeled as a positive random field parameterized
by a set of independent, identically distributed random variables ξ = {ξ1, . . . , ξnν}.
The random variables comprising ξ are defined on a probability space (Ω,F , P ) such
that ξ : Ω→ Γ ⊂ Rnν , where Ω is a sample space, F is a σ-algebra on Ω, and P is a
probability measure on Ω. The joint probability density function of ξ is denoted by
ρ(ξ) and the expected value of a random function v(ξ) on Γ is then 〈v〉ρ = E[v] ≡∫

Γ
v(ξ)ρ(ξ)dξ.

For the random viscosity, we consider a random field that has affine dependence
on the random variables ξ,

ν(x, ξ) ≡ ν0 + σν

nν∑
k=1

νk(x)ξk,(2)
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where {ν0, σ
2
ν} are the mean and the variance of the random field ν(x, ξ). We will also

refer to the coefficient of variation (CoV ), the relative size of the standard deviation
with respect to the mean,

CoV ≡ σν
ν0
.(3)

The random viscosity leads to the random Reynolds number

Re(ξ) ≡ UL

ν(ξ)
,(4)

where U is the characteristic velocity and L is the characteristic length. We denote the
Reynolds number associated with the mean viscostiy by Re0 = UL

ν0
. In this study, we

ensure that the viscosity (2) has positive values by controlling CoV and only consider
small enough Re0 so that the flow problem has a unique solution.

2.1. Stochastic Galerkin method. In the stochastic Galerkin method, a mixed
variational formulation of (1) can be obtained by employing Galerkin orthogonality:
Find (~u, p) ∈ (VE , QD)⊗ L2(Γ) such that〈∫

D

ν∇~u : ∇~v + (~u · ∇~u)~v − p(∇ · ~v)

〉
ρ

=

〈∫
D

~f · ~v
〉
ρ

, ∀~v ∈ VD ⊗ L2(Γ),(5) 〈∫
D

q(∇ · ~u)

〉
ρ

= 0, ∀q ∈ QD ⊗ L2(Γ).(6)

The velocity solution and test spaces are VE = {~u ∈ H1(D)2|~u = ~g on ∂DDir} and
VD = {~v ∈ H1(D)2|~v = ~0 on ∂DDir}, where H1(D) refers to the Sobolev space of
functions with derivatives in L2(D), for the pressure solution, QD = L2(D), and
L2(Γ) is a Hilbert space equipped with an inner product

〈u, v〉ρ ≡
∫

Γ

u(ξ)v(ξ)ρ(ξ)dξ.

The solution of the variational formulation (5)–(6) satisfies

(7) R(~u, p;~v, q) = 0, ∀~v ∈ VD ⊗ L2(Γ), ∀q ∈ QD ⊗ L2(Γ),

where R(~u, p;~v, q) is a nonlinear residual

R(~u, p;~v, q) ≡
[
〈
∫
D
~f · ~v − ν∇~u : ∇~v + (~u · ∇~u)~v −

∫
D
p(∇ · ~v)〉ρ

〈−
∫
D
q(∇ · ~u)〉ρ

]
.(8)

To compute the solution of the nonlinear equation (7), we employ linearization tech-
niques based on either Picard iteration or Newton iteration [8]. Replacing (~u, p) of
(5)–(6) with (~u + δ~u, p + δp) and neglecting the quadratic term c(δ~u; δ~u,~v), where
c(~z; ~u,~v) ≡

∫
D

(~z · ∇~u) · ~v, gives[
〈
∫
D
ν∇δ~u : ∇~v + c(δ~u; ~u,~v) + c(~u; δ~u,~v)−

∫
D
δp(∇ · ~v)〉ρ

〈
∫
D
q(∇ · δ~u)〉ρ

]
= R(~u, p;~v, q).(9)

In Newton iteration, the (n+ 1)st iterate (~un+1, pn+1) is computed by taking ~u = ~un,
p = pn in (9), solving (9) for (δ~un, δpn), and updating

~un+1 := ~un + δ~un, pn+1 := pn + δpn.

In Picard iteration, the term c(δ~u; ~u,~v) is omitted from the linearized form (9).
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2.2. Discrete stochastic Galerkin system. To obtain a discrete system, the
velocity ~u(x, ξ) and the pressure p(x, ξ) are approximated by a generalized polynomial
chaos expansion [28]:

(10) ~u(x, ξ) ≡
nξ∑
i=1

~ui(x)ψi(ξ), p(x, ξ) ≡
nξ∑
i=1

pi(x)ψi(ξ),

where {ψi(ξ)}
nξ
i=1 is a set of nν-variate orthogonal polynomials (i.e., 〈ψiψj〉ρ = 0 if

i 6= j). This set of orthogonal polynomials gives rise to a finite-dimensional approxi-
mation space S = span({ψi(ξ)}

nξ
i=1) ⊂ L2(Γ). For spatial discretization, a div-stable

mixed finite element method [8] is considered, the Taylor-Hood element consisting
of biquadratic velocities and bilinear pressure. Basis sets for the velocity space V hE

and the pressure space QhD are denoted by

{[
φi(x)

0

]
,

[
0

φi(x)

]}nu
i=1

and {ϕi(x)}npi=1,

respectively. Then the fully discrete version of (10) can be written as
(11)

~u(x, ξ) =

[
~ux(x, ξ)
~uy(x, ξ)

]
≡
[∑nξ

i=1

∑nu
j=1 u

x
ijφj(x)ψi(ξ)∑nξ

i=1

∑nu
j=1 u

y
ijφj(x)ψi(ξ)

]
, p(x, ξ) ≡

nξ∑
i=1

np∑
j=1

pijϕj(x)ψi(ξ).

Let us introduce a vector notation for the coefficients, ūxi ≡ [uxi1, . . . , u
x
inu

]T ∈ Rnu ,

ūyi ≡ [uyi1, . . . , u
y
inu

]T ∈ Rnu , and p̄i ≡ [pi1, . . . , pinp ]T ∈ Rnp for i = 1, . . . , nξ, which,
for each gPC index i, groups the horizontal velocity coefficients together followed by
the vertical velocity coefficients, and then by the pressure coefficients, giving a vector

(12) ūi = [(ūxi )T , (ūyi )T , pTi ]T .

Taking ν(x, ξ) from (2) and replacing ~u(x, ξ), p(x, ξ) in (9) with their discrete approx-
imations (11) yields a system of linear equations of order (2nu+np)nξ. The coefficient
matrix has a Kronecker-product structure,

J ≡ G1 ⊗F1 +

nξ∑
l=2

Gl ⊗Fl,(13)

where Gl refers to the lth “stochastic matrix”

[Gl]ij = 〈ψlψiψj〉ρ, l = 1, . . . , nξ

with ψ1(ξ) = 1, ψi(ξ) = ξi−1 for i = 2, . . . , nν + 1 and

F1 ≡
[
F1 BT

B 0

]
, Fl ≡

[
Fl 0
0 0

]
, l = 2, . . . , nξ

with Fl ≡ Al + Nl + Wl for the Newton iteration and Fl ≡ Al + Nl for the Picard
iteration. We refer to the matrix of (13) derived from the Newton iteration as the
Jacobian matrix, and that derived from the Picard iteration as the Oseen matrix,
denoted by JN and JP , respectively. Here, Al is the lth symmetric matrix defined as

[Al]ij ≡
∫
D

νl−1(x)(∇φi : ∇φj), l = 1, . . . , nν + 1,(14)
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Nl = N(~ul(x)) and Wl = W (~ul(x)) are, respectively, the lth vector-convection matrix
and the lth Newton derivative matrix with ~unl (x) from the lth term of (10),

[Nl]ij = [N(~ul(x))]ij ≡
∫
D

(~ul(x) · ∇φj(x)) · φi(x), l = 1, . . . , nξ,

[Wl]ij = [W (~ul(x))]ij ≡
∫
D

(φj(x) · ∇~ul(x)) · φi(x), l = 1, . . . , nξ,

and B is the divergence matrix,

[B]ij ≡
∫
D

ϕj(∇ · φi).(15)

If the number of gPC polynomial terms in (11) is larger than the number of terms in
(2) (i.e., nξ > nν + 1), we simply set {Al}

nξ
l=nν+2 as matrices containing only zeros so

that Fl = Nl +Wl for l = nν + 2, . . . , nξ.
A discrete version of (8) can be derived in a similar way,

r̄ := ȳ −

(
G1 ⊗ P1 +

nξ∑
l=2

Gl ⊗ Pl

)
ū(16)

where ū := [ūT1 . . . ū
T
nξ

]T ∈ R(2nu+np)nξ with ūi as in (12), ȳ is the right-hand side
determined from the forcing function and Dirichlet boundary data, and

P1 ≡
[
A1 +N1 BT

B 0

]
, Pl ≡

[
Al +Nl 0

0 0

]
l = 2, . . . , nξ.

The system of linear equations arising at the nth nonlinear iteration is

Jnδūn = −r̄n,(17)

where the matrix Jn from (13) and the residual r̄n from (16) each evaluated at the nth
iterate ūn, and the update δūn is computed by solving (17). The order of the system
(2nu + np)nξ grows fast as the number of random variables used to parameterize
the random viscosity increases. Even for a moderate-dimensional stochastic Navier–
Stokes problem, solving a sequence of linear systems of order (2nu + np)nξ can be
computationally prohibitive. To address this issue, we present an efficient variant of
Newton–Krylov methods in the following sections.

3. Low-rank Newton–Krylov method. In this section, we outline the for-
malism in which the solutions to (16) and (17) can be efficiently approximated by
low-rank objects while not losing much accuracy and we show how solvers are ad-
justed within this formalism.

Before presenting these ideas, we describe the nonlinear iteration. We consider a
hybrid strategy. An initial approximation for the nonlinear solution is computed by
solving the parameterized Stokes equations,

−ν(x, ξ)∇2~u(x, ξ) +∇p(x, ξ) = ~f(x, ξ),

∇ · ~u(x, ξ) = 0.

The discrete Stokes operator, which is obtained from the stochastic Galerkin dis-
cretization as shown in section 2.2, is(

G1 ⊗ S1 +

nν+1∑
l=2

Gl ⊗ Sl

)
ūst = bst,(18)



6 K. LEE, H. C. ELMAN, AND B. SOUSEDÍK

where

S1 =

[
A1 BT

B 0

]
, Sl =

[
Al 0
0 0

]
, l = 2, . . . , nν + 1,

with {Al}nν+1
l=1 defined in (14) and B defined in (15). After this initial computation,

updates to the solution are computed by first solving mp Picard systems with co-
efficient matrix JP and then using Newton’s method with coefficient matrix JN to
compute the solution.

Algorithm 1 Solution methods

1: compute an approximate solution of Astūst = bst in (18)
2: set an initial guess for the Navier–Stokes problem ū0 := ūst

3: for k = 0, . . . ,mp − 1 do {Picard iteration}
4: solve JkP δū

k = −r̄k
5: update ūk+1 := ūk + δūk

6: end for
7: while k < mn and ‖r̄k‖2 > εnl‖r̄0‖2 do {Newton iteration}
8: solve JkN δū

k = −r̄k
9: update ūk+1 := ūk + δūk

10: end while

3.1. Approximation in low rank. We now develop a low-rank variant of Al-
gorithm 1. Let us begin by introducing some concepts to define the rank of computed
quantities. Let X = [x̄1, · · · , x̄n2

] ∈ Rn1×n2 and x̄ = [x̄T1 , · · · , x̄Tn2
]T ∈ Rn1n2 , where

x̄i ∈ Rn1 for i = 1, . . . , n2. That is, x̄ can be constructed by rearranging the elements
of X, and vice versa. Suppose X has rank αx. Then two mathematically equivalent
expressions for X and x̄ are given by

(19) X = Y ZT =

αx̄∑
i=1

ȳiz̄
T
i ⇔ x̄ =

αx̄∑
i=1

z̄i ⊗ ȳi,

where Y ≡ [ȳ1, · · · , ȳαx̄ ] ∈ Rn1×αx̄ , Z ≡ [z̄1, · · · , z̄αx̄ ] ∈ Rn2×αx̄ with ȳi ∈ Rn1 ,
z̄i ∈ Rn2 for i = 1, . . . , αx̄. The representation of X and its rank is standard matrix
notation; we also use αx to refer to the rank of the corresponding vector x̄.

With this definition of rank, our goal is to inexpensively find a low-rank approx-
imate solution ūk satisfying ‖r̄k‖2 ≤ εnl‖r̄0‖2 for small enough εnl. To achieve this
goal, we approximate updates {δūk} in low-rank using a low-rank variant of GM-
RES method, which exploits the Kronecker product structure in the system matrix
as in (13) and (18). In the following section, we present the solutions ū (and δū) in
the formats of (19) together with matrix and vector operations that are essential for
developing the low-rank GMRES method.

3.2. Solution coefficients in Kronecker-product form. We seek separate
low-rank approximations of the horizontal and vertical velocity solutions and the
pressure solution. With the representation shown in (19), the solution coefficient
vector ū ∈ R(2nu+np)nξ , which consists of the coefficients of the velocity solution and
the pressure solution (11), has an equivalent representation U ∈ R(2nu+np)×nξ . The
matricized solution coefficients U = [UxT , UyT , PT ]T where Ux = [ūx1 , . . . , ū

x
nξ

], Uy =

[ūy1, . . . , ū
y
nξ

] ∈ Rnu×nξ and the pressure solution P = [p̄1, . . . , p̄nξ ] ∈ Rnp×nξ . The
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components admit the following representations:

Ux =

αūx∑
i=1

v̄xi (w̄xi )T = V x(W x)T ⇔ ūx =

αūx∑
i=1

w̄xi ⊗ v̄xi ,(20)

Uy =

αūy∑
i=1

v̄yi (w̄yi )T = V y(W y)T ⇔ ūy =

αūy∑
i=1

w̄yi ⊗ v̄
y
i ,(21)

P =

αp̄∑
i=1

v̄pi (w̄pi )T = V p(W p)T ⇔ p̄ =

αp̄∑
i=1

w̄pi ⊗ v̄
p
i ,(22)

where V x = [v̄x1 . . . v̄
x
αūx

], W x = [w̄x1 . . . w̄
x
αūx

], αūx is the rank of ūx and Ux, and the
same interpretation can be applied to ūy and p̄.

3.2.1. Matrix operations. In this section, we introduce essential matrix op-
erations used by the low-rank GMRES methods, using the representations shown
in (20)–(22). First, consider the matrix-vector product with the Jacobian system
matrix (13) and vectors (20)–(22),

Jnūn =

( nξ∑
l=1

Gl ⊗Fnl

)
ūn,(23)

where

Fnl =

Axxl +Nn
l +W xx,n

l W xy,n
l BxT

W yx,n
l Ayyl +Nn

l +W yy,n
l ByT

Bx By 0

=

Fxx,nl Fxy,nl BxT

Fyx,nl Fyy,nl ByT

Bx By 0


with Fxx,nl ,Fxy,nl ,Fyx,nl ,Fyy,nl ∈ Rnu×nu and Bx, By ∈ Rnp×nu . The expression (23)
has the equivalent matricized form

∑nξ
l=1 Fnl UnGTl where the lth-term is evaluated as

Fnl UnGTl =

Fxx,nl V x,n(GlW
x,n)T +F xy,nl V y,n(GlW

y,n)T +BxTV p,n(GlW
p,n)T

Fyx,nl V x,n(GlW
x,n)T +F yy,nl V y,n(GlW

y,n)T +ByTV p,n(GlW
p,n)T

BxV x,n(GlW
x,n)T +ByV y,n(GlW

y,n)T

 .
(24)

Equivalently, in the Kronecker-product structure, the matrix-vector product (24) up-
dates each set of solution coefficients as follows:

nξ∑
l=1

(Gl ⊗Fxx,nl )ūx,n + (Gl ⊗Fxy,nl )ūy,n + (Gl ⊗BxT )p̄n, (x-velocity),(25)

nξ∑
l=1

(Gl ⊗Fyx,nl )ūx,n + (Gl ⊗Fyy,nl )ūy,n + (Gl ⊗ByT )p̄n, (y-velocity)(26)

nξ∑
l=1

(Gl ⊗Bx)ūx,n + (Gl ⊗By)ūy,n, (pressure)(27)

where each matrix-vector product can be performed by exploiting the Kronecker-
product structure, for example,

nξ∑
l=1

(Gl ⊗Fxx,nl )ūx,n =

nξ∑
l=1

Gl ⊗Fxx,nl

αūx∑
i=1

wxi ⊗ vxi =

nξ∑
l=1

αūx∑
i=1

Glw
x
i ⊗F

xx,n
l vxi .(28)
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The matrix-vector product shown in (25)–(27) requires O(2nu+np+nξ) flops, whereas
(23) requires O((2nu + np)nξ) flops. Thus, as the problem size grows, the additive
form of the latter count grows much less rapidly than the multiplicative form for (23).

The addition of two vectors ūx and ūy can also be efficiently performed in the
Kronecker-product structure,

(29) ūx + ūy =

αūx∑
i=1

wxi ⊗ vxi +

αūy∑
i=1

wyi ⊗ v
y
i =

αūx+αūy∑
i=1

v̂i + ŵi,

where v̂i = vxi , ŵi = wxi for i = 1, . . . , αūx , and v̂i = vyi , ŵi = wyi for i = αūx +
1, . . . , αūx + αūy .

Inner products can be performed with similar efficiencies. Consider two vectors
x̄1 and x̄2, whose matricized representations are

X1 =

Y11Z
T
11

Y12Z
T
12

Y13Z
T
13

 , X2 =

Y21Z
T
21

Y22Z
T
22

Y23Z
T
23

 .(30)

Then the Euclidean inner product between x1 and x2 can be evaluated as

x̄T1 x̄2 = trace((Y11Z
T
11)TY21Z

T
21) + trace((Y12Z

T
12)TY22Z

T
22) + trace((Y13Z

T
13)TY23Z

T
23),

where trace(X) is defined as a sum of the diagonal entries of the matrix X.
Although the matrix-vector product and the sum, as described in (28) and (29),

can be performed efficiently, the results of (28) and (29) are represented by nξαūx

terms and αūx + αūy terms, respectively, which typically causes the ranks of the
computed quantities to be higher than the inputs for the computations and potentially
undermines the efficiency of the solution method. To resolve this issue, a truncation
operator will be used to modify the result of matrix-vector products and sums and
force the ranks of quantities used to be small.

3.2.2. Truncation of Ux,n, Uy,n and Pn. We now explain the details of the
truncation. Consider the velocity and the pressure represented in a matrix form as
in (20)–(22). The best α-rank approximation of a matrix can be found by using the
singular value decomposition (SVD) [11, 15]. Here, we define a truncation operator
for a given matrix U = VWT whose rank is αU ,

Tεtrunc
: U → Ũ ,

where the rank of U is larger than the rank of Ũ (i.e., αU � αŨ ). The truncation

operator Tεtrunc
compresses U to Ũ such that ‖Ũ − U‖F ≤ εtrunc‖U‖F where ‖ · ‖F is

the Frobenius norm. To achieve this goal, the singular value decomposition of U can
be computed (i.e., U = V̂ DW̃T where D = diag(d1, . . . , dn) is the diagonal matrix of
singular values). Letting {v̂i} and {w̃i} denote the singular vectors, the approximation
is Ũ =

∑αŨ
i=1 ṽiw̃

T
i with ṽi = div̂i and the truncation rank αŨ is determined by the

condition √
d2
αŨ+1 + · · ·+ d2

n ≤ εtrunc

√
d2

1 + · · ·+ d2
n.(31)

3.3. Low-rank GMRES method. We describe the low-rank GMRES method
(lrGMRES) with a generic linear system Ax = b. The method follows the standard
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Arnoldi iteration used by GMRES [21]: construct a set of basis vectors {vi}
mgm

i=1 by
applying the linear operator A to basis vectors, i.e., wj = Avj for j = 1, . . . ,mgm, and
orthogonalizing the resulting vector wj with respect to previously generated basis

vectors {vi}j−1
i=1 . In the low-rank GMRES method, iterates, basis vectors {vi} and

intermediate quantities {wi} are represented in terms of the factors of their matricized
representations (so that X in (19) would be represented using Y and Z without
explicit construction of X), and matrix operations such as matrix-vector products are
performed as described in section 3.2.1. As pointed out in section 3.2.1, these matrix
operations typically tend to increase the rank of the resulting quantity, and this is
resolved by interleaving the truncation operator T with the matrix operations. The
low-rank GMRES method computes a new iterate by solving

min
β∈Rmgm

‖b−A(x0 + Vmgm
β̄)‖2,(32)

and constructing a new iterate x1 = x0 + Vmgm β̄ where x0 is an initial guess. Due to
truncation, the basis vectors {vi} are not orthogonal and span(Vmgm), where Vmgm =
[v1 . . . vmgm

], is not a Krylov subspace, so that (32) must be solved explicitly rather
than exploiting Hessenberg structure as in standard GMRES. Algorithm 2 summarizes
the lrGMRES. We will use this method to solve the linear system of (17).

Algorithm 2 Restarted low-rank GMRES method in tensor format [2]

1: set the initial solution ū0
gm

2: for k = 0, 1, . . . do
3: rkgm := f −Aūkgm

4: if ‖rkgm‖2/‖f‖2 < εgmres or ‖rkgm‖2 ≥ ‖rk−1
gm ‖2 then

5: return ūkgm

6: end if
7: v̄1 := Tεtrunc(rkgm)
8: v1 := v̄1/‖v̄1‖2
9: for j = 1, . . . , mgm do

10: wj := Avj
11: solve (V Tj Vj)ᾱ = V Tj wj where Vj = [v1, . . . , vj ]

12: v̄j+1 := Tεtrunc

(
wj −

∑j
i=1 αivi

)
13: vj+1 := v̄j+1/‖v̄j+1‖2
14: end for
15: solve (WT

mgm
AVmgm

)β̄ = WT
mgm

rkgm where Wj = [w1, . . . , wj ]

16: ūk+1
gm := Tεtrunc(ūkgm + Vmgm β̄)

17: end for

3.4. Preconditioning. We also use preconditioning to speed convergence of the
low-rank GMRES method. For this, we consider a right-preconditioned system

Jn(Mn)−1ũn = r̄n,

where Mn is the preconditioner and Mnūn = ũn such that Jnūn = r̄n. We consider
an approximate mean-based preconditioner [18], which is derived from the matrix
G1 ⊗F1 associated with the mean ν0 of the random viscosity (2),

(33) Mn = G1 ⊗
[
Mn
A BT

0 −Mn
s

]
,
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where

Mn
A =

[
Axx1 +Nn

1 0
0 Ayy1 +Nn

1

]
, (Picard iteration),

Mn
A =

[
Axx1 +Nn

1 +W xx,n
1 0

0 Ayy1 +Nn
1 +W yy,n

1

]
, (Newton iteration).

For approximating the action of the inverse, (Mn
s )−1, we choose the boundary-adjusted

least-squares commutator (LSC) preconditioning scheme [8],

Mn
s = BF−1

1 BT ≈ (BH−1BT )(BM−1
∗ F1H

−1BT )−1(BM−1
∗ BT ),

where M∗ is the diagonal of the velocity mass matrix and H = D−1/2M∗D
−1/2,

where D is a diagonal scaling matrix deemphasizing contributions near the boundary.
During the low-rank GMRES iteration, the action of the inverse of the preconditioner
(33) can be applied to a vector in a manner analogous to (25)–(27).

4. Inexact nonlinear iteration. As outlined in Algorithm 1, we use the hybrid
approach, employing a few steps of Picard iteration followed by Newton iteration, and
the linear systems are solved using lrGMRES (Algorithm 2). We extend the hybrid
approach to an inexact variant based on an inexact Newton algorithm, in which the
accuracy of the approximate linear system solution is tied to the accuracy of the
nonlinear iterate (see e.g., [10] and references therein). That is, when the nonlinear
iterate is far from the solution, the linear systems may not have to be solved accurately.
Thus, a sequence of iterates ūn+1 := ūn + δūn is computed where δūn satisfies

‖JnNδūn + r̄n‖2 ≤ εngmres‖r̄n‖2, (JP for Picard iteration),

where the lrGMRES stopping tolerance (εngmres of Algorithm 2) is given by

(34) εngmres := ρgmres‖r̄n‖2,

where 0 < ρgmres ≤ 1. With this strategy, the Jacobian system is solved with increased
accuracy as the error becomes smaller, leading to savings in the average cost per step
and, as we will show, with no degradation in the asymptotic convergence rate of the
nonlinear iteration.

In addition, in Algorithms 1 and 2, the truncation operator Tεtrunc is used for the
low-rank approximation of the nonlinear iterate (i.e., truncating ūx, ūy, and p̄ at lines
5 and 9 in Algorithm 1) and updates (i.e., truncating δūx, δūy, and δp̄ at lines 7, 12,
and 16 in Algorithm 2). As the lrGMRES stopping tolerance is adaptively determined
by the criterion (34), we also choose the value of the truncation tolerances εtrunc,sol and
εntrunc,corr, adaptively. For truncating the nonlinear iterate, the truncation tolerance
for the iterate {εntrunc,sol} is chosen based on the nonlinear iteration stopping tolerance,

εtrunc,sol := ρnlεnl,

where 0 < ρnl ≤ 1. For truncating the updates (or corrections), the truncation
tolerance for the correction {εntrunc,corr} is adaptively chosen based on the stopping
tolerance of the linear solver,

εntrunc,corr := ρtrunc,Pε
n
gmres, (for the nth Picard step),

εntrunc,corr := ρtrunc,Nε
n
gmres, (for the nth Newton step),

where 0 < ρtrunc,P, ρtrunc,N ≤ 1. Thus, for computing nth update δūn, we set εtrunc =
εntrunc,corr in Algorithm 2.
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Algorithm 3 Inexact nonlinear iteration with adaptive tolerances
1: set εtrunc,sol := ρnlεnl

2: compute an approximate solution of Astūst = bst using Algorithm 2
3: set an initial guess for the Navier–Stokes problem ū0 := ūst

4: for k = 0, . . . ,mp − 1 do {Picard iteration}
5: set εkgmres = ρgmres‖r̄k‖2, and εktrunc,corr = ρtrunc,P‖r̄k‖2
6: solve JkP δū

k = −r̄k using Algorithm 2
7: update ūk+1 := Tεtrunc,sol

(ūk + δūk)
8: end for
9: while ‖r̄k‖2 > εnl‖r̄0‖2 do {Newton iteration}

10: set εkgmres = ρgmres‖r̄k‖2, and εktrunc,corr = ρtrunc,N‖r̄k‖2
11: solve JkN δū

k = −r̄k using Algorithm 2
12: update ūk+1 := Tεtrunc,sol

(ūk + δūk)
13: end while

5. Numerical results. In this section, we present the results of numerical ex-
periments on a model problem, flow around a square obstacle in a channel, for which
the details are depicted in Figure 1. The domain has length 12 and height 2, and it
contains a square obstacle centered at (2,0) with sides of length .25.

0 2 4 6 8 10 12

-1

-0.5

0

0.5

1

Fig. 1. Spatial domain and finite element discretization.

For the numerical experiments, we define the random viscosity (2) using the
Karhunen-Loève (KL) expansion [14],

ν(x, ξ) = ν0 + σν

nν∑
i=1

√
λiνi(x)ξi,(35)

where ν0 and σ2
ν are the mean and the variance of the viscosity of ν(x, ξ), and

{(λi, νi(x))}nνi=1 are eigenpairs of the eigenvalue problem associated with the covari-
ance kernel C(x, y) of the random field. We consider two types of covariance kernel:
absolute difference exponential (AE) and squared difference exponential (SE), which
are defined via

CAE(x, y) = exp

(
−

2∑
i=1

|xi − yi|
li

)
, CSE(x, y) = exp

(
−

2∑
i=1

(xi − yi)2

l2i

)
,(36)

where x = (x1, x2) and y = (y1, y2) are points in the spatial domain, and l1, l2
are correlation lengths. We assume that the random variables {ξi}nνi=1 are inde-
pendent and identically distributed and that ξi (for i = 1, . . . , nν) follows a uni-
form distribution over [−1, 1]. For the mean of the viscosity, we consider several
choices, ν0 = { 1

50 ,
1

100 ,
1

150}, which corresponds to Re0 = {100, 200, 300}. In all ex-
periments, we use a finite-term KL-expansion with nν = 5. For constructing the
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finite-dimensional approximation space S = span({ψi(ξ)}
nξ
i=1) in the parameter do-

main, we use orthogonal polynomials {ψi(ξ)}
nξ
i=1 of total degree 3, which results in

nξ = 56. The orthogonal polynomials associated with uniform random variables are
Legendre polynomials, ψi(ξ) =

∏nν
j=1 `dj(i)(ξj) where d(i) = (d1(i), . . . , dnν (i)) is a

multi-index consisting of non-negative integers and `dj(i) is the dj(i)th order Legen-
dre polynomial of ξj . For the spatial discretization, Taylor–Hood elements are used on
a stretched grid, which results in {6320, 6320, 1640} degrees of freedom in {~ux, ~uy, p},
respectively (i.e., nu = 6320 and np = 1640.) The implementation is based on the
Incompressible Flow and Iterative Solver Software (IFISS) package [7, 22].

5.1. Low-rank inexact nonlinear iteration. In this section, we compare the
results obtained from the low-rank inexact nonlinear iteration with those obtained
from other methods, the exact and the inexact nonlinear iteration with full rank
solutions, and the Monte Carlo method. Default parameter settings are listed in
Table 1, where the truncation tolerances only apply to the low-rank method. Unless
otherwise specified, the linear system is solved using a restarted version of low-rank
GMRES, lrGMRES(20).

Table 1
Tolerances and adaptive parameters.

Nonlinear iteration stopping tolerance εnl = 10−5

GMRES tolerance (Stokes) εgmres = 10−4

GMRES tolerances (Picard and Newton) εngmres = ρgmres‖r̄n‖2 (ρgmres = 10−.5)

Truncation tolerance for solutions εtrunc,sol = ρnlεnl (ρnl = 10−1)

Truncation tolerance for corrections εntrunc,corr = ρtruncεngmres (ρtrunc = 10−1)

We first examine the convergence behavior of the inexact nonlinear iteration for
a model problem characterized by Re0 = 100, CoV = 1%, and SE covariance kernel
in (36) with l1 = l2 = 32. We compute a full-rank solution using the exact nonlinear
iteration (εngmres = 10−12 and no truncation) until the nonlinear iterate reaches the
nonlinear stopping tolerance, εnl = 10−8. Then we compute another full-rank solution
using the inexact nonlinear iteration (i.e., adaptive choice of εngmres as shown in Table
1 and no truncation). Lastly, we compute a low-rank approximate solution using the
low-rank inexact nonlinear iteration (i.e., adaptive choices of εngmres and εntrunc,corr as
shown in Table 1 and for varying εtrunc,sol = {10−5, 10−6, 10−7, 10−8}). Figure 2 shows
the convergence behavior of the three methods. In Figure 2a, the hybrid approach is
used, in which the first step corresponds to the Stokes problem (line 2 of Algorithm 3),
the 2nd–5th steps correspond to the Picard iteration (line 4–8 of Algorithm 3, and
mp = 4), and the 6th–7th steps correspond to the Newton iteration (line 9–13 of
Algorithm 3). Figure 2a confirms that the inexact nonlinear iteration is as effective
as the exact nonlinear iteration. The low-rank inexact nonlinear iteration behaves
similarly up to the 6th nonlinear step but when the truncation tolerances are large
εtrunc,sol = {10−5, 10−6}, it fails to produce a nonlinear solution satisfying εnl = 10−8.
Similar results can be seen in Figure 2b, where only the Picard iteration is used. As
expected, in that case, the relative residual decreases linearly for all solution methods,
but the low-rank inexact nonlinear iteration with the mild truncation tolerances also
fails to reach the nonlinear iteration stopping tolerance.

Figure 3 shows means and variances of the components of the full-rank solution,
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(a) Convergence of the hybrid approach (b) Convergence of the Picard iteration

Fig. 2. Convergence of both exact and inexact nonlinear iterations (full-rank) and the low-rank
inexact nonlinear iteration.

given by

µux = E[~ux], µuy = E[~uy], µp = E[p],(37)

σ2
ux = E[(~ux − µux)2], σ2

uy = E[(~uy − µuy )2], σ2
p = E[(p− µp)2].(38)

These quantities are easily computed by exploiting the orthogonality of basis functions
in the gPC expansion. Figure 4 shows the differences in the means and variances of the
solutions computed using the full-rank and the low-rank inexact nonlinear iteration.
Let us denote the full-rank and low-rank horizontal velocity solutions by ux,full and
ux,lr, with analogous notation for the vertical velocity and the pressure. Thus, the
differences in the means and the variances are

ηxµ = µux,full − µux,lr , ηyµ = µuy,full − µuy,lr , ηpµ = µpfull − µplr ,

ηxσ = σ2
ux,full − σ2

ux,lr , ηyσ = σ2
uy,full − σ2

uy,lr , ηpσ = σ2
pfull − σ2

plr .

Figure 4 shows these differences, normalized by graph norms ‖∇~µufull‖ + ‖µpfull‖ for

the means and ‖∇~σ2
ufull‖+‖σ2

pfull‖ for the variances, where ‖∇~u‖ = (
∫
D
∇~u : ∇~u dx)

1
2

and ‖p‖ = (
∫
D
p2dx)

1
2 . Figure 4 shows that the normalized differences in the mean

and the variance are of order 10−9 ∼ 10−10 and 10−10 ∼ 10−12, respectively, i.e.,
the errors in low-rank solutions are considerably smaller than the magnitude of the
truncation tolerances εtrunc,sol, εtrunc,corr (see Table 1).

5.2. Characteristics of the Galerkin solution. In this section, we examine
various properties of the Galerkin solutions, with emphasis on comparison of the
low-rank and full-rank versions of these solutions and development of an enhanced
understanding of the relation between the Galerkin solution and the polynomial chaos
basis. We use the same experimental setting studied above (SE covariance kernel,
l1 = l2 = 32, Re0 = 100 and CoV = 1%).

We begin by comparing the Galerkin solution with one obtained using Monte
Carlo methods. In particular, we estimate a probability density function (pdf) of the
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Fig. 3. Mean and variances of full-rank velocity solutions ~ux(x, ξ), ~uy(x, ξ), and pressure
solution p(x, ξ) for Re0 = 100, CoV = 1, and l1 = l2 = 32.

Fig. 4. Difference in the means and variances of the full-rank and the low-rank solutions for
Re0 = 100, CoV = 1, and l1 = l2 = 32.

velocity solutions (~ux(x, ξ), ~uy(x, ξ)) and the pressure solution (p(x, ξ)) at a specific
point on the spatial domain D. In the Monte Carlo method, we solve nMC = 25000 de-
terministic systems, R(~u, p,~v, q; ξ(k)) = 0 associated with nMC realizations {ξ(k)}nMC

k=1

in the parameter space. Using the Matlab function ksdensity, the pdfs of (~ux(x, ξ),
~uy(x, ξ), p(x, ξ)) are estimated at the spatial point with coordinates (3.6436, 0), where
the variance of ~ux(x, ξ) is large (see Figure 3). The results are shown in Figure 5.
They indicate that the pdf of the Galerkin solution is virtually identical to that of
the Monte Carlo solution, and there is essentially no difference between the low-rank
and full-rank results.

Next, we explore some characteristics of the Galerkin solution, focusing on the
horizontal velocity solution; the observations made here also hold for the other com-
ponents of the solution. Given the coefficients of the velocity solution in matricized
form, Ux, the discrete velocity solution is then given by

~ux(x, ξ) = ΦT (x)UxΨ(ξ),

where Φ(x) = [φ1(x), . . . , φnu(x)]T and Ψ(ξ) = [ψ1(ξ), . . . , ψnξ(ξ)]
T . Consider in
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(a) ~ux (b) ~uy (c) p

Fig. 5. Estimated pdfs of the velocities ~ux, ~uy, and the pressure p at the point (3.6436, 0).

Fig. 6. Norms of the gPC coefficients ‖ūi‖2 for Re0 = 100, CoV = 1, and l1 = l2 = 32.

particular the component of this expression corresponding to the jth column of Ux,(
nu∑
i=1

uxijφi(x)

)
ψj(ξ)

so that this (jth) column ūxj = [Ux]j corresponds to the coefficient of the jth polyno-
mial basis function ψj . Figure 6 plots the values of the coefficients ‖ūxi ‖2. (This data
is computed with Re0 = 100, CoV = 1%, and SE covariance kernel with l1 = l2 = 32).
Note that the gPC indices {j} are in one-to-one correspondence with multi-indices
d(j) = (d1(j), . . . , dnu(j)), where the element of the multi-index indicates the de-
gree of univariate Legendre polynomial. The multi-indices {d(i)}nξi=1 are ordered in
the lexicographical order, for example, the first eight multi-indices are as d(1) =
(0, 0, 0, 0, 0), d(2) = (1, 0, 0, 0, 0), d(3) = (0, 1, 0, 0, 0), . . . , d(6) = (0, 0, 0, 0, 1), d(7) =
(2, 0, 0, 0, 0), and d(8) = (1, 1, 0, 0, 0). In Figure 6, the blue square is associated
with the zeroth-order gPC component (d(1)), the red circles are associated with the
first-order gPC components ({d(i)}6i=2), and so on. Let us focus on three gPC com-
ponents associated only with ξ1, {ψ2(ξ) = `1(ξ1), ψ7(ξ) = `2(ξ1), ψ22(ξ) = `3(ξ1)},
where, for i = 2, 7, 22, the multi-indices are d(2) = (1, 0, 0, 0, 0), d(7) = (2, 0, 0, 0, 0),
and d(22) = (3, 0, 0, 0, 0). The figure shows that the coefficients of gPC components
{ψ2(ξ), ψ7(ξ), ψ22(ξ)} decay more slowly than those of gPC components associated
with other random variables {ξi}nνi=2.

We continue the examination of this data in Figure 7a, which shows two-dimensional
mesh plots of the 2nd through 7th columns of Ux. These images show that these co-
efficients are either symmetric with respect to the horizontal axis, or reflectionally
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(a) Plots of coefficients of gPC components 2–7 of ~ux(x, ξ)

(b) Plots of coefficients vi of θxi (ξ) for i = 2, . . . , 7

Fig. 7. Plots of coefficients of gPC components 2–7 of ~ux(x, ξ) and coefficients vi of θi(ξ) for
i = 2, . . . , 7 for Re0 = 100, CoV = 1, and l1 = l2 = 32.

symmetric (equal in magnitude but of opposite sign), and (as also revealed in Figure
6), they tend to have smaller values as the index j is increased.

We now look more closely at features of the factors of the low-rank approximate so-
lution and compare these with those of the (unfactored) full-rank solution. In the low-
rank format, the solution is represented using factors ~ux(x, ξ)=(ΦT(x)V x)(ΨT(ξ)W x)T.
Let us introduce a concise notation of ~ux(x, ξ)=Zxαūx(x)TΘx

αūx
(ξ) =

∑αūx
i=1 ζ

x
i (x)θxi (ξ)

where Zxαūx (x) = [ζx1 (x), . . . , ζxαūx (x)] and Θx
αūx

(ξ) = [θx1 (ξ), . . . , θxαūx (ξ)] with ζxi (x) =

[ΦT (x)V x]i and θxi (ξ) = [(ΨT (ξ)W x)]i for i = 1, . . . , αūx . Figure 7b shows the coef-
ficients of the ith random variable θi(ξ). As opposed to the gPC coefficients of the
full-rank solution, the norms of the coefficients of {θi(ξ)} decrease monotonically as
the index i increases. This is a consequence of the fact that the ordering for {θi(ξ)}
comes from the singular values of Ux. Figure 7b shows the 2nd-7th columns of V x.
Figures 7a and 7b show that the coefficients {vi} of {θi(ξ)} are comparable to the
coefficients {uxi } of the gPC components. Each pair of components in the following
parentheses is similar to each other: (u2, v2), (u3, v3), (u7,−v4), (u4,−v7), (u5, v5),
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Fig. 8. A heat map of (Wx)T .

and (u6,−v6).
While the columns of V x show the resemblance to the subset of the columns of

Ux, W x tends to act as a permutation matrix. Figure 8 shows a “heat map” of (W x)T ,
where values of the elements in W x are represented as colors and the map shows that
a very few elements of W x

i are dominant and a sum of those elements is close to 1.
Recall that θxi (ξ) = (W x

i )TΨ(ξ). Many dominant elements are located in the diagonal
of W x, which results in θxi (ξ) ≈ ±ψi(ξ) (e.g., i = 1, 2, 3, 5, . . .). In the case of W x

4 , the
most dominant element is the 7th element and has a value close to -1, which results
in θx4 (ξ) ≈ −ψ7(ξ). As observed in Figure 6, ψ7(ξ) has a larger contribution than
other gPC components and, in the new solution representation, θx4 (ξ), which consists
mainly of ψ7(ξ), appears earlier in the representation.

5.3. Computational costs. In this section, we assess the costs of the low-
rank inexact nonlinear iteration under various experimental settings: two types of
covariance kernels (36), varying CoV (3), and varying Re0. In addition, for various
values of these quantities, we investigate the decay of the eigenvalues {λi} used to
define the random viscosity (35) and their influence on the rank of solutions. All
numerical experiments are performed on an Intel 3.1 GHz i7 CPU, 16 GB RAM using
Matlab R2016b and costs are measured in terms of CPU wall time (in seconds).
For larger CoV and Re0, we found the solver to be more effective using the slightly
smaller truncation tolerance ρtrunc = 10−1.5 and used this choice for all experiments
described below. (Other adaptive tolerances are those shown as in Table 1.) This
change had little impact on results for small CoV and Re0.

Figure 9 shows the 50 largest eigenvalues {λi} of the eigenvalue problems associ-
ated with the SE covariance kernel and the AE covariance kernel (36) with l1 = l2 = 8,
CoV = 1%, and Re0 = 100. The eigenvalues of the SE covariance kernel decay much
more rapidly than those of the AE covariance kernel. Because we choose a fixed num-
ber of terms nν = 5, the random viscosity with the SE covariance kernel retains a
smaller variance.

Fig. 9. Eigenvalue decay of the AE and the SE covariance kernels.
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Figure 10a shows the computational costs (in seconds) needed for computing the
full-rank solutions and the low-rank approximate solutions using the inexact nonlinear
iteration for the two covariance kernels and a set of correlation lengths, l1 = l2 =
{1, 2, 4, 8, 16, 32}. Figure 10b shows the ranks of the low-rank approximate solutions
that satisfy the nonlinear stopping tolerance εεnl

= 10−5. Again, Re0 = 100 and
CoV = 1%. For this benchmark problem, 4 Picard iterations and 1 Newton iteration
are enough to generate a nonlinear iterate satisfying the stopping tolerance εnl. It
can be seen from Figure 10a that in all cases the use of low rank methods reduces
computational cost. Moreover, as the correlation length becomes larger, the ranks
of the corrections and the nonlinear iterates become smaller. As a result, the low-
rank method achieves greater computational savings for the problems with larger
correlation length.

(a) Computational cost of full-rank computa-
tion and low-rank approximation

(b) Ranks of the low-rank approximate solu-
tions

Fig. 10. Computational costs and ranks for varying correlation lengths with SE and AE co-
variance kernel.

Next, we examine the performances of the low-rank approximation method for
varying CoV , which is defined in (3). In this experiment, we fix the value of Re0 = 100
and the variance of the random σν is controlled. We consider the SE covariance kernel.

Figure 11 shows the performances of the full-rank and the low-rank methods for
varying CoV = {1%, 5%, 10%}. We use Algorithm 3 with 4 Picard steps, followed
by several Newton steps until convergence. For CoV = {1%, 5%}, one Newton step
is required for the convergence and, for CoV = 10%, two Newton steps are required.
Figure 11a shows the computational costs. For CoV = {1%, 5%}, the computational
benefits of using the low-rank approximation methods are pronounced whereas, for
CoV = 10%, the performances of the two approaches are essentially the same for
shorter correlation lengths. Indeed, for higher CoV , the ranks of solutions ū (see
Figures 11b–11d) as well as updates δūk at Newton steps become close to the full
rank (nξ = 56).

Lastly, we study the benchmark problems with varying mean viscosity with SE
covariance kernel and CoV = 1%. As the mean viscosity decreases, Re0 grows, and
the nonlinear problem tends to become harder to solve, and for the larger Reynolds
numbers Re0 = 200 or 300, we use more Picard steps (5 or 6, respectively) before
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(a) Computational cost of full-rank computation
and low-rank approximation

(b) Ranks of the low-rank approximate solu-
tions ux

(c) Ranks of the low-rank approximate solutions
uy

(d) Ranks of the low-rank approximate solu-
tions p

Fig. 11. Computational costs and ranks for varying correlation lengths and varying CoV with
Re0 = 100.

switching to Newton’s method.
Figure 12 shows the performances of the low-rank methods for varying Reynolds

number, Re0 = {100, 200, 300}. For Re0 = 200, after 5 Picard steps, one Newton step
leads to convergence (and 6 Picard steps and one Newton step for Re0 = 300). As
the figures 12b–12d show, the ranks of the solutions increase slightly as the Reynolds
number becomes larger and, thus, for all Re0 tested here, the low-rank method demon-
strates notable computational savings (with CoV = 1%). Note that overall computa-
tional costs in Figure 12a increase as the Reynolds number becomes larger because (1)
the number of nonlinear steps required to converge increases as the Reynolds number
increases and (2) to solve each linearized systems, typically more lrGMRES cycles are
required for the problems with higher Reynolds number.
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(a) Computational cost of full-rank computation
and low-rank approximation

(b) Ranks of the low-rank approximate solu-
tions ux

(c) Ranks of the low-rank approximate solu-
tions uy

(d) Ranks of the low-rank approximate solu-
tions p

Fig. 12. Computational costs and ranks for varying correlation lengths and varying Re0

6. Conclusion. In this study, we have developed the inexact low-rank nonlinear
iteration for the solutions of the Navier–Stoke equations with uncertain viscosity in the
stochastic Galerkin context. At each step of the nonlinear iteration, the solution of the
linear system is inexpensively approximated in low rank using the tensor variant of the
GMRES method. We examined the effect of the truncation to an accuracy of the low-
rank approximate solutions by comparing those solutions to the ones computed using
exact, inexact nonlinear iterations in full rank and the Monte Carlo method. Then
we explored the efficiency of the proposed method with a set of benchmark problems
for various settings of uncertain viscosity. The numerical experiments demonstrated
that the low-rank nonlinear iteration achieved significant computational savings for
the problems with smaller CoV and larger correlation lengths. The experiments also
showed that the mean Reynolds number does not significantly affect the rank of
the solution and the low-rank nonlinear iteration achieves computational savings for
varying Reynolds number for small CoV and large correlation lengths.
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