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BLOCK PRECONDITIONERS FOR STABLE MIXED NODAL AND
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Abstract. The scalable iterative solution of strongly coupled three-dimensional incompressible
resistive magnetohydrodynamics (MHD) equations is very challenging because disparate time scales
arise from the electromagnetics, the hydrodynamics, as well as the coupling between these systems.
This study considers a mixed finite element discretization of a dual saddle point formulation of
the incompressible resistive MHD equations using a stable nodal (Q2/Q1) discretization for the
hydrodynamics and a stable edge-node discretization of a reduced form of the Maxwell equations.
This paper presents new approximate block factorization preconditioners for this system which reduce
the system to approximate Schur complement systems that can be solved using algebraic multilevel
methods. These preconditioners include a new augmentation-based approximation for the magnetic
induction saddle point system as well as efficient approximations of the Schur complements that arise
from the complex coupling between the Navier–Stokes equations and the Maxwell equations.
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1. Introduction. The magnetohydrodynamics (MHD) model describes the flow
of electrically conducting fluids in the presence of magnetic fields. From a continuum
approximation perspective, the model is governed by a system of non-self-adjoint, non-
linear partial differential equations obtained from coupling the Navier–Stokes equa-
tions and a reduced form of the Maxwell equations. Because both hydrodynamic and
electromagnetic effects play a strong role in this system, MHD can span a large range
of length and time scales. This complex physical behavior makes the MHD equa-
tions difficult to solve and necessitates the development of robust, accurate numerical
methods to approximate their solution. For this reason, much effort has been invested
into the development of scalable preconditioners for the linear systems arising in fully
implicit discretizations of the MHD equations [3, 4, 5, 6, 21, 22, 26, 30, 31, 33].

This study focuses on preconditioning the linear systems arising from a particular
finite element formulation of the primitive variable incompressible MHD equations
[29]. This formulation poses the equations as a coupling of two subsystems of saddle
point type. The electromagnetic saddle point system is posed in terms of the magnetic
induction, which is defined on edge elements, and a Lagrange multiplier, defined on
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nodes. The hydrodynamic saddle point system is composed of the incompressible
Navier–Stokes equations with the coupling between the fluid velocity and the fluid
pressure. These two subsystems are coupled by the Lorentz force and a magnetic
convection term.

The approach of this study is to develop block preconditioners that exploit the
inherent block structure of the fully coupled linear system generated by both Newton
and fixed point linearizations of the the nonlinear discrete systems. These types of
preconditioners develop scalable algebraic multigrid methods (AMG) for challenging
systems by employing AMG-based preconditioners that can effectively handle both
nodal (H(grad)-conforming) and edge-element (H(curl)-conforming) finite element
approximations. To this end, we draw on block preconditioning strategies that have
been developed for the discretized Maxwell equations in saddle point form and the
discretized Navier–Stokes equations while accounting for the coupling between the
two subsystems. By applying block factorizations to the system matrix, the effects of
coupling can be embedded and localized in algebraic Schur complements, thus moving
the action of off-diagonal operators onto the block diagonal. The effectiveness of a
preconditioner is then determined by how well such Schur complements are approxi-
mated. By analyzing the fully coupled system from a block perspective, the strength
of coupling, and time scales of physical mechanisms can be employed in the design of
the approximate block factorization. In this process, results from our previous work
on developing preconditioners for a mixed finite element discretization of an exact-
penalty formulation for MHD [26] are generalized to the current mixed incompressible
fluid integration (Q2/Q1) and edge-element B-field and nodal (Q1) Lagrange multi-
plier finite element formulation [29] to develop effective Schur complement approxi-
mations. An alternative approach is to use specialized monolithic multigrid methods
(see [1]), as broadly applicable nodal monolithic multigrid methods (e.g., [30, 31]) do
not extend directly to mixed discretizations.

The remainder of this paper is organized as follows. In section 2, the problem is
outlined with a presentation of the resistive incompressible MHD system as well as
a discussion of the finite element discretization that is employed. This section also
presents the basic form of the proposed preconditioner which involves an approxi-
mation of the electromagnetics and fluid subsystems. Sections 3 and 4 focus on the
two saddle point subblock approximations. The performance of the preconditioners
is then demonstrated on a variety of test problems in section 5. Section 6 closes with
a few observations and conclusions.

2. The discrete problem and approach to preconditioning. The primitive
variable nondimensional resistive MHD system is given by

∂ ~B
∂t + 1

Rem
∇×∇× ~B −∇× (~u× ~B) +∇r = ~0,(1a)

∇ · ~B = 0,(1b)

∂~u
∂t −

1
Re∆~u+ ~u · ∇~u+∇p+ S ~B ×∇× ~B = ~0,(1c)

∇ · ~u = 0(1d)

with appropriate boundary conditions [14]. The unknowns are the magnetic induction
~B, a Lagrange multiplier r, the fluid velocity ~u, and the fluid pressure p. The La-
grange multiplier, r, is a nonphysical degree of freedom included so that the solenoidal
involution (1b) can be enforced explicitly as a constraint. The nondimensional pa-
rameters Re,Rem, and S are the (fluid) Reynolds number, the magnetic Reynolds
number, and the coupling coefficient. These nondimensional parameters are defined
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in terms of physical constants and characteristic scales as

(2) Re =
ρūL̄

ν
, Rem = µσL̄ū, S =

B̄2

µρū2
,

where ρ, ν, µ, and σ are the density, viscosity, permeability, and conductivity, and ū, L̄,
and B̄ are the characteristic velocity, length scale, and magnetic field strength [13].

Briefly, (1a)–(1b) form a reduced version of the low frequency Maxwell equations,
where Faraday’s law has been used with the standard definition of the generalized
resistive Ohm’s law to form an evolution equation for the magnetic induction [14].
Equations (1c)–(1d) compose the incompressible Navier–Stokes equations with the

Lorentz force −S ~B × ∇ × ~B as a source. The magnetic convection, ∇ × (~u × ~B)
and the Lorentz force act as a nonlinear coupling between the electromagnetic and
hydrodynamic subsystems.

A semidiscrete (backward Euler) and linearized version of the continuous system
(1) is presented in (3):

1
∆t
~B′ + 1

Rem
∇×∇× ~B′ − δ∇× (~a× ~B′)−∇× (~u′ ×~b) +∇r′ = −R ~B ,(3a)

∇ · ~B′ = −Rr,(3b)

1
∆t~u

′ − 1
Re∆~u′ + ~a · ∇~u′ + δ~u′ · ∇~a+∇p′ + S~b×∇× ~B′ + δS ~B′ ×∇×~b = −R~u,

(3c)

∇ · ~u′ = −Rp.(3d)

This system represents the linearization with either Newton’s method (δ = 1) or
a Picard linearization (δ = 0), and needs to be solved at each step of a nonlinear

iteration at each time step. The current values of the unknowns ~u and ~B are denoted
by ~a and ~b in the nonlinear iteration, R∗ refers to the corresponding nonlinear residual
for each unknown, and ~u′, p′, ~B′, r′ are the increments of the dependent variables
solved for in the fixed point iteration in defect correction form. In the subsequent
discussion the prime superscript is omitted for economy of notation. When a solution
to the nonlinear time-discretized problem exists, the Picard iteration converges to
that solution for any initial guess and Newton’s method converges for initial guesses
sufficiently close to the exact solution [29].

2.1. Form of the discrete system. Following the finite element discretization
proposed in [29], we discretize ~B with curl-conforming edge elements and r with
appropriate nodal elements for a stable discretization of the Maxwell subsystem. The
hydrodynamic unknowns can be discretized with any element pair that is stable for the
Navier–Stokes equations. Throughout this work, we use first order Nédélec elements
of the first kind [24] for ~B, bilinear (Q1) elements for r, and Taylor-Hood (Q2-Q1)
elements for ~u and p. This leads to a stable discretization of the MHD equations [29].
The convergence of this discretization has been demonstrated in the literature [28].
After discretizing in space with finite elements, each system of equations representing
the unknowns of the finite element approximation to (3) is represented by a discrete
linear system of the form

(4) Ax = R,

where x = (B, r,u,p) is a vector containing the coefficients of ~B, r, ~u, and p in the
finite element basis. The system matrix A can be written in block form as

(5) A =

(
MB −Ztu
ZB Mu

)
,
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where MB is the magnetic induction saddle point matrix, Mu is the Navier–Stokes
saddle point matrix, and Ztu and ZB contain the coupling terms. Using the notation
summarized in Table 1, each of these blocks is a block 2× 2 matrix, i.e.,

(6) M∗ =

(
1

∆tQ∗ + F∗ Dt

D 0

)
, Z∗ =

(
Z∗ 0
0 0

)
.

Throughout the text, Q∗, F∗, will refer to the mass matrix and convection-diffusion
stiffness matrix for unknown ∗. The operators ZB and Ztu are discretizations of
the Lorentz force and the off-diagonal component of the magnetic convection. The
gradient and divergence operator are denoted as Dt and D for each unknown as
well. We note that the discrete gradient and divergence are different matrices in
the hydrodynamic and electromagnetic subsystems. We omit subscripts on these
operators for economy of notation.

The system matrix A is generally large and sparse as well as nonsymmetric and
indefinite. Hence, to solve the system (4) a preconditioned GMRES method [27] is
employed. The challenge is then to develop a computationally efficient preconditioner
for A. Ideally, this preconditioner should lead to small linear iteration counts in-
dependent of the mesh size h and should be robust over changes in the parameters
∆t, Re,Rem, and S. To develop preconditioners for this system, the block structure
of A as it appears in (5) is exploited. We take advantage of this structure both to
algebraically localize the effects of coupling in Schur complement approximations and
to provide a framework where we can leverage previous work on preconditioning the
discretized Maxwell and Navier–Stokes equations.

We focus on block upper triangular preconditioners motivated by the block LU
decomposition

(7) A =

(
I 0

ZBM−1
B I

)(
MB Ztu

0 Xu

)
,

Table 1
Definitions of discrete operators as they correspond to continuous operators. The parameter

δ is zero for a Picard linearization and one for Newton’s method. (Note that the notation for
discrete operators is the same for both linearizations; if the distinction is necessary, it should be
clear from context.) Although the discrete gradient and divergence operators are different matrices
in the electromagnetic and hydrodynamic subsystems, we use the same notation for both to simplify
notation.

Discrete Continuous Approximate magnitude
of operator

FBB 1
Rem
∇×∇× ~B − δ∇× (~a× ~B) 1

Remh2 + δ
||~a||
h

Dtr ∇r 1
h

DB −∇ · ~B 1
h

Fuu ~a · ∇~u+ δ~u · ∇~a− 1
Re

∆~u
||~a||
h

+ δ||∇~a|| 1
Reh2

Dtp ∇p 1
h

Du ∇ · ~u 1
h

Zt
uu ∇× (~u×~b) ||~b||

h

ZBB S~b× (∇× ~B) + δS ~B × (∇×~b) S||~b||
h

+ δS||∇ ×~b||
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where the hydrodynamic Schur complement Xu is defined as

(8) Xu :=Mu −ZBM−1
B Z

t
u.

It is well known that if the exact upper triangular factor is used as a preconditioner
for A, then GMRES converges in exactly two iterations [23]. Hence, we consider
preconditioners of the form

(9) P =

(
M̂B −Ztu

0 X̂u

)
,

where hats indicate approximations. Application of this preconditioner requires ap-
proximations of the actions ofM−1

B and X−1
u . Note that an alternative preconditioner

can be obtained if the unknowns are reordered with the hydrodynamic degrees of free-
dom listed first. Then the Schur complement would appear on the electromagnetic
degrees of freedom. We use the hydrodynamic Schur complement, because ~B is dis-
cretized with edge elements and we prefer to keep operators on this space as simple as
possible. Empirically, we have found that component solves using multigrid on edge
elements tend to be more difficult and sensitive to problem parameters than those on
nodal elements.

The development of a practical preconditioner proceeds by constructing easily
computable approximations of M−1

B and X−1
u . First, an approximation for MB mo-

tivated by existing preconditioners for the discretized Maxwell equations is considered.
Here, Xu is approximated as a perturbation of the Navier–Stokes saddle point sys-
tem. Then block preconditioning techniques developed for the original Navier–Stokes
system are modified to propose an approximation of X−1

u . The Maxwell system and
the perturbed Navier–Stokes system are considered independently; that is, the choice
of approximation for MB does not affect the definition of Xu. The approximations
for the Picard linearization and Newton’s method are considered simultaneously, dif-
ferences in the approaches being noted as they arise.

3. Magnetic induction saddle point. In this section, the saddle point sys-
tem generated by the electromagnetic equations with the reduced form of Maxwell’s
equations is considered in the form

(10) MB =

(
1

∆tQB + FB Dt

D 0

)
.

The system is associated with a transient convection-diffusion operator on the mag-
netic induction, B, and enforces the solenoidal involution as a constraint with the
introduction of a Lagrange multiplier, r. In general, the (0,0) block of MB is a dif-
ficult operator for component solvers such as multigrid to handle, and special care
needs to be taken with this block to obtain a scalable preconditioner for the whole
system. The difficulties with this operator stem from the operator FB having a large
null space. Discretizing the continuous relation

(11) ∇ · ( 1
Rem
∇×∇×−δ∇× (~a× ·)) = 0

yields

(12) (Q−1
r D)(Q−1

B FB) ≈ 0,
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which implies that the null space of FB is of dimension at least dim(r). If ∆t is suffi-
ciently large, then 1

∆tQB+FB is dominated by FB, and the singularity of this operator
can present significant difficulties for a component solver. In this case, certain high
frequency components of the fine-grid error are not well represented in the residual
of 1

∆tQB + FB, and this results in a degradation in the performance of traditional
multigrid [19]. For this reason, preconditioners for MB should not only have a block
structure that yields good iteration counts, but should also ameliorate the difficulties
associated with the (0,0) subsolve.

3.1. Mass augmentation. Motivated by the preconditioners proposed in [15]
(for a system equivalent to the Picard case with Rem ≡ 1) and expanded upon in [25]
(for the steady-state Newton case), we propose a block diagonal approximation of the
form

(13) MB ≈ M̂B,M :=

(
( 1

∆t + k)QB + FB 0

0 1
kLr

)
,

where k > 0 is a real constant and Lr is a discrete Laplacian on the magnetic Lagrange
multiplier space. Following the eigenvalue analyses of [15, 25], it can be shown that
the preconditioned matrix MBM̂−1

B,M has eigenvalues

(14) λ = 1,− k∆t

1 + k∆t
,

each with multiplicity dim(r).
For a Picard linearization, the remaining dim(B) − dim(r) eigenvalues are real

and can be bounded as

(15)
1

∆t + α
1−αRem

1
∆t + α

1−αRem + k
≤ λ ≤ 1,

where α is a coercivity constant independent of Rem and the mesh size h. This further
implies the bounds

(16)
α

α+ kRem(1− α)
≤ λ ≤ 1,

1

1 + k∆t
≤ λ ≤ 1.

Hence, if we set either k = 1
∆t or k = 1

Rem
, we obtain a parameter-independent

bound. A good choice for k is then k = 1
Rem

so that the mass matrix scales with the

magnetic diffusion term resulting from the discretization of 1
Rem
∇ × ∇×. Then the

performance of the component solver will not degrade if the diffusion term dominates
the time-derivative term.

For Newton’s method, we have not established a bound on the final dim(B) −
dim(r) eigenvalues of MBM̂−1

B,M , but the empirical results of [25] indicate that the
presence of the convection term in the (0,0) block does not significantly affect the
performance of the preconditioner form. This effect was shown for the steady-state
form ofMB with exact component solves, even when the magnetic Reynolds number
is large enough that convection dominates. Consequently, we suggest that the same
approximation M̂B,M be used for both Picard and Newton linearizations.

Multigrid algorithms have been developed specifically for operators of the form
1

∆tQB + FB when FB arises from a Picard linearization (i.e., the eddy current for-
mulation of the Maxwell equations) [2, 18, 19]. These algorithms are designed to
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preserve the null space of the curl-curl operator (i.e., the space of discrete gradi-
ents) at each level of a coarse-grid hierarchy. Prolongators obtained from an auxiliary
nodal problem are used to develop prolongators for the edge discretization. While
these multigrid algorithms have been demonstrated to be effective and scalable for
the Picard linearization, it is difficult to say whether they should perform well for
Newton’s method as the null space of FB is not the same for both linearizations. In
the absence of an alternative multigrid method for Newton’s method, we apply this
type of eddy current multigrid routine for both cases.

3.2. Grad-div augmentation. In this section, we present an approximation
of MB based on augmenting the (0,0) block with a term of the form kDtQ−1

r D.
Similar preconditioners for a system equivalent to the steady-state Picard system
were proposed in [34, 35]. This operator is analogous to the continuous operator
−k∇∇·, and if k is taken to be equal to 1

Rem
, then this operator together with the

magnetic diffusion operator 1
Rem
∇ × ∇× forms the vector Laplacian − 1

Rem
∆. We

leave the parameter k ≥ 0 variable for generality. In practice, we replace Qr by its
diagonal so that the augmentation term kDtQ−1

r D is simple to compute. The resulting
approximation is similar in form to the steady-state preconditioners presented in [34,
35] and can be shown to be equivalent as ∆t→∞.

We motivate the approximation with the block decomposition

MB =

(
I −kDtQ−1

r

0 I

)(
1

∆tQB + FB + kDtQ−1
r D Dt

D 0

)
(17)

=

(
I −kDtQ−1

r

0 I

)(
I 0

D( 1
∆tQB + FB + kDtQ−1

r D)−1 I

)
×
(

1
∆tQB + FB + kDtQ−1

r D Dt

0 Xr

)
,

(18)

where the Schur complement on the Lagrange multiplier Xr is defined as

(19) Xr := −D( 1
∆tQB + FB + kDtQ−1

r D)−1Dt.

In this decomposition, we first augment the (0,0) block of MB in (17) and then per-
form a block LU decomposition of the augmented saddle point matrix in (18). Observ-
ing that the system has been written asMB = U0LU1, we note thatMB(U0U1)−1 =
U0LU−1

0 is a similarity transformation of L and hence has the same minimum poly-
nomial as L. Thus, if U0U1 were used as a preconditioner for MB, GMRES would
converge in exactly two iterations. Multiplying out U0U1, we obtain the preconditioner

(20) MB,GD :=

(
1

∆tQB + FB + kDtQ−1
r D Dt(I − kQ−1

r Xr)
0 Xr

)
.

For this preconditioner to be useful, we need computable approximations of the actions
of Xr and X−1

r . We develop such approximations through a strategy similar to the
commutator-based approximations in [9]. As noted above, DQ−1

B FB ≈ 0, which
implies the following approximation:

DQ−1
B ( 1

∆tQB + FB + kDtQ−1
r D) ≈ DQ−1

B ( 1
∆tQB + kDtQ−1

r D)(21)

= ( 1
∆tQr + kDQ−1

B Dt)Q−1
r D.(22)

Some straightforward algebraic manipulation of this expression yields

(23) Xr ≈ −Qr(
1

∆tQr + kDQ−1
B Dt)−1(DQ−1

B Dt).
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The operator DQ−1
B Dt is approximately a discrete scalar Laplacian on the magnetic

Lagrange multiplier space [10], and we approximate it by an explicit discretization of
the scalar Laplacian on r, Lr. Hence, we have

(24) Xr ≈ −Qr(
1

∆tQr + kLr)
−1Lr, X−1

r ≈ − 1
∆tL

−1
r − kQ−1

r .

Thus, we can approximate the actions of Xr and X−1
r using only matrix-vector mul-

tiplications and solves with Qr, Lr, and 1
∆tQr + kLr. Traditional multigrid has been

demonstrated to work particularly well on each of these operators, and in practice a
diagonal approximation suffices for Q−1

r [10]. We thus define the approximation
(25)

M̂B,GD :=

(
1

∆tQB + FB + kDtQ−1
r D Dt( 1

∆tQr + kLr)
−1( 1

∆tQr + 2kLr)

0 −Qr(
1

∆tQr + kLr)
−1Lr

)
.

At steady state, this approximation reduces to

(26) M̂B,GD =

(
FB + kDtQ−1

r D 2Dt

0 − 1
kQr

)
,

and this is the preconditioner referred to as H1 in [35], where it was proven that the
steady version ofMB preconditioned by this matrix has exactly one eigenvalue λ = 1.
It can be shown that the same is true for the transient version. See Appendix A for
details.

4. Perturbed Navier–Stokes saddle point. In this section, an approximation
of the action of the inverse of Xu as defined in (8) is developed. First, an analysis
of the operator ZBM−1

B Ztu, viewed as a perturbation of the Navier–Stokes saddle
point matrix, is presented. We then extend preconditioning strategies proposed for
the discretized Navier–Stokes equations to develop an upper triangular approximation
of X−1

u . The analysis presented in this section is similar to that introduced in [26] in
which an analogous perturbed Navier–Stokes system was approximated as part of an
exact penalty formulation of the MHD equations. The current work generalizes that
analysis from the two-dimensional steady-state setting to the three-dimensional time
dependent problem.

4.1. Approximating the perturbation. Applying the definitions of ZB and
Ztu from (6), the perturbation operator can be written as

(27) ZBM−1
B Z

t
u =

(
ZB(M−1

B )0,0Z
t
u 0

0 0

)
.

The (0,0) block of M−1
B can be computed by explicitly inverting the decomposition

(18) with any value of k. For simplicity consider k = 1; this then yields

(28) (M−1
B )0,0 = ( 1

∆tQB + FB)−1( 1
∆tQB + FB +DtX−1

r D)( 1
∆tQB + FB)−1.

With this expression for (M−1
B )0,0, we proceed by analyzing the continuous opera-

tor that corresponds to ZB(M−1
B )0,0Z

t
u. It can be shown that this continuous operator

simplifies to

(29) κ := [S~b×(∇×·)+δS ·×(∇×~b)][ 1
∆tI+ 1

Rem
∇×∇×−δ∇×(~a×·)]−1∇×(·×~b).

Details are shown in Appendix B.
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Notice that κ can be discretized as ZB( 1
∆tQB + FB)−1Ztu. As this expression

still contains an embedded inverse, we seek approximations that can simplify this
expression. We first assume that a discretization of the term δS ·×(∇×~b) is negligible

compared to a discretization of S~b× (∇× ·). This assumption is trivial if δ = 0, and

was argued for in the Newton case in [26]. This assumption essentially posits that ~b
is a smooth function and thus does not have steep gradients. The assumption yields
the approximation

(30) κ ≈ S~b×
{
∇× [ 1

∆tI + 1
Rem
∇×∇×−δ∇× (~a× ·)]−1∇×

}
(· ×~b).

We focus on simplifying the expression between the braces,

(31) ∇× [ 1
∆tI + 1

Rem
∇×∇×−δ∇× (~a× ·)]−1∇×

in the above expression, by considering the limiting cases when magnetic diffusion is
negligible and when magnetic diffusion dominates.

Consider the case where magnetic diffusion ( 1
Rem
∇×∇×) is negligible compared

to convection ( 1
∆tI − δ∇× (~a × ·)). Based on the approximate magnitudes reported

in Table 1, this corresponds to the condition

(32) 1
Remh2 � 1

∆t + δ||~a||
h

in the discrete setting. A discrete version of operator (31) has magnitude of the order

(33) 1
h2

[
1

∆t + 1
Remh2 + δ||~a||

h

]−1

≈ 1
h2

[
1

∆t + δ||~a||
h

]−1

.

Applying (32) to the factor 1
h2 in this expression, we obtain

(34) 1
h2

[
1

∆t + δ||~a||
h

]−1

� Rem

[
1

∆t + δ||~a||
h

] [
1

∆t + δ||~a||
h

]−1

= Rem.

Hence, the whole operator (31) is negligible compared to RemI when magnetic diffu-
sion is negligible.

When diffusion dominates, the operators 1
∆t and δ∇× (~a× ·) can be considered

negligible compared to 1
Rem
∇ × ∇×. It can be seen that the operator (31) should

be approximately RemI in this case, as something close to the curl-curl operator is
inverted while two curls are applied. To see this more rigorously, observe that, through
techniques similar to those in Appendix B, the expression in (31) can be rewritten as

(35) RemI −Rem[ 1
∆tI − δ~a×∇×][ 1

∆tI + 1
Rem
∇×∇×−δ~a×∇×]−1.

The second term here, when discretized, has magnitude of the order

(36) Rem

[
1

∆t + 1
Remh2 + δ||~a||

h

]−1 [
1

∆t + δ||~a||
h

]
.

In the discrete setting, the assumption that magnetic diffusion dominates corresponds
to the condition

(37) 1
Remh2 � 1

∆t + δ||~a||
h ,

and applying this to (36), we obtain

(38) Rem

[
1

∆t + 1
Remh2 + δ||~a||

h

]−1 [
1

∆t + δ||~a||
h

]
� Rem.
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Hence, the remainder in expression (35) is negligible compared to RemI, and (31) can
be approximated by RemI when diffusion dominates.

Based on the above observations, we make the approximation

(39) ∇× [ 1
∆tI + 1

Rem
∇×∇×−δ∇× (~a× ·)]−1∇× ≈ γRemI,

where γ is a parameter between 0 and 1. We argue that γ should be approximately 1
when magnetic diffusion dominates, and γ should be approximately 0 when magnetic
diffusion is negligible, since the operator should be much smaller in magnitude than
RemI in this case. A formula for γ that demonstrates this behavior in its limits is
given by

(40) γ :=
∆t

∆t+Remh2 + δRemh||~a||∆t
.

At steady state, this reduces to

(41) γ =
1

1 + δRemh||~a||
,

which is equivalent to an analogous parameter obtained in [26]. Using this approxi-
mation, κ can be approximated by

(42) κ ≈ γSRem~b× (· ×~b).

Now we can approximate the discrete perturbation operator ZB(M−1
B )0,0Z

t
u by

γKu, where Ku is a discretization of κ as defined in (42). The discrete operator can
be written as a coupled scaling of the velocity mass matrix, i.e.,

(43) Ku := SRemQu

 diag(b2y + b2z) −diag(bxby) −diag(bxbz)

−diag(bxby) diag(b2x + b2z) −diag(bybz)
−diag(bxbz) −diag(bybz) diag(b2x + b2y)

 .

Then the perturbed Navier–Stokes saddle point matrix is approximated by

(44) Xu ≈
(
X̂u Dt

D 0

)
,

where X̂u is defined as

(45) X̂u := 1
∆tQu + Fu + γKu.

Observe that since the electromagnetic saddle point system is solved indepen-
dently of the hydrodynamics, the fluid-magnetic coupling of the MHD equations is
only expressed in the operator γKu. Thus, the importance of coupling effects to the
system matrix can be quantified by comparing the sizes of 1

∆tQu +Fu and γKu; that
is, if || 1

∆tQu + Fu|| � ||γKu||, then coupling effects are negligible. This condition
holds when

(46) Ha2h2||~b||2∆t2 � (∆t+Reh2 +Reh||~a||∆t)(∆t+Remh
2 + δRemh||~a||∆t),

where Ha =
√
SReRem is the Hartmann number, which is a nondimensional measure

of the coupling in the problem.
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By multiplying out the right-hand side, and considering each term independently,
we obtain the following sufficient conditions for satisfaction of (46):

SRem||~b||2∆t� 1,(47)

Hah||~b|| � 1,(48)
√
S ||

~b||∆t
h � 1,(49)

S||~b||2 � δ||~a||2.(50)

Each of these is a condition under which coupling is unimportant in a preconditioner.
Condition (47) can be regarded as a CFL-like condition on the perturbation operator

SRem~b × (· ×~b). It implies that the physics associated with the fluid-magnetic cou-
pling are integrated below the explicit stability limit. Condition (48) essentially says
that the mesh Hartmann number is small, meaning that the fluid-magnetic coupling
is overresolved in space. Condition (49) is another CFL-like condition, this one for

the Alfvén wave speed [14], which is
√
S||~b|| for this version of the MHD equations.

Condition (50) is a discretization-independent statement that the velocity field dom-
inates the magnetic field. This implies that coupling is essentially one directional,
from hydrodynamics to electromagnetics. Practically, all of the conditions are fairly
strict and limit the degree to which fluid and magnetic behavior interact. We there-
fore expect realistic implicit MHD simulations that are integrated at time scales of
interest not to satisfy any of the restrictions (47)–(50). Hence, the inclusion of the
term γKu is imperative for an effective preconditioner.

4.2. A commutator for the pressure Schur complement. The perturbed
Navier–Stokes matrix admits the block LU decomposition

(51) Xu ≈
(

I 0

DX̂−1
u I

)(
X̂u Dt

0 Xp

)
,

where the pressure Schur complement is defined as

(52) Xp := −DX̂−1
u Dt.

We can use an approximation of the upper triangular factor as an approximation of Xu.
The operator X̂u is structurally similar to the traditional Navier–Stokes convection-
diffusion operator since it differs only by a zero-order perturbation. Thus, we expect
solvers that perform well on FB, such as AMG, to behave similarly on X̂u.

What remains is to develop an efficiently computable approximation ofXp. As X̂u

is of the same structure as the perturbed convection-diffusion operator in [26], we use
the pressure Schur complement approximation introduced there for Xp. This approx-
imation is an adaptation of the least-squares commutator approximation originally
developed for the discretized Navier–Stokes equations (see [9, 10, 11] and the refer-
ences therein). Following the Navier–Stokes literature, we assume that the convection-
diffusion operator and the divergence operator approximately commute, i.e.,

(53) ∇ · ( 1
∆tI −

1
Re∆ + ~a · ∇) ≈ ( 1

∆tIp −
1
Re∆p + (~a · ∇)p)∇·,

where a subscript p indicates that the operator is defined on the scalar pressure space.
This relationship holds as long as the convection direction ~a is smooth. Discretizing
this approximation yields

(54) [Q−1
p D][Q−1

u ( 1
∆tQu + Fu)] ≈ [Q−1

p ( 1
∆tQp + Fp)][Q−1

p D],
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where Fp is a discretization of the pressure convection-diffusion operator. This ap-
proximation can be algebraically manipulated to yield a computable approximation
of DF−1

u Dt and the action of (DF−1
u Dt)−1. To do the same for DX̂−1

u Dt, we need
a commutator for the perturbation operator Ku. It can be shown that there exists a
continuous operator κp such that

(55) ∇ · κ ≈ κp∇·

only when SRem||~b||2 ≈ 0, since κ couples the components of the divergence operator
so that ∇·κ cannot, in general, be written as a scalar perturbation of the divergence.
Hence, a relationship of the form (55) is in general not true. To remedy this, we
introduce an additional degree of freedom α as in [26], letting

(56) ∇ · κ ≈ ακp∇·

The parameter α can be chosen appropriately to improve the commutator-based ap-
proximation of Xp. Discretizing (56) yields

(57) DQ−1
u Ku ≈ αγKpQ

−1
p D.

Then, using (54) and (57), we obtain the approximation for Xp

(58) Xp ≈ Qp( 1
∆tQp + Fp + αKp)−1(BQ−1

u Bt).

Now Fp and Kp need only be defined. We define each operator by solving the least-
squares problem

(59) min
(YpQ

−1
p )j∗

||(DQ−1
u Yu)j∗ − (YpQ

−1
p )j∗D||2Q−1

u
,

row by row, where Y∗ is either F∗ or K∗. Then Xp can be approximated as

(60) Xp ≈ X̂p := −(DQ−1
u Dt)[DQ−1

u ( 1
∆tQu + Fu + αγKu)Q−1

u Dt]−1(DQ−1
u Dt).

In practice, we replace Q−1
u by a diagonal approximation. Then an application of

X̂−1
p requires only matrix-vector products and two solves with the scalar Laplacian-

like operator DQ−1
u Dt.

Fourier analysis can be employed to choose α to best satisfy X̂p ≈ −DX−1
u Dt.

The analysis of [26] is extended to yield the choice
(61)

α =
(Reh4 + ∆t)

[
Reh4 + ∆t+ γHa2h2∆t

(
||~b||2 − ||~a×~b||

2

||~a||2

)]
+Re2h2||~a||2∆t2[

Reh4 + ∆t+ γHa2h2∆t
(
||~b||2 − ||~a×~b||

2

||~a||2

)]2
+Re2h2||~a||2∆t2

.

This value can be automatically generated using only the problem parameters Re,
Rem, and S, the discretization parameters h and ∆t, and the previous values of u
and B. At steady state, this expression reduces to

(62) α =
1 + γHa2h2

(
||~b||2 − ||~a×~b||

2

||~a||2

)
+Re2h2||~a||2[

1 + γHa2h2
(
||~b||2 − ||~a×~b||

2

||~a||2

)]2
+Re2h2||~a||2

.
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With these approximations for Xu and Xp, we can write an approximation for
the perturbed Navier–Stokes saddle point system as

(63) Xu ≈ X̂u :=

(
X̂u Dt

0 X̂p

)

with X̂u and X̂p defined as in (45) and (60).

5. Numerical experiments. This section empirically investigates the perfor-
mance of block preconditioners of the form

(64) P =

(
M̂B −Ztu

0 X̂u

)
,

where X̂u is defined in (63) and for M̂B either the mass matrix augmented approxima-
tion M̂B,M defined in (13) or the grad-div augmented approximation M̂B,GD defined
in (25) is used. These preconditioners are referred to as PM and PGD, depending on
the Maxwell approximation.

The section proceeds by showing how the preconditioners perform for a series
of test problems, considering how the preconditioners depend on the linearization
method (Picard iteration or Newton’s method), the nondimensional parameters Re,
Rem, and S, and the discretization parameters h and ∆t. The effectiveness and algo-
rithmic scalability of these preconditioners is investigated over a range of parameters.
In all of the following results, a relative tolerance of 10−4 is used for all nonlinear
iterations and a relative tolerance of 10−3 is used as the stopping criterion for precon-
ditioned GMRES unless otherwise noted. For steady problems, linear iterations are
averaged over all nonlinear iterations. For transient problems, backward Euler time
marching with a constant time step is employed, and nonlinear and linear iterations
are averaged over all instances up to time t = 2.

The implementation is in the Trilinos framework [17] using the Teko package [7]
to construct the block preconditioners and GMRES from AztecOO [16, 20]. For
component solves, algebraic multigrid from the ML package [12] is employed, with in-
complete factorization smoothers coming from IFPACK. Traditional smoothed aggre-
gation AMG is employed for all component solves except the mass matrix augmented
operator ( 1

∆t + k)QB + FB for which we use the eddy current multigrid routine [19]
as implemented in ML. In all cases, one V-cycle is used. For scalar solves, Gauss–
Seidel smoothing is used, and for u and B solves, either a Gauss–Seidel smoother or
a domain decomposition smoother using an ILU(0) factorization on each subdomain
is used. The more expensive ILU smoothers are employed for convection-dominated
operators (that is, the velocity operator for the MHD generator test problem and
both vector operators for the Kelvin–Helmholtz problem described below) as these
smoothers lead to more effective overall performance in these cases.

5.1. Lid driven cavity. This test problem is an MHD variant of the classical
hydrodynamic lid driven cavity problem [10]. The domain [−0.5, 0.5]3 is considered
with the fluid driven by the boundary condition ~u = (1, 0, 0) on the top. No slip
boundary conditions (~u = ~0) are imposed on the other walls. A magnetic field is

imposed from the right to left by setting the tangential component of ~B as ~B × ~n =
(−1, 0, 0)×~n on each wall. Both a transient formulation and a steady-state formulation
of this test problem are considered.
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Fig. 1. Streamlines of ~u in the cross section at z = 0 for the steady lid driven cavity problem
with Re = 100 and Rem = 1 (left), 10 (center), 100 (right).

For relatively small Reynolds number (Re < 1000), the three-dimensional hy-
drodynamic cavity has a steady-state solution, allowing the steady formulation to be
considered in this regime. When no time derivatives are present, the equations can be
rescaled so that S = 1 and all coupling is accounted for by Re and Rem. Simulations
of the two-dimensional lid driven cavity [26, 32] have demonstrated that without a
magnetic field, one large recirculation develops in the domain, but as the strength
of the magnetic field increases (i.e., Rem increases), the flow is affected and multiple
recirculation regions with individual eddies develop. The number of eddies increases
with both greater Re and greater Rem, indicating that coupling effects for this prob-
lem depend strongly on both fluid and magnetic Reynolds numbers. The effect of
increased coupling is shown for the three-dimensional lid driven cavity in Figure 1.
As in the two-dimensional case, the large eddy is pushed upward as Rem increases.

5.1.1. Transient results. For the transient MHD equations, the Alfvén CFL is
given by CFLAlfven =

√
S∆t
h . If CFLAlfven ≤ 1, then the Alfvén wave is captured

time accurately, whereas if CFLAlfven > 1, then the Alfvén wave is a stiff mode in
the linear system and requires implicit time integration to be resolved [6]. Because the
Alfvén wave results from the coupling between hydrodynamics and electromagnetics,
it is important to capture the off-diagonal coupling when CFLAlfven > 1. The
Hartmann number Ha =

√
SReRem is a measure of the degree of physical coupling

in the linear system such that the electromagnetics and hydrodynamics are more
strongly coupled for larger Ha. Hence, we use CFLAlfven and Ha as quantities
against which to test the robustness of solvers.

The performance of the proposed preconditioners on Picard and Newton lineariza-
tions is detailed in Tables 2 and 3. The corresponding nonlinear iteration counts are
reported in Table 4. To obtain these results, we fix Re = 100 and ∆t

h = 1. We
obtain different values of CFLAlfven and Ha by varying S and Rem. These results
were run on a fixed 32 × 32 × 32 mesh. These results demonstrate a slight depen-
dence on CFLAlfven and Ha, with more iterations required for more strongly coupled
problems, but generally low iteration counts for both preconditioners. In Figure 2, we
show parallel scaling results for these preconditioners for Newton’s method applied to
the case with CFLAlfven = 10, Ha = 100. We use a sequence of meshes with ∆t

h = 1
and h = 1

8 ,
1
16 ,

1
32 ,

1
64 ,

1
128 on 1, 8, 64, 512, and 4096 processors such that there are ap-

proximately 20,000 unkowns per processor. As a benchmark, we compare the results
against a domain decomposition preconditioner using a SuperLU domain solver [8]
on each subdomain. The results demonstrate very flat scaling in both linear iteration
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Table 2
Average number of linear iterations per nonlinear step required for convergence of the transient

lid driven cavity problem with Picard linearization. PM indicates the mass augmented preconditioner
and PGD indicates the grad-div augmented preconditioner.

PM PGD

`````````̀CFLAlfven

Ha
1 10 100 1 10 100

1 20 13 17 30 23 22
10 31 20 43 35 32 49
100 51 33 52 46 36 74

Table 3
Average number of linear iterations per nonlinear step required for convergence of the transient

lid driven cavity problem with Newton’s method.

PM PGD

`````````̀CFLAlfven

Ha
1 10 100 1 10 100

1 22 18 20 26 20 21
10 31 22 46 30 28 49
100 44 32 51 29 31 62

Table 4
Average number of nonlinear iterations required for convergence of the transient lid driven

cavity problem per time step.

Picard Newton

PPPPPPRe
Rem 1 10 100 1 10 100

1 2 3 3 2 2 2
10 2 2 2 2 2 2
100 3 2 2 3 2 2

count and computation time for both preconditioners. We omit scaling results for the
Picard linearization as they are very similar.

5.1.2. Steady-state results. For the steady-state lid driven cavity, we fix S = 1
and vary Re and Rem to obtain different degrees of coupling. Preconditioning results
are shown in Tables 5 and 6 for Picard and Newton linearizations with corresponding
nonlinear iteration counts reported in Table 7. These results demonstrate a stronger
dependence on Rem than Re for both preconditioners, especially in the Newton case.
While the linear iterations associated with the Picard iteration are smaller for large
Rem, the nonlinear solver is not as robust as Newton’s method in these cases. The
results also demonstrate superior performance of PGD for Newton’s method with
large Hartmann. This behavior is consistent with the eddy current solver used in PM
having been developed for the case where convection is not represented in FB. Hence,
we see degradation in the behavior of PM when the magnetic system is convection
dominated. Parallel scaling is explored for Re = 100, Rem = 10 in Figure 3. As in
the transient case, we see very good scaling, with superior performance of PGD for
the largest simulations.
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Fig. 2. Weak scaling for the steady lid driven cavity problem with Newton’s method
(CFLAlfven = 10, Ha = 100).

Table 5
Average number of linear iterations per nonlinear step required for convergence of the steady

lid driven cavity problem with a Picard linearization. When nonlinear convergence is not achieved,
average linear iterations are averaged over the first 20 steps of the nonlinear iteration (indicated by
× in Table 7).

PM PGD

PPPPPPRe
Rem 1 10 100 1 10 100

1 17 18 26 16 16 23
10 26 25 26 20 31 24
100 39 26 44 24 29 38

Table 6
Average number of linear iterations per nonlinear step required for convergence of the steady

lid driven cavity problem with Newton’s method.

PM PGD

PPPPPPRe
Rem 1 10 100 1 10 100

1 21 21 39 18 19 35
10 27 27 61 22 24 54
100 37 36 94 26 27 75

Table 7
Number of nonlinear iterations required for convergence of the steady lid driven cavity problem.

× indicates that the nonlinear solver did not converge within 20 iterations.

Picard Newton

PPPPPPRe
Rem 1 10 100 1 10 100

1 3 7 × 3 3 4
10 3 7 × 3 4 11
100 3 6 16 3 3 8
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Fig. 3. Weak scaling for the steady lid driven cavity problem with Newton’s method (Re =
100, Rem = 10).

5.2. MHD generator. This is a steady test problem in which duct flow is used
to generate an electric current. We take as our domain the channel [0, 16]×[0, 1]×[0, 1].
The fluid is forced in from the left through the boundary condition ~u = (1, 0, 0) on the
left wall with natural outflow conditions on the right. No slip conditions are supplied
on the other walls. An external magnetic field of magnitude B0 is applied smoothly
between x = xon and x = xoff according to the function

(65) By(x) = B0

2 [tanh(x−xon

δ )− tanh(
x−xoff

δ )],

where δ controls how quickly the field transitions from off to on. We take B0 = 1, δ =
0.1, xon = 4, and xoff = 6. We impose ~B = (0, By(x), 0) by setting the tangential

component ~B × ~n = (0, By(x), 0)× ~n. A solution is plotted for the parameters Re =
500, Rem = 1, S = 1.25 (i.e., Ha = 25) in Figure 4. From the figure, we can see that
the fluid flow is perturbed by the magnetic field and the magnetic field is bent in the
flow direction to induce a current (J = S∇× ~B) in the z-direction.

For this problem a Picard iteration converges very slowly whereas Newton’s
method converges in either two or three iterations. In Figure 5, we present a weak
scaling study of the preconditioners applied to a Newton linearization of the MHD
generator problem. We use a uniform grid with h = 1

4 ,
1
8 ,

1
16 , and 1

32 on 2, 16, 128,
and 1024 processors such that there are approximately 35,000 unknowns per proces-
sor. We see near flat scaling for both preconditioners with respect to linear iteration
counts and moderate growth in computation time as the mesh is refined. Again, the
grad-div augmented preconditioner demonstrates better performance than the mass
matrix augmented preconditioner for the largest simulations.

5.3. Hydromagnetic Kelvin–Helmholtz (HMKH) instability. The HMKH
problem is a two-dimensional test problem on the domain [0, 2]× [0, 1]. The problem
consists of a shear-layer flow that results in a Kelvin–Helmholtz instability [14]. This
is induced by an initial condition with ~u = (Ux, 0) in the top half of the domain and
~u = (−Ux, 0) in the bottom half. Additionally, a sheared magnetic field given by the

initial condition ~B = (Bx tanh(y/δ), 0) is applied. We let Re = Rem = 1000 and
S = 1 with Ux = 1.5 and Bx = 1 such that the magnetic field allows the instability
to develop. The time evolution of the solution is depicted in Figure 6. It can be seen
that a vortex develops in the fluid and the magnetic field is deformed along with the
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Fig. 4. Plots of the velocity field, magnetic field, and induced current for the MHD generator
problem.

flow. The fluid CFL number for these parameters is CFLu = 1.5∆t
h while the Alfvén

CFL is slightly lower at CFLAlfven = ∆t
h .

We show weak scaling results for the preconditioners for a fixed time step of
∆t = 1

80 in Figure 7. We consider uniform meshes with h = 1
20 ,

1
40 ,

1
80 ,

1
160 , and 1

320
on 8, 32, 128, 512, and 2048 processors such that the fluid CFL ranges from 3

8 to 6 on
the finest mesh, while the diffusion time scale remains more restrictive. The results
show only a slight increase in iterations for the grad-div augmented preconditioner
with a growth of approximately 2.5 times as the problem size increases by a factor
of 256. Furthermore, a CFL of 6 is fairly large for the finest mesh and iteration
count is moderate. The mass matrix augmented preconditioner, on the other hand,
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Fig. 5. Weak scaling for the MHD generator problem (Ha = 25).

Fig. 6. Snapshots of the HMKH problem at t = 0, 2, 4, and 6.

does not perform very well with iteration counts growing larger than 500 on the 2048
processor simulation. This behavior appears to be due to the magnetic Reynolds
number being fairly large for this problem; that is, with Rem = 1000, the magnetic
block is convection dominated and the eddy current multigrid employed for this block
fails. A fixed CFL study with CFLu = 3 is plotted in Figure 8. In this case, mass
augmentation always failed, but the grad-div preconditioner performs very well with
both iteration count and computation time decreasing as the problem is refined.

6. Conclusion. In this work, we presented new block preconditioners for a dual
saddle point formulation of the MHD equations with mixed finite elements. These
preconditioners segregate the Maxwell and Navier–Stokes subsystems to elucidate a
block 2 × 2 structure, each block diagonal term itself being of 2 × 2 saddle point
structure. This allowed for the approximation of the magnetic induction saddle point
system independent of the hydrodynamics.

A new grad-div augmented solver was developed for the magnetic induction sad-
dle point system, general enough to handle time-dependent and steady formulations,
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Fig. 7. Weak scaling for the HMKH problem with a fixed time step.
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Fig. 8. Weak scaling for the HMKH problem with a fixed CFL.

large values of Rem, as well as the convection operator arising from a Newton lin-
earization of the MHD equations. An eigenvalue analysis was provided that agrees
with the scalable and robust performance of this approximation. This new approx-
imation has the advantage that it requires only traditional AMG for the subsolve
with the magnetic field, and it compares well against a previously proposed mass
augmented preconditioner with edge-based AMG. The grad-div augmented approxi-
mation demonstrated more robust convergence than mass augmentation for Newton’s
method.

To account for the electromagnetic-hydrodynamic coupling, the Schur comple-
ment on the hydrodynamic variables was approximated as a perturbation of the dis-
crete Navier–Stokes system. Generalizing the two-dimensional steady-state analysis
of [26], a relaxed commutator strategy was employed to develop a pressure Schur com-
plement approximation that captures the velocity-pressure coupling of the perturbed
Navier–Stokes system. Combining this strategy with the two augmentation-based
Maxwell approximations, we obtained a block 4 × 4 upper triangular preconditioner
for the fully coupled MHD system.

Computational results have demonstrated the effectiveness of the preconditioners.
Robustness of the fluid-magnetic coupling mechanisms to physical parameters and the
Alfvén CFL number was shown. Algorithmic scalability was demonstrated on a num-
ber of challenging test problems up to 2048 processors. The grad-div augmentation



BLOCK PRECONDITIONERS FOR MIXED FE MHD B1029

method has proven to be more robust than mass matrix augmentation, especially
when the magnetic Reynolds number is large.

Appendix A. Eigenvalue bounds for grad-div Maxwell approximation.
The performance of the preconditioner M̂B,GD for MB is determined by the genera-
lized eigenvalue problem

(66)(
1

∆tQB + FB D
D 0

)(
B
r

)
= λ

(
1

∆tQB + FB + kDtQ−1
r D Dt( 1

∆tQr + kLr)
−1( 1

∆tQr + 2kLr)

0 −Qr(
1

∆tQr + kLr)
−1Lr

)(
B
r

)
.

In this section, it is shown that all of the eigenvalues of this problem are exactly one.
The bottom row of (66) yields r = − 1

λ ( 1
∆tL

−1
r + kQ−1

r )DB. Substituting this
into the top row and simplifying gives

(67)
[
(1− λ)( 1

∆tQB + FB)− 1−λ
λ

1
∆tD

tL−1
r D − (1−λ)2

λ kDtQ−1
r D

]
B = 0.

Using a discrete Hodge decomposition, B can be written as the sum of its curl-free
part BC and its divergence-free part BD [15]. The curl-free part is in the left null
space of FB (i.e., Bt

CFB = 0) and the divergence-free part satisfies DBD = 0. Given
this notation, some properties proven in [15] can be written as

Bt
DQBB = Bt

DQBBD,(68)

Bt
CQBB = Bt

CQBBC ,(69)

Bt
CD

tL−1
r DBC = Bt

CQBBC .(70)

Left multiplying (67) by Bt
D and using these relations yields

(71) (1− λ)Bt
D( 1

∆tQB + FB)B = 0.

As there are dim(B)− dim(r) linearly independent vectors BD satisfying DBD = 0,
this implies that λ = 1 with multiplicity dim(B) − dim(r). Left multiplying (67) by
Bt
C and multiplying through by −λ, we obtain

(72) (1− λ)2( 1
∆tB

t
CQBBC + kBt

CD
tQ−1

r DBC) = 0.

Observe that 1
∆tB

t
CQBBC + kBt

CD
tQ−1

r DBC is a positive real number. Since there
are dim(B) linearly independent vectors satisfying Bt

CFB = 0, we obtain λ = 1 with
multiplicity 2 dim(r). In total, we have λ = 1 with multiplicity dim(B) + dim(r), so
all eigenvalues of the preconditioned system are one. This result is independent of ∆t
and k.

Appendix B. Simplification of the continuous perturbation operator.
Using the expression (28) for (M−1

B )0,0 and the correspondences summarized in
Table 1, we obtain that the continous operator associated with (M−1

B )0,0Z
t
u is

(73)

[ 1
∆tI + S

Rem
∇×∇×−δ∇× (~a× ·)]−1

◦
[

1
∆tI + S

Rem
∇×∇×−δ∇× (~a× ·)− 1

∆t∇χ
−1
r ∇·

]
◦
[

1
∆tI + S

Rem
∇×∇×−δ∇× (~a× ·)

]−1

∇× (· ×~b),
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where χr = −∇ · [ 1
∆tI + S

Rem
∇×∇×−δ∇× (~a× ·)]−1∇. Observe that the magnetic

convection-diffusion operator and the curl operator commute as[
1

∆tI + S
Rem
∇×∇×−δ∇× (~a× ·)

]
∇×(74)

= ∇×
[

1
∆tI + S

Rem
∇×∇×−δ~a× (∇× ·)

]
,

which implies that[
1

∆tI + S
Rem
∇×∇×−δ∇× (~a× ·)

]−1

∇×(75)

= ∇×
[

1
∆tI + S

Rem
∇×∇×−δ~a× (∇× ·)

]−1

.

Using (B) followed by ∇ · ∇× = 0 and (B), expression (73) reduces to

(76)
[

1
∆tI + S

Rem
∇×∇×−δ∇× (~a× ·)

]−1

∇× (· ×~b).

Then ZB(M−1
B )0,0Z

t
u corresponds to

(77) [S~b× (∇×·)+δS ·×(∇×~b)]
[

1
∆tI + 1

Rem
∇×∇×−δ∇× (~a× ·)

]−1

∇× (·×~b).
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[33] G. Tóth, R. Keppens, and A. Botchev, Implicit and semi-implicit schemes in the Versatile
Advection code: Numerical tests, Astronom. Astrophys., 332 (1998), pp. 1159–1170.

[34] S.-L. Wu, T.-Z. Huang, and C.-X. Li, Modified block preconditioners for the discretized time-
harmonic Maxwell equations in mixed form, J. Comput. Appl. Math., 237 (2013), pp.
419–431.

[35] S.-L. Wu, T.-Z. Huang, and L. Li, Block triangular preconditioner for static Maxwell equa-
tions, Comput. Appl. Math., 30 (2011), pp. 589–612.


	Introduction
	The discrete problem and approach to preconditioning
	Form of the discrete system

	Magnetic induction saddle point
	Mass augmentation
	Grad-div augmentation

	Perturbed Navier–Stokes saddle point
	Approximating the perturbation
	A commutator for the pressure Schur complement

	Numerical experiments
	Lid driven cavity
	Transient results
	Steady-state results

	MHD generator
	Hydromagnetic Kelvin–Helmholtz (HMKH) instability

	Conclusion
	Appendix A. Eigenvalue bounds for grad-div Maxwell approximation
	Appendix B. Simplification of the continuous perturbation operator
	References

