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Reduced Basis Collocation Methods for Partial Differential Equations with
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Abstract. The sparse grid stochastic collocation method is a new method for solving partial differential equa-
tions with random coefficients. However, when the probability space has high dimensionality, the
number of points required for accurate collocation solutions can be large, and it may be costly to
construct the solution. We show that this process can be made more efficient by combining colloca-
tion with reduced basis methods, in which a greedy algorithm is used to identify a reduced problem
to which the collocation method can be applied. Because the reduced model is much smaller, costs
are reduced significantly. We demonstrate with numerical experiments that this is achieved with
essentially no loss of accuracy.
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1. Introduction. Let (Ω,Σ,P) be a complete probability space, where Ω is the sample
space, Σ ∈ 2Ω the σ-algebra, and P : Σ → [0, 1] the probability measure. Let D ⊂ R

d

(d = 1, 2, 3) be a bounded and connected domain with a polygonal boundary ∂D. We consider
the problem of finding a random function u(�x, ω) mapping D×Ω to R such that P-a.e. in Ω,

L(�x, ω;u(�x, ω)) = f(�x ) ∀�x ∈ D,(1.1)

b(�x, ω;u(�x, ω)) = g(�x ) ∀�x ∈ ∂D,(1.2)

where L is a partial differential operator and b is a boundary operator, both of which can have
random coefficients. In order to solve (1.1)–(1.2) numerically, the random coefficients in the op-
erators should be represented by a finite number of random variables ξ = [ξ1(ω), . . . , ξM (ω)]T .
This could come from a variety of sources, for example, a truncated Karhunen–Loève (KL)
expansion [2, 12], some partitioning of D into subdomains, or uncertain boundary conditions.
Letting Γi := [ai, bi] denote the image of ξi(ω) and Γ :=

∏M
i=1 Γi the image of ξ, (1.1)–(1.2)

can be rewritten as follows: Find a function u(�x, ξ) on D × Γ such that

L (�x, ξ;u (�x, ξ)) = f(�x ) ∀(�x, ξ) ∈ D × Γ,(1.3)

b (�x, ξ;u (�x, ξ)) = g(�x ) ∀(�x, ξ) ∈ ∂D × Γ,(1.4)
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where L and b are assumed to be affinely dependent on ξ. It is of interest to identify moments
and cumulative distributions associated with the solution u(�x, ξ). Our aim in this study is to
develop a variant of the sparse grid collocation method for constructing solutions to (1.3)–(1.4),
using reduced basis methods to enhance efficiency.

The sparse grid collocation method [22, 33] for stochastic partial differential equations
(PDEs) is an example of a spectral method, in which discrete solutions are constructed using
polynomials in the random variable ξ in combination with standard (e.g., finite element)
spatial discretization. Collocation shares with Monte Carlo methods the feature that only
solutions of a set of spatially discrete problems at a set of sample points {ξ(k)} are required,
and it exhibits rapid convergence (nearly exponential in the number of sample points [22]),
which makes it more efficient than Monte Carlo methods when the dimension M of the
sample space is modest, say, on the order of 100 or smaller [19, 20]. However, the number
of sample (collocation) points needed may still be large when accuracy requirements are
strong, and if this is coupled with fine discretization for spatial accuracy, then the costs of
stochastic collocation may be high. To address this issue, we combine collocation with reduced
basis methods [4, 14, 21], in which parameterized discrete PDEs are projected into spaces of
significantly smaller dimension. The reduced basis methodology is designed to decrease the
cost of simulation of parameter-dependent models; in this study, we show that this idea can
be used with stochastic collocation to the same effect. Cf. [8], which compares the properties
of (full) collocation and reduced basis methods.

An outline of the rest of the paper is as follows. In sections 2 and 3, we review the
collocation and reduced basis methods, and in section 4 we present our algorithm for combining
them. In sections 5 and 6, we demonstrate the efficiency of the combined method for solving
stochastic versions of the diffusion equation and the incompressible Navier–Stokes equations.
Finally, in section 7 we make some concluding remarks.

2. Stochastic collocation on sparse grids. The main idea of stochastic collocation meth-
ods is to seek a numerical approximation to the exact solution of (1.3)–(1.4) in the form

usc (�x, ξ) :=
∑

ξ(k)∈Θ
uc

(
�x, ξ(k)

)
L̃ξ(k) (ξ) ,(2.1)

where Θ ⊂ Γ is a given sample set, {L̃ξ(k)(ξ)} are some global interpolation polynomials defined

in Γ (e.g., Lagrange polynomials), and each coefficient function uc(�x, ξ
(k)) is the solution of a

deterministic problem corresponding to a given realization ξ(k) of the random variable ξ,

L
(
�x, ξ(k);u

(
�x, ξ(k)

))
= f(�x ) ∀�x ∈ D,(2.2)

b
(
�x, ξ(k);u

(
�x, ξ(k)

))
= g(�x ) ∀�x ∈ ∂D.(2.3)

We will be concerned with sparse grid collocation as described in Xiu and Hesthaven [33],
which is based on the methodology of sparse grid interpolation. We begin with a brief review
of this interpolation technique. Without loss of generality, the image of ξ is assumed in this
section to be Γ∗ := [−1, 1]M , since any finite Γ =

∏M
i=1[ai, bi] can be mapped to Γ∗. First, we

consider a one-dimensional setting. Introducing a level index i ∈ N, let Θi
1 = {ξij , j = 1 : mi}D
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194 HOWARD C. ELMAN AND QIFENG LIAO

be a partitioning of the interval [−1, 1], where mi is the number of partitioning points. For
an arbitrary function v(ξ) ∈ C([−1, 1]), its Lagrange interpolant is

U i(v) =

mi∑
j=1

v
(
ξij
)
Li
j (ξ) ,

where

Li
j (ξ) =

mi∏
k=1,k �=j

ξ − ξik

ξjk − ξik
.

A straightforward generalization for a function of M variables v(ξ) ∈ C(Γ∗) is the tensor-
product interpolant

(
U i1 ⊗ · · · ⊗ U iM

)
(v) =

mi1∑
j1=1

· · ·
miM∑
jM=1

v
(
ξi1j1 , . . . , ξ

iM
jM

)
Li1
j1
(ξ1) · · ·LiM

j1
(ξM ) .

This requires the function values at
∏M

i=1 mi nodes, which is of exorbitant size for large M
and mi. The number of nodes can be reduced dramatically using a sparse grid (Smolyak)
operator [3],

A(q,M) :=
∑

q−M+1≤|i|≤q

(−1)q−|i|
(
M − 1

q − |i|
)(

U i1 ⊗ · · · ⊗ U iM
)
,(2.4)

where i ∈ N
M , |i| = i1 + · · · + iM , and the index q ≥ M is called the sparse grid level. The

sparse grid operator depends on function values at the sparse grid points

Θq :=
⋃

q−M+1≤|i|≤q

(
Θi1

1 ⊗ · · · ⊗ΘiM
1

)
.

The size of the sample set (i.e., the number of sparse grid points) |Θq| can typically be chosen

to be much smaller than
∏M

i=1mi without significantly sacrificing interpolation accuracy [3].
Different choices of the one-dimensional partitioning sets {Θi

1} lead to different sparse
grid operators, e.g., nested Clenshaw–Curtis abscissae [3, 33] and nonnested Gauss abscissae
[9]. When nested abscissae are used, A(q,M)(v) is an interpolant of v(ξ) for any arbitrary
v(ξ) ∈ C(Γ). This is not true in general when nonnested abscissae are used.

In this study, we consider Clenshaw–Curtis interpolation, whose abscissae are the extrema
of Chebyshev polynomials (see [33]), and Θq refers to the set consisting of Clenshaw–Curtis

sparse grids. From [33], |Θq| ≈ 2q−M q!
M !(q−M)! 	

∏M
i=1 mi. For this interpolation rule,

A(q,M)(v) ∈
∑
|i|=q

(
Pmi1

−1 ⊗ · · · ⊗ PmiM
−1

)
,

where Pmi−1 is the set of polynomials with degree at most mi − 1 and

mi =

{
1, i = 1,

2i−1 + 1, i > 1.D
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REDUCED BASIS COLLOCATION FOR RANDOM PDEs 195

In addition, A(q,M)(v) = v whenever v ∈ ∑
|i|=q

(
Pmi1

−1 ⊗ · · · ⊗ PmiM
−1

)
. Like the generic

form of collocation solutions (2.1), the specific form for sparse grid sampling is denoted by

uscq

(
�x, ξ(k)

)
:=

∑
ξ(k)∈Θq

uc

(
�x, ξ(k)

)
Lξ(k) (ξ) ,(2.5)

where the interpolation polynomials {Lξ(k)} come from the definition of the Smolyak operator
(2.4).1

We can also use the sparse grid formulation to perform quadrature to approximate the
moments of uscq . For example, the Clenshaw–Curtis quadrature rule (see [23] for details)
computes the mean of uscq (�x, ξ),

E
(
uscq

)
= E

(
uscq (�x, ·)) := ∫

Γ
uscq (�x, ξ) ρ (ξ) dξ,

in the form

Ẽ
(
uscq

)
= Ẽ

(
uscq (�x, ·)) := ∑

ξ(k)∈Θq

uc

(
�x, ξ(k)

)
ρ
(
ξ(k)

)
wξ(k) ,(2.6)

where {wξ(k)} are the weights of the Clenshaw–Curtis sparse grid quadrature. It can be seen
that the evaluation of the mean function (2.6) does not entail evaluation of the interpolation
polynomials Lξ(k) in (2.5). An estimate for the variance can be computed in the same way.

Note that this Clenshaw–Curtis quadrature rule with level q is exact for polynomials in
the space ∑

|i|=q

(
Pmi1

⊗ · · · ⊗ PmiM

)
.

This implies E(uscq (�x, ξ)) = Ẽ(uscq (�x, ξ)) when ξ is uniformly distributed, i.e., when the density
function ρ(ξ) is a constant.

3. Discretization and reduced basis approximation. In this section, we discuss finite
element approximation and reduced basis methods for the problem (2.2)–(2.3). To simplify
the presentation in this section, we will assume the problem satisfies homogeneous Dirichlet
conditions. It is straightforward to generalize the approach to nonhomogeneous conditions,
which will be discussed in section 6.

In general, we denote the weak form of the deterministic problem (2.2)–(2.3) corresponding
to a given realization of ξ by

Bξ(u(·, ξ), v) = l(v).

Let Xh be a spatial finite element approximation space (e.g., piecewise linear or quadratic
polynomial spaces) of dimension Nh. A finite element formulation seeks an approximation
uh(·, ξ) ∈ Xh such that

Bξ (uh (·, ξ) , v) = l(v) ∀v ∈ Xh.(3.1)

1We refer to the MATLAB toolbox SPINTERP [17] for evaluating Lξ(k) (ξ).D
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196 HOWARD C. ELMAN AND QIFENG LIAO

In the following, for any ξ, the finite element solution uh (·, ξ) is referred to as a snapshot
associated with ξ. Grouping solutions of (3.1) with respect to all ξ ∈ Γ together, we define a
set consisting of all snapshots

SΓ := {uh (·, ξ) , ξ ∈ Γ} .
We will refer to this as the full snapshot set. Similarly, for a given finite set Θ ⊂ Γ, we define
a finite snapshot set

SΘ := {uh (·, ξ) , ξ ∈ Θ} .
The matrix form of SΘ is denoted by SΘ ∈ R

Nh×|Θ|, i.e., each column of SΘ is the vector of
basis function coefficients of a finite element solution.

In this study, we assume that the spatial mesh is sufficiently fine so that the finite element
discretization error is acceptable (we refer to standard a posteriori error estimation techniques,
e.g., [1, 11, 30]). With this assumption, the Galerkin equation (3.1) typically has many
degrees of freedom. On the other hand, the size of the sample set |Θq| approximately equals

2q−M q!
M !(q−M)! [33]. Although this may be much smaller than the size of the tensor sample

set, it may still be very large if high accuracy with respect to collocation error is needed. The
combination of large-scale spatial discretization and large numbers of sample (collocation)
points can cause the cost of sparse grid collocation to be unacceptably high. One aim hence
is to show that these costs can be reduced through the use of reduced basis methods.

That is, suppose we have a set of basis functions Q = {q1, . . . , qN} ⊂ Xh, where N 	 Nh.
In the Galerkin formulation of the reduced basis method, we seek an approximate solution
uR(�x, ξ) ∈ span(Q) such that

Bξ (uR (·, ξ) , v) = l(v) ∀v ∈ span(Q).(3.2)

The reduced problem (3.2) tends to be much smaller than the full problem (3.1) [4, 21, 31].
Because of this, it is also likely to be cheaper to solve, especially if the computation is done
carefully using precomputed quantities when possible. In the following, we demonstrate this
approach using two types of benchmark problems. For the first, we use the diffusion equation
as a prototypical example of a linear problem; the approach considered is generally applicable
to linear problems, such as the Stokes equations. For the second, we explore the methodology
for quadratic problems as exemplified by the Navier–Stokes equations. We note that the
effective use of reduced basis methods for highly nonlinear problems is more challenging and
represents an area of active research; see, for example, [7].

3.1. Linear operators. When the operator L of (1.3) is linear as a spatial differential
operator, the discrete weak formulation (3.1) leads to a linear system

Aξuξ = f(3.3)

of order Nh. Since L is linear, Aξ is independent of uξ, and by assumption it is affinely
dependent on the parameter ξ ∈ Γ. That is, it has the form

Aξ =
K∑
i=1

φi (ξ)Ai,(3.4)
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where {Ai} are parameter-independent matrices and φi(ξ) ∈ R.
For qi ∈ Q, let qi be the vector of nodal coefficient values associated with qi, and let

Q = [q1, . . . ,qN ] ∈ R
Nh×N be the matrix representation of Q. Then the linear system

associated with the reduced problem (3.2) can be written as

QTAξQũξ = QT f .(3.5)

With the expansion (3.4), (3.5) can be written as(
K∑
i=1

φi (ξ)Q
TAiQ︸ ︷︷ ︸
AR,i

)
ũξ = QT f︸︷︷︸

fR

.(3.6)

Once the parameter-independent reduced matrices {AR,i} and vector fR are precomputed, the
reduced problem (3.5) for any arbitrary point ξ ∈ Γ can be assembled with O(N2) operations.
For uR defined by (3.2), we will also need an estimate for a norm of the error eξ := uh(·, ξ)−
uR(·, ξ), which we would also like to compute with complexity dependent only on N and
not Nh. This means that standard a posteriori error estimators [1, 15, 18] for finite element
methods should be excluded, since they would incur a cost proportional to Nh. An effective
alternative is the dual-based indicator developed in [26, 31, 32], which depends on an estimate
for the coercivity constant associated with the problem. If only a rough error estimate is
required, we can use a simple residual indicator,

ηQ, ξ :=
‖AξQũξ − f‖2

‖f‖2 .(3.7)

We will use this in our experiments. It can be computed efficiently using the relation

‖AξQũξ − f‖22 = (AξQũξ − f ,AξQũξ − f) = (AξQũξ,AξQũξ)− 2 (AξQũξ, f) + (f , f)

=

((
K∑
i=1

φiAi

)
Qũξ,

(
K∑
i=1

φiAi

)
Qũξ

)
− 2

((
K∑
i=1

φiAi

)
Qũξ, f

)
+ (f , f)

= ũT
ξ

⎛
⎝ K∑

i=1

K∑
j=1

φiφjQ
TAT

i AjQ

⎞
⎠ ũξ − 2ũT

ξ

K∑
i=1

(
φiQ

TAT
i f

)
+ fT f .(3.8)

Once the matrices {QTAT
i AjQ}, vectors {QTAT

i f}, and fT f are precomputed, the cost for
computing ηQ, ξ is O(N2). Similar economies can be achieved with dual-based estimators
[31, 32]. In the terminology of [4], we refer to the reduced dense matrices and vectors {AR,i},
fR in (3.6), and {QTAT

i AjQ}, {QTAT
i f}, fT f in (3.8) as offline reduced matrices and vectors.

3.2. Quadratic operators. When L depends quadratically on the solution u, the algebraic
form of the discrete problem (3.1) can be written as

Au, ξu = f ,(3.9)

where Au, ξ is linearly dependent on u; i.e., if the solution takes the form u =
∑

i ciui, then

Au, ξ =
∑
i

ciAui, ξ.(3.10)

D
ow

nl
oa

de
d 

07
/3

1/
13

 to
 1

28
.8

.1
28

.9
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 
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Solving (3.9) requires a nonlinear iteration that entails the solution of a linearized problem at
every step, for example, as in Picard and Newton iterations [11, pp. 327–329]. At iteration
step n, the linearized problem for computing the solution at step n+ 1 can be written as

Aun, ξu
n+1 = f .(3.11)

Like (3.5), the reduced version of (3.11) is

QTAun, ξQũn+1 = QT f ,(3.12)

where un = Qũn =
∑N

i=1 ũ
n
i qi with ũn = [ũn1 , . . . , ũ

n
N ]T and Q = [q1, . . . ,qN ]. Using (3.10),

we can rewrite (3.12) as (
N∑
i=1

ũni Q
TAqi, ξQ

)
ũn+1 = QT f .(3.13)

Under the assumption that Aqi, ξ is affinely parameter-dependent, which implies

Aqi,ξ =

K∑
j=1

φj (ξ)Aqi,j,(3.14)

the reduced linear system for quadratic operators can be finally stated as(
N∑
i=1

K∑
j=1

φj (ξ) ũ
n
i Q

TAqi,jQ︸ ︷︷ ︸
Ãi,j

)
ũn+1 = QT f .(3.15)

Once the parameter-independent and solution-independent matrices {Ãi,j} are precomputed,
the reduced system (3.15) can be assembled with a cost O(N3). Similarly to (3.8), we can
also develop a reduced version of the residual indicator

ηQ, ξ, n :=
‖Aun, ξQũn − f‖2

‖f‖2 .(3.16)

With some precomputed offline reduced matrices and vectors as discussed in section 3.1, it can
be verified that computing the reduced residual indicator for quadratic operators also costs
O(N3). See [31] for efficient methods for computing dual-based error estimates.

In the next section, a systematic way for constructing the reduced basis Q together with
computing the collocation solution is introduced.

4. Reduced basis collocation. We introduce a reduced basis collocation method for
cheaply computing the collocation solution uscq (·, ξ) in (2.5). Our main idea is to use uR,
the solution of the reduced problem (3.2), to serve in place of the collocation coefficient func-
tion uc(·, ξ) in (2.5) wherever possible. That is, given a collocation point ξ(k), we compute
uR(·, ξ(k)) and an error indicator such as (3.7) or (3.16). If this error indicator is smaller than
some specified tolerance, we use uR(·, ξ(k)); if the error indicator is too large, then we compute
the snapshot uh(·, ξ(k)) and use it as uc(·, ξ) in (2.5). In the latter case, we also augment the
reduced basis with this snapshot. Our strategy is described in detail as follows.D
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1. Starting with level p = M (the set ΘM has only one point, which is denoted by ξ(0)),
compute the snapshot uh(·, ξ(0)). Initialize the reduced basis Q = {uh(·, ξ(0))}. In
addition, use uh(·, ξ(0)) to serve as the coefficient function uc(·, ξ(0)) in (2.5).

2. Consider one higher level, i.e., p+1. Looping over sparse grid points in level p+1, for
each point ξ(k), compute the reduced solution uR(·, ξ(k)) in (3.2) and estimate a norm
of the error e

ξ(k)
= uh(·, ξ(k))− uR(·, ξ(k)).

(a) If the estimated error is smaller than a given tolerance, use uR(·, ξ(k)) to serve as
the coefficient function uc(·, ξ(k)) in (2.5).

(b) If the estimated error is larger than the tolerance, compute the snapshot uh(·, ξ(k))
and augment the reduced basis Q with it. Then, use uh(·, ξ(k)) to serve as the
coefficient function uc(·, ξ(k)) in (2.5).

3. Update the sparse grid level (i.e., let p = p + 1), and repeat step 2, until the level p
reaches the given maximum level q.

This strategy is stated more formally in Algorithm 1 below. Here, tol stands for a given
tolerance and the orthogonal complement T (u

ξ(k)
) is defined as

T (u
ξ(k)

) = u
ξ(k)

−ΠQ(uξ(k)
),

where ΠQ(u
ξ(k)

) is the image of u
ξ(k)

under the L2-projection from RNh to span{qi}Ni=1.
T (u

ξ(k)
) can be computed using the Gram–Schmidt process, as implemented in the MATLAB

function qr. In what follows, the sparse grid collocation solution associated with Algorithm 1
is denoted by urscq , and the full sparse grid collocation solution whose coefficient functions are

standard finite element solutions is denoted by uhscq . In general, computing urscq should be

much less expensive than computing uhscq , and as we will show in the following sections, the
accuracy of the reduced solution is often comparable to that of the full solution.

Remark. In more standard use of reduced bases, the term “offline” refers to a (possibly
expensive) set of computations that are done once to produce the reduced basis and quantities
such as {AR,i} in (3.6) prior to the repeated solution of reduced problems for the purposes
of simulation [4]. In contrast, for collocation, these computations are an integral part of
Algorithm 1 and not merely a preprocessing step. However, all such “large scale” computations
take place at the initial step or after the else clause of the inner for loop. It is easy to
show that these computations all have complexity O(Nh), as does the full system solve when
multigrid is used. Thus they can be viewed as part of the overhead of generating the reduced
basis solution. As we also show in the next section, this overhead diminishes in impact as the
sparse grid level increases, so the role of the “offline” computations is largely analogous to
what happens in a standard setting. See section 5.4 for additional discussion of this point.

5. Numerical study for diffusion problems. In this section, we consider diffusion prob-
lems, whose governing equations are

−∇ · a (·, ξ)∇u (·, ξ) = 1 in D × Γ,(5.1)

u (·, ξ) = 0 on ∂DD × Γ,(5.2)

∂u (·, ξ)
∂n

= 0 on ∂DN × Γ,(5.3)D
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Algorithm 1 Reduced basis collocation, homogeneous boundary conditions.

Compute SΘM
(ΘM contains only one point).

Initialize the reduced basis matrix Q := SΘM
/‖SΘM

‖2.
Construct the offline reduced matrices and vectors.
for p = 1 : q do
for k = 1 : |ΘM+p| do

Compute ũ
ξ(k)

by solving (3.6) and compute an error indicator, e.g., ηQ, ξ(k) of (3.7).
if ηQ, ξ(k) < tol then

Use the reduced solution derived from ũ
ξ(k)

to serve as uc(·, ξ(k)) in (2.5).
else

Compute the full solution vector u
ξ(k)

by solving (3.3).

Use the full solution derived from u
ξ(k)

to serve as uc(·, ξ(k)) in (2.5).
Compute T (u

ξ(k)
), the orthogonal complement of u

ξ(k)
with respect to Q.

Augment the reduced basis matrix Q := [Q, T (u
ξ(k)

)].
Reconstruct the offline reduced matrices and vectors.

end if
end for

end for

where ∂D = ∂DD ∪ ∂DN . The weak formulation is to find u(·, ξ) ∈ H1
0 (D) such that

(a∇u,∇v) = (1, v) for all v ∈ H1
0 (D). We discretize in space using a bilinear (Q1) finite

element approximation [5, 11].
To assess the accuracy of solutions obtained using the full and reduced basis collocation

methods, we use the differences between moments of the solutions and that of a reference
solution. In particular, we introduce the quantities

εh :=
∥∥∥Ẽ(

uhscq

)
− Ẽ

(
uhscr

)∥∥∥
0

/∥∥∥Ẽ(
uhscr

)∥∥∥
0
,(5.4)

εR :=
∥∥∥Ẽ (

urscq

)− Ẽ

(
uhscr

)∥∥∥
0

/∥∥∥Ẽ(
uhscr

)∥∥∥
0
,(5.5)

where the reference collocation solution uhscr is a full collocation solution with a large grid
level r (we take r ≥ q+2) and the norm is the functional L2-norm. Similarly, we approximate

the variance as Ṽ
(
uscq

)
:= Ẽ

((
uscq

)2)− (
Ẽ
(
uscq

))2
and compute the relative errors

ζh :=
∥∥∥Ṽ(

uhscq

)
− Ṽ

(
uhscr

)∥∥∥
0

/∥∥∥Ṽ(
uhscr

)∥∥∥
0
,(5.6)

ζR :=
∥∥∥Ṽ (

urscq

)− Ṽ

(
uhscr

)∥∥∥
0

/∥∥∥Ṽ(
uhscr

)∥∥∥
0
.(5.7)

We will also examine the performance of Monte Carlo simulation using a sample set Θmc

consisting of |Θmc| realizations of ξ, where the Monte Carlo errors for the mean and varianceD
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are measured as

εmc :=

∥∥∥∥∥∥
⎛
⎝ 1

|Θmc|
∑

ξ∈Θmc

uh (·, ξ)
⎞
⎠− Ẽ

(
uhscr

)∥∥∥∥∥∥
0

/∥∥∥Ẽ(
uhscr

)∥∥∥
0
,(5.8)

ζmc :=
∥∥∥ṼΘmc − Ṽ

(
uhscr

)∥∥∥
0

/∥∥∥Ṽ(
uhscr

)∥∥∥
0
,(5.9)

with ṼΘmc :=
(

1
|Θmc|

∑
ξ∈Θmc

(uh (·, ξ))2
) − (

1
|Θmc|

∑
ξ∈Θmc

uh (·, ξ)
)2
. We note that reduced

basis methods can also be combined with Monte Carlo methods, as discussed in [4].

5.1. Test problem 1: Piecewise constant diffusion coefficient. We consider the diffusion
problem posed on the spatial domain D = (−1, 1) × (−1, 1), divided into ND equal-sized
subdomains. A pure Dirichlet condition is applied (i.e., ∂DN = ∅). Figure 1 illustrates two
cases of domain partitionings. The permeability coefficient a(·, ξ) is defined to be constant on
each subdomain, i.e.,

a (·, ξ)|Dk
= ξk, k = 1 : ND,

where the random variable ξ = [ξ1, . . . , ξk, . . . , ξND
]T is independently and uniformly distrib-

uted in Γ := [0.01, 1]ND . It is also assumed that the flux a(·, ξ)∇u(·, ξ) is continuous across
subdomain interfaces. We consider two variants of this example, one where the domains
consist of vertical strips, the other using squares (see Figure 1).

D1 DND...

...

...

...

.

.

.
.
.
.

.

.

.

D11 DÑ1

D1Ñ DÑÑ

(a) Case 1: ND subdomains. (b) Case 2: ND = Ñ × Ñ subdomains.

Figure 1. Domain partitionings.

It follows from (3.2) that the reduced basis method seeks a solution in the space span(Q).
If each function in the full snapshot set SΓ can be approximated well by a linear combination
of a finite set of linearly independent functions (referred to as a “basis” of SΓ), then with this
set as the reduced basis Q, the reduced solution uR(·, ξ) is close to the finite element solution
uh(·, ξ). The size of this basis (we refer to it below as the “rank” of SΓ) is then crucial. If
the rank of SΓ is much smaller than Nh, then Algorithm 1 can cheaply compute an accurate
reduced collocation solution (i.e., urscq ≈ uhscq ).

For this test problem, we check the rank of SΓ as follows. We first generate a sample set ΘD
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Table 1
Estimated rank for the full snapshot set SΓ of test problem 1, case 1.

�������Grid
ND

2 3 4 5 6 7 8 9 10

332 = 1089 3 12 18 30 40 53 55 76 84
652 = 4225 3 12 18 30 40 48 55 70 87

1292 = 16641 3 12 18 28 39 48 55 72 81

Table 2
Estimated rank for the full snapshot set SΓ of test problem 1, case 2.

�������Grid
ND

4 9 16 25 36 49 64

332 = 1089 27 121 193 257 321 385 449
652 = 4225 28 148 290 465 621 769 897

1292 = 16641 28 153 311 497 746 1016 1298

consisting of 3000 random points in Γ and construct the corresponding snapshot set SΘ.
2 We

use the MATLAB function rank to compute the rank of SΘ (the matrix of SΘ; see section 3).
Due to the large number of sample points, this rank can serve as an estimate of the rank of
the full snapshot set SΓ.

Tables 1 and 2 show the estimated ranks for the two variants of the benchmark diffusion
problems, using three different mesh sizes for the spatial discretization. It can be seen that
the ranks tend to increase linearly with the number of subdomains, and they exhibit little
dependence on the size of the grid. This suggests that the rank depends on properties of
the underlying PDE, and it indicates that fine-grid discrete problems can be projected into
subspaces of significantly smaller dimensions without sacrificing accuracy. (Although for large
ND, in cases of 36 or more square subdomains (see Table 2), the ranks are growing as the
mesh is refined, they also appear to be tending to a limit with increasing number of grid
points.) We also note that for some of these cases (of large ND), the large ranks will make
the reduced problems expensive to solve, although these costs would be smaller than those of
the full system solves for fine enough spatial discretization.

Next, we use Algorithm 1 to compute the collocation solutions for a collection of examples
of test problem 1. Tables 3–4 show results for case 1 (vertical subdomains) and Tables 5–6 for
case 2 (square subdomains); all these experiments used a 65 × 65 discrete spatial grid. The
tables show the number of full system solves Nfull solve and the size of the sample set |Θq|.
For example, in the case of 2 × 2 subdomains and tol = 10−4 (Table 5), there are seven full
system solves at the sparse grid level q = 5, which means that the residual error indicator is
above the tolerance at seven sparse grid points among the total of nine sparse grid collocation
points. This is not surprising, since the size of the reduced basis is very small at this stage (it
grows from 1 to 8), and in this trivial case, there is no advantage for the reduced basis. For
higher levels of sparse grids, however, the advantages become clear. At level q = 6, there are
41 sparse grid points, and full system solves are needed at 12 of them, and at level q = 7, full

2We have repeated this test more than ten times for different random sets, and no significantly different
results were found.D
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Table 3
Number of full system solves for test problem 1, case 1, with 5 × 1 subdomains (ND = 5) and a 65 × 65

spatial grid.

q 5 6 7 8 9 10 11 12 13 16
�������tol

|Θq |
1 11 61 241 801 2433 6993 19313 51713 869505

10−3 1 10 9 0 0 0 0 0 0 0
10−4 1 10 11 1 0 0 0 0 0 0

10−5 1 10 13 0 0 0 0 0 0 0

Table 4
Number of full system solves for test problem 1, case 1, with 9× 1 subdomains (ND = 9), tol = 10−4, and

a 65× 65 spatial grid.

q 9 10 11 12 13 14 15 16 17
|Θq| 1 19 181 1177 6001 26017 100897 361249 1218049

Nfull solve 1 18 34 2 1 1 0 0 0

Table 5
Number of full system solves for test problem 1, case 2, with 2 × 2 subdomains (ND = 4) and a 65 × 65

spatial grid.

q 4 5 6 7 8 9 10 11 12 15
�������tol

|Θq|
1 9 41 137 401 1105 2929 7537 18945 271617

10−3 1 7 11 3 0 0 0 0 0 0
10−4 1 7 12 3 0 0 0 0 0 0
10−5 1 7 13 2 3 0 0 0 0 0

Table 6
Number of full system solves for test problem 1, case 2, with 4 × 4 subdomains (ND = 16), tol = 10−4,

and a 65× 65 spatial grid.

q 16 17 18 19 20 21
|Θq | 1 33 545 6049 51137 353729

Nfull solve 1 32 168 27 3 4

solves are needed at just 3 of 137 sparse grid points. For levels higher than 7, no full system
solve is needed, which means that the reduced basis with size N = 23 can provide as accurate
(with respect to the error indicator) a solution as the full collocation solution. This trend
holds for all the examples: the number of full system solves required to generate the reduced
collocation solution is dramatically smaller than the number of collocation points. Moreover,
the required number of full system solves needed for the reduced basis is comparable to the
ranks of the sets of full snapshots shown in Tables 1–2. For example, with four (2× 2) square
subdomains, the rank is 28.

For the cases of 5×1 and 2×2 subdomains, Figure 2 provides a more refined assessment of
accuracy, using the relative errors in the mean (5.5) (for tol = 10−4) and variance (5.7), where
the reference levels are taken to be r = 18 for five vertical subdomains and r = 17 for fourD
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(a) Mean, 5× 1 subdomains. (b) Mean, 2× 2 subdomains.
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(c) Variance, 5× 1 subdomains. (d) Variance, 2× 2 subdomains.

Figure 2. Test problem 1, εR (for tol = 10−4), εh, εmc (top) and ζR, ζh, ζmc (bottom).

square subdomains. The figure also shows similar quantities for the Monte Carlo method, εmc

of (5.8) and ζmc of (5.9). The errors for the full collocation means (εh of (5.4)) and variances
(ζh of (5.6)) are also plotted, but there is no visual difference between εh and εR or between ζh
and ζR. Thus, the reduced collocation solution is as accurate as the full collocation solution
with respect to both mean and variance. The means are also considerably more accurate than
those obtained from Monte Carlo solution; the variances (for both versions of collocation) are
more accurate than for Monte Carlo simulation only if a deep enough sparse grid is used.

5.2. Test problem 2: Truncated KL expansion coefficients. The spatial domain for this
test problem is D = (0, 1) × (0, 1). Mixed boundary conditions are applied—the condition
(5.2) is applied on the left (x = 0) and right (x = 1) boundaries, and (5.3) is applied on the
top and bottom boundaries. The problem is discretized in space on a uniform 65 × 65 grid.

The diffusion coefficient for this test problem is assumed to be a random field with meanD
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Table 7
Number of full system solves for c = 4 with M = 5 in test problem 2.

q 5 6 7 8 9 10
�������tol

|Θq |
1 11 61 241 801 2433 Total

10−5 1 9 8 3 0 2 23
10−6 1 10 12 10 2 1 36

10−7 1 10 21 9 7 2 50
10−8 1 10 26 18 5 2 62

Table 8
Number of full system solves for c = 2.5 with M = 8 in test problem 2.

q 8 9 10 11 12 13
�������tol

|Θq |
1 17 145 849 3937 15713 Total

10−5 1 14 16 4 1 1 37
10−6 1 16 27 6 10 2 62

10−7 1 16 50 9 8 2 86
10−8 1 16 69 16 5 8 115

function a0(�x ), constant variance σ, and covariance function C(�x, �y ),

C(�x, �y ) = σ exp

(
−|x1 − y1|

c
− |x2 − y2|

c

)
,(5.10)

where c is the correlation length. This random field can be approximated by a truncated KL
expansion [2, 9, 12]

a(�x, ξ) ≈ a0(�x ) +
M∑
k=1

√
λkak(�x )ξk,

where ak(�x ) and λk are the eigenfunctions and eigenvalues of (5.10), and the random variables
{ξk} are assumed to be independently and uniformly distributed in Γ := [−1, 1]M .

The error associated with truncation of the KL expansion depends on the amount of total
variance captured, δKL := (

∑M
k=1 λk)/(|D|σ2) [6, 27]. We chose M to be large enough so

that δKL > 95%. The correlation length has an effect on this requirement—small c leads to
large M .

For our experiments, we set a0(�x ) = 1 and σ = 0.5 and examine two values of the
correlation length: c = 4 with M = 5 and c = 2.5 with M = 8. Tables 7 and 8 show the
numbers of full system solves needed in Algorithm 1, for various choices of the level q and
tolerance tol. Figure 3 shows the relative errors in the mean, εh, εR, and εmc, and the variance,
ζh, ζR, and ζmc. The reference solutions correspond to reference levels r = 12 for M = 5 and
r = 15 for M = 8.

The results for this example are consistent with those for problem 1 (and in this example,
the trends for means and variances are identical). As the tolerance tol decreases or the sparse
grid level q increases, somewhat more full systems need to be solved, but as above the numberD
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(a) Mean, c = 4 with M = 5. (b) Mean, c = 2.5 with M = 8.
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Figure 3. Test problem 2: εh, εR, and εmc (top) and ζh, ζR, and ζmc (bottom).

of such solves is dramatically lower than is needed for full collocation. Moreover, the sizes of
the reduced basis are very small, so the reduced system solves are inexpensive. In particular,
for the extreme cases in the two examples, the full collocation method required 2433 and 15713
solves, respectively, in contrast to at most 62 and 115 for reduced basis collocation. Figure 3
shows again that there is little significant difference between the full collocation and reduced
collocation solutions, and that mild tolerances for constructing the reduced basis can achieve
acceptable accuracy in the reduced collocation solution.

5.3. Tolerance and error indicator in Algorithm 1. We discuss some issues related to the
use of the residual error indicator (3.7) and the tolerance tol in Algorithm 1. For the error
indicator, first, as observed above, an advantage of (3.7) is that it can be computed at cost
independent of Nh using (3.8). However, this advantage holds only if the tolerance is not too
small. In particular, since (3.8) requires a subtraction, the floating point computation will be
accurate only if it is not strongly affected by cancellation, which is true only when the square
of the residual norm is significantly larger than the machine precision. Thus, we can use this
(economical) strategy only if the tolerance is not too small, on the order of 10−7 or larger.

For the results shown in Tables 3, 7, and 8, we found (3.8) to be reliable for the tolerances
above the dotted lines. For the results below these lines, we computed the residual normD
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directly, which incurs a cost proportional to Nh. Our expectation is that this cost can be
avoided through use of a more effective error indicator such as the dual-based method of
[26, 31].

Tables 3–8 together with Figures 2 and 3 show the impact of the tolerance tol on the
performance of Algorithm 1. For test problem 1, Figure 2 shows that with a modest value
tol = 10−4, the errors for reduced collocation are virtually identical to those for full collocation,
and (for both methods) as the level q is increased, the relative mean errors are reduced by
approximately six orders of magnitude. We also found virtually no difference between these
results and those for tol = 10−3 or, for 2 × 2 subdomains, tol = 10−5. Performance for test
problem 2 is more sensitive to tolerance (Figure 3). A tolerance of 10−6 produces solutions
with approximately six digits of accuracy for fine enough sparse grid, although more stringent
tolerance is needed for accuracy comparable to that of the full collocation method.

5.4. Cost assessment. In this section, we look more closely at the costs of reduced basis
collocation (Algorithm 1) to get a better understanding of its effectiveness. The costs of full
and reduced collocation can be specified as follows:

Full: (# of collocation points) × (cost of full system solve)
Reduced: (# of collocation points where error tolerance is met)

× (cost of reduced system solve) +
(# of collocation points where error tolerance is not met)
× (cost of augmenting reduced basis and updating offline quantities).

Thus, reduced basis collocation will be cheaper if the reduced solves (3.5) are less expensive
than the full solves (3.3) and the number of collocation points where the estimated error is
greater than the tolerance is not too large. The latter requirement is needed because of the
overhead of augmenting the reduced basis.

The experimental results presented in sections 5.1–5.2 show that as the grid level increases,
the size N of the reduced basis required for an accurate representation of the collocation
solution is significantly smaller than the number of collocation points; i.e., the estimated error
of the reduced solution is usually smaller than the tolerance. Thus, for deep enough grids,
the main issue is the relative cost of the full and reduced solves. Standard complexity results
take the cost of the reduced solve by direct methods to be O(N3) and that of the full solve
using an optimal algorithm such as multigrid to be O(Nh). Nh depends on spatial accuracy
requirements. The experimental results indicate that N depends on the number of parameters
in the problem but essentially not on the spatial grid size (Tables 1–2) and also not on the
depth of the sparse grid (Tables 3–8). Thus, for any particular PDE, a fine enough spatial
grid will make Nh � N and the reduced basis method will be more efficient, although clearly
for some choices of N and Nh, especially when the number of parameters is large, the full
collocation method will be cheaper.

For a more concrete assessment of this point, Figure 4 shows the CPU times needed to
generate the full and reduced collocation solutions for the four examples tested in sections
5.1–5.2. For reduced collocation, these are the times required for Algorithm 1. For full
collocation, they reflect the time for assembling using (3.4) and solving |Θq| full systems at
each sparse grid level q. The results were obtained in MATLAB on a MacBook Pro with 2.2D
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Figure 4. CPU times for full collocation and reduced collocation with several choices of tol. Top: Test
problem 1. Bottom: Test problem 2.

GHz Intel Core i7 processor. All system solves used the MATLAB “backslash” operator.3 For
all these examples, the reduced basis method is more efficient when the sparse grid becomes
deep enough. That is, the reduced basis is small enough that direct solution of the reduced
problems is of low cost. For modest grid levels, the overhead of generating the reduced basis
plays more of a role, and the reduced basis method is not as effective. When the number
of parameters increases, as for test problem 2, M = 8 (bottom right of the figure), a deeper
sparse grid is needed for the advantage of the reduced basis approach to be manifest.

6. Numerical study for incompressible flow problems. We next consider a nonlinear
example, the steady-state Navier–Stokes equations

−ν (·, ξ)∇2�u (·, ξ) + �u (·, ξ) · ∇�u (·, ξ) +∇p (·, ξ) = 0 in D × Γ,(6.1)

∇ · �u (·, ξ) = 0 in D × Γ,(6.2)

�u (·, ξ) = �g (·, ξ) on ∂D × Γ.(6.3)

3The sparse full systems come from a 65 × 65 spatial grid, giving Nh = 4225. For large Nh, such systems
could be solved more efficiently using multigrid. We found MATLAB’s sparse direct solver to be faster than
multigrid for these examples.D
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The notation in (6.1)–(6.3) is standard: �u(·, ξ) is the flow velocity, p(·, ξ) is the scalar pressure,
and ν(·, ξ) > 0 is the fluid viscosity parameter. We assume that there may be some uncertainty
in the viscosity parameter ν(·, ξ) (for example, in models of multiphase flows [16, 24, 29]) or
the boundary data �g(·, ξ).

6.1. Specification of the problem. As discussed in section 2, stochastic collocation meth-
ods solve a deterministic problem at each sample point ξ ∈ Θq. With the standard function
space notation

Hk := Hk(Ω)2, k ∈ N, H1
E :=

{
�u ∈ H1 | �u = �g (·, ξ) on ∂Ω

}
,

H1
0 :=

{
�u ∈ H1 | �u = �0 on ∂Ω

}
, L2

0(Ω) :=
{
q ∈ L2(Ω)| ∫Ω q dΩ = 0

}
,

the weak form of the deterministic problem associated with (6.1)–(6.3) is as follows: Find
�u ∈ H1

E and p ∈ L2
0(D), such that

(ν∇�u,∇�v ) + (�u · ∇�u,�v )− (p,∇ · �v ) = 0 ∀�v ∈ H1
0 ,(6.4)

(∇ · �u, q) = 0 ∀q ∈ L2
0(D).(6.5)

Mixed finite element approximation of (6.4)–(6.5) is obtained by choosing finite-dimensional
subspaces Xh

E , X
h
0 , and Mh of H1

E , H
1
0 , and Mh, respectively. This leads to the discrete

Galerkin formulation: Find �u ∈ Xh
E and p ∈ Mh such that (6.4) holds for all v ∈ Xh

0 and (6.5)
holds for all q ∈ Mh. We use the div-stable Q2–P−1 (biquadratic velocity–linear discontinuous
pressure [11]) spatial discretization and denote the dimensions ofXh

0 andMh, i.e., the numbers
of velocity and pressure degrees of freedom, by Nh,u and Nh,p, respectively.

To handle the quadratic term (�u ·∇�u,�v ) in (6.4), we use a Picard iteration as discussed in
[11, pp. 324–327] and implemented in the IFISS software package [10, 28]; it is straightforward
to extend the results in this section to Newton iteration. To start the Picard iteration, we can
solve a discrete Stokes problem to obtain an initial guess: Find �u 0 ∈ Xh

E and p0 ∈ Mh such
that

(∇�u 0,∇�v )− (p0,∇ · �v ) = 0 ∀�v ∈ Xh
0 ,(6.6)

(∇ · �u 0, q) = 0 ∀q ∈ Mh.(6.7)

The Picard iteration then computes a sequence of corrections at step n: Find δ�u ∈ Xh
0 and

δp ∈ Mh, such that

(ν∇δ�u,∇�v ) + (�un · ∇δ�u,�v )− (δp,∇ · �v )
= −(ν∇�un,∇�v )− (�un · ∇�un, �v ) + (pn,∇ · �v ) ∀�v ∈ Xh

0 ,(6.8)

(∇ · δ�u, q) = −(∇ · �un, q) ∀q ∈ Mh.(6.9)

The velocity and pressure are then updated by

�un+1 = �un + δ�u, pn+1 = pn + δp.

Since the reduced basis methods discussed in section 3 are built on homogeneous Dirichlet
conditions, some care must be taken in treatment of inhomogeneous conditions. We use anD
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210 HOWARD C. ELMAN AND QIFENG LIAO

approach described in [13], which is to first find a particular function �u 0
bc that satisfies the

Dirichlet boundary conditions and then write

�u 0 = �u 0
bc + �u 0

in,

where �u 0
in satisfies homogeneous boundary conditions. We refer to �u 0

in as the interior part of
the Stokes solution. Then, for the initial step (6.6)–(6.7), we solve a modified Stokes problem:
Find �u 0

in ∈ Xh
0 and p0 ∈ Mh such that

(∇�u 0
in,∇�v )− (p0,∇ · �v ) = −(∇�u 0

bc,∇�v ) ∀�v ∈ Xh
0 ,(6.10)

(∇ · �u 0
in, q) = −(∇ · �u 0

bc, q) ∀q ∈ Mh.(6.11)

We have some flexibility in the choice of the particular function �u 0
bc. We use a simple one in

which �u 0
bc is the interpolant of the boundary data �g(·, ξ); that is, we define �u 0

in and �u 0
bc as

�u 0
in =

{
�u 0 on spatial grid points in D,
0 on spatial grid points on ∂D,

(6.12)

�u 0
bc =

{
0 on spatial grid points in D,
�g(·, ξ) on spatial grid points on ∂D.

(6.13)

Then for the Picard iteration step, no special treatment of boundaries is needed, since the
correction function δ�u satisfies a homogeneous boundary condition.

The algebraic equations associated with (6.10)–(6.11) can be written as[
A BT

B 0

] [
u0

p0

]
=

[
fξ
gξ

]
,

and for the Picard step (6.8)–(6.9), the corresponding equations are[
Aξ +Nun, ξ BT

B 0

] [
δu
δp

]
=

[
f run,pn, ξ

gr
un,pn, ξ

]
,

where [un,pn]T is the solution vector at the most recent iteration step, and Nun, ξ is the
quadratic term considered in (3.11).

6.2. Formulation of the reduced problem. We follow the development in section 3 to
define the reduced versions of (6.10)–(6.11) and (6.8)–(6.9). To begin, we introduce reduced
bases Qu := {�u1, . . . , �uNu} ⊂ Xh

0 for velocity and Qp := {q1, . . . , qNp} ⊂ Mh for pressure with
Np < Nu 	 Nh,u. We then seek �u 0

R ∈ span{Qu} and p0R ∈ span{Qp} such that

(∇�u 0
R,∇�v )− (p0R,∇ · �v ) = −(∇�u 0

bc,∇�v ) ∀�v ∈ span{Qu},(6.14)

(∇ · �u 0
R, q) = −(∇ · �u 0

bc, q) ∀q ∈ span{Qp}.(6.15)

A Picard iteration step entails finding δ�uR ∈ span{Qu} and δpR ∈ span{Qp} such that

(ν∇δ�uR,∇�v ) + (�un
R · ∇δ�uR, �v )− (δpR,∇ · �v )

= −(ν∇�un
R,∇�v )− (�un

R · ∇�un
R, �v ) + (pnR,∇ · �v ) ∀�v ∈ span{Qu},(6.16)

(∇ · δ�uR, q) = −(∇ · �un
R, q) ∀q ∈ span{Qp}.(6.17)D
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With Qu and Qp representing the matrix form of the reduced velocity and pressure bases,
respectively, the linear system for the reduced problem (6.14)–(6.15) is[

QT
uAQu QT

uB
TQp

QT
pBQu 0

] [
ũ0

p̃0

]
=

[
QT

u fξ
QT

p gξ

]
,(6.18)

and for (6.16)–(6.17),[
QT

u (Aξ +Nũn, ξ)Qu QT
uB

TQp

QT
pBQu 0

] [
δũ
δp̃

]
=

[
QT

u f
r
ũn,p̃n, ξ

QT
p g

r
ũn,p̃n, ξ

]
,(6.19)

where [ũn, p̃n]T is the reduced solution vector at the most recent step. The residual error
indicator is taken to be the discrete nonlinear residual associated with (6.4)–(6.5),

ηQ, ξ, n :=

∥∥∥∥
[
Aξ +Nũn, ξ BT

B 0

] [
Quũ

n

Qpp̃
n

] ∥∥∥∥
2

/ ∥∥∥∥
[

fξ
gξ

] ∥∥∥∥
2

.(6.20)

Using the techniques introduced in sections 3.1 and 3.2, once offline reduced matrices and
vectors are precomputed, the reduced linear systems (6.18) and (6.19) can be assembled with
costs O(N2

u) and O(N3
u), respectively, and for modest tolerances, the residual indicator can

be evaluated with a cost O(N3
u).

4

The details of reduced basis collocation for the steady-state Navier–Stokes equations are
presented in Algorithm 2 below. In the algorithm, �uin

(·, ξ(k)) is the interior part of �u
(·, ξ(k))

(see (6.12)). For the reduced basis, we note that the spaces generated by a set of snapshots⎧⎨
⎩
⎛
⎝ �uin

(
·, ξ(1)

)
p
(
·, ξ(1)

)
⎞
⎠ , . . . ,

⎛
⎝ �uin

(
·, ξ(N)

)
p
(
·, ξ(N)

)
⎞
⎠
⎫⎬
⎭

do not automatically satisfy an inf-sup condition

γR := min
0�=qR∈span{Qp}

max
�0�=�vR∈span{Qu}

(qR,∇ · �vR)
|�vR|1 ‖qR‖0 ≥ γ∗ > 0

for γ∗ independent of Qu and Qp. To ensure stability in this sense, we use an approach
described in [25], which enriches the set of velocity snapshots with {�r(·, ξ(k))}Nk=1 satisfying(

∇�r
(
·, ξ(k)

)
,∇�v

)
=

(
p
(
·, ξ(k)

)
,∇ · �v

)
∀�v ∈ Xh

0 .(6.21)

These enriching functions are supremizers that satisfy [25]

�r
(
·, ξ(k)

)
= arg sup

�v∈Xh
0

(
p
(
·, ξ(k)

)
,∇ · �v

)
|�v |1 .

It follows that the reduced bases generated in Algorithm 2 are stable in the sense that

γR ≥ γh := min
0�=q∈Mh

max
�0 �=�v∈Xh

0

(q,∇ · �v )
|�v |1 ‖q‖0 .(6.22)

In addition, it is clear that Nu = 2Np for Qu and QP generated in Algorithm 2.

4In the experiments described below, the error indicator was computed directly at cost O(Nh).D
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Algorithm 2 Reduced basis collocation for Navier–Stokes problems.

Start with level M (ΘM = {ξ(0)}), and compute �u(·, ξ(0)) and p(·, ξ(0)).
Compute the supremizer function r(·, ξ(0)) of (6.21).
Initialize the reduced basis Qu = {�uin(·, ξ(0)), �r(·, ξ(0))} and Qp = {p(·, ξ(0))}.
Construct the offline reduced matrices and vectors.
for p = 1 : q do
for k = 1 : |ΘM+p| do

Compute the reduced solution and an error indicator ηQ, ξ(k), n.
if ηQ, ξ(k), n < tol then

Use the reduced solution to serve as uc(·, ξ(k)) in (2.5).
else
• Compute the full solutions �u(·, ξ(k)) and p(·, ξ(k)).
• Use the full solution to serve as uc(·, ξ(k)) in (2.5).
• Compute the supremizer function r(·, ξ(k)) of (6.21).
• Augment Qu with {�uin(·, ξ(k)), �r(·, ξ(k))} and Qp with {p(·, ξ(k))},
by Gram–Schmidt orthogonalization.

• Reconstruct the offline reduced matrices and vectors.
end if

end for
end for

6.3. Test problem 3: Driven cavity flow with uncertainty in viscosity. The flow domain
here is the square D = (−1, 1) × (−1, 1). The velocity profile

u = 1− x4, v = 0,(6.23)

is imposed on the top boundary (y = 1), and all other boundaries are no-slip and no-
penetration so that �u = (0, 0). As in test problem 1, we divide the square domain into ND

subdomains, and the viscosity is defined to be constant on each subdomain, ν (·, ξ)|Dk
= ξk,

k = 1 : ND, where the random variable ξ = [ξ1, . . . , ξND
]T is uniformly distributed in

Γ = [0.01, 1]ND . Two examples are shown in Figure 5. In case 1, the square domain is
equally divided into two parts, and in case 2, the domain is subdivided into an interior square
centered at (0, 0) and two square annuli. Each of the subdomains has width 0.4. Results for
uniform 33× 33 and 65× 65 spatial grids are reported below.

The number of full system solves are shown in Tables 9 and 10 for domain case 1 and
case 2, respectively, where two tolerance values (10−4 and 10−5) are tested. Exactly as for
the diffusion equations (5.4)–(5.8), we compute the mean function errors for the velocity and
pressure solutions. Figures 6 and 7 show the errors, where we used the reference level r = 11
for both types of domain.

The reduced inf-sup constants γR for domain case 2 discretized on a 65 × 65 spatial grid
are shown in Table 11. The square of the discrete inf-sup constant for this element and mesh
is known to be γ2h = 0.2137 [11, p. 271]. It is evident from Table 11 that γ2R is bounded
below by 0.2137, which is consistent with (6.22). As the size of the reduced basis increases,
γ2R becomes closer to γ2h.D
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D2

D1

D1 D2 D3

(a) Case 1. (b) Case 2.

Figure 5. Domain partitionings for driven cavity flow.

Table 9
Number of full system solves for test problem 3, domain case 1.

q 2 3 4 5 6 7 8 9�����������tol Grids
|Θq|

1 5 13 29 65 145 321 705 Total

10−4 33× 33 1 4 5 6 6 7 6 3 38
10−4 65× 65 1 4 5 5 5 5 5 2 32
10−5 33× 33 1 4 8 7 8 10 11 5 54
10−5 65× 65 1 4 8 7 8 9 9 3 49

Table 10
Number of full system solves for test problem 3, domain case 2.

q 3 4 5 6 7 8 9�����������tol Grids
|Θq|

1 7 25 69 177 441 1073 Total

10−4 33× 33 1 6 17 23 26 26 25 124
10−4 65× 65 1 6 16 20 21 21 18 103
10−5 33× 33 1 6 18 29 40 44 41 179
10−5 65× 65 1 6 18 27 32 40 32 156

6.4. Test problem 4: Driven cavity flow with uncertain boundary conditions. The flow
domain in this section is also the square D = (−1, 1) × (−1, 1), and the boundary condition
(6.23) is specified at the top boundary. Unlike as section 6.3, where the other boundaries are
assumed to be nonslip, we now assume there is some uncertainty on these boundaries:

u = 0, v = ξ1
(
1− y4

)
for x = 1,

u = ξ2
(
1− x4

)
, v = 0 for y = −1,

u = 0, v = ξ3
(
1− y4

)
for x = −1,

where ξ = [ξ1, ξ2, ξ3]
T is assumed to be independently and uniformly distributed in [−0.1, 0.1]3.

The viscosity is taken to be a deterministic constant, ν = 1/500 here. Instead of the uniform
meshes used in previous examples, stretched meshes of sizes 33 × 33 and 65× 65 are used toD

ow
nl

oa
de

d 
07

/3
1/

13
 to

 1
28

.8
.1

28
.9

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

214 HOWARD C. ELMAN AND QIFENG LIAO

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

q=3

q=4
q=5

q=6

q=7

q=8

q=9

number of sample points

e
rr

o
r

 

 

tol=1e−4 
tol=1e−5
Monte Carlo
full collocation

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

q=3

q=4

q=5

q=6

q=7

q=8

q=9

number of sample points

e
rr

o
r

 

 

tol=1e−4 
tol=1e−5
Monte Carlo
full collocation

(a) Velocity mean error. (b) Pressure mean error.

Figure 6. Mean function errors of test problem 3 with domain case 1, 65× 65 grid.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

q=4

q=5

q=6

q=7

q=8

q=9

number of sample points

e
rr

o
r

 

 

tol=1e−4 
tol=1e−5
Monte Carlo
full collocation

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

q=4

q=5

q=6

q=7

q=8

q=9

number of sample points

e
rr

o
r

 

 

tol=1e−4 
tol=1e−5
Monte Carlo
full collocation

(a) Velocity mean error. (b) Pressure mean error.

Figure 7. Mean function errors of test problem 3 with domain case 2, 65× 65 grid.

Table 11
Inf-sup constants of reduced basis for test problem 3, domain case 2.

Nu 2 4 20 50 100 200

γ2
R 0.2431 0.2430 0.2374 0.2359 0.2327 0.2292

discretize D (see Figure 8).5 Table 12 shows the number of full system solves for this test
problem for a range of tolerances, and Figure 9 shows the error in mean functions, where the
reference level is r = 11.

The trends for all the examples in this section (test problem 4) and the preceding one (test

5These are generated by IFISS [28] using the default setting for mesh generation.D
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(a) Stretched 33 × 33 grid. (b) Stretched 65× 65 grid.

Figure 8. Meshes for test problem 4.

Table 12
Number of full system solves for test problem 4.

q 3 4 5 6 7 8 9�����������tol Grids
|Θq|

1 7 25 69 177 441 1073 Total

10−4 33× 33 1 3 1 1 0 0 0 6
10−4 65× 65 1 3 0 0 0 0 0 4
10−5 33× 33 1 6 7 4 1 0 0 19
10−5 65× 65 1 4 4 3 1 0 0 13
10−6 33× 33 1 6 15 10 8 2 0 42
10−6 65× 65 1 6 10 5 2 0 0 24
10−7 33× 33 1 6 17 27 18 10 5 84
10−7 65× 65 1 6 16 13 9 4 1 50
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Figure 9. Mean function errors of test problem 4, stretched 65× 65 grid.
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problem 3) are consistent with those for the diffusion equation. In particular, the number of
full system solves required for reduced basis collocation does not increase as the number of
the spatial degrees of freedom increases; these numbers are significantly smaller than what is
needed for full collocation, and with moderate values of tol (10−4 for problem 3 and 10−6 for
problem 4) the reduced solutions are as accurate as those obtained from full collocation.

7. Concluding remarks. We conclude with a brief summary of our observations from
this study. The main one, seen in all the examples considered, is that the reduced basis
method can be used to significantly reduce the dimension of the discrete problems that need
to be solved to construct collocation solutions of stochastic partial differential equations.
Moreover, the computational results indicate that the dimensions of the reduced bases do not
depend on the sizes of the discrete spatial problems that the reduced problems approximate.
This suggests that the reduced dimensions depend on properties of the underlying partial
differential equations and that the combined reduced basis collocation method is of potential
benefit whenever spatial accuracy is of importance.
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