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The stochastic collocation method has recently received much attention for solving partial differential
equations posed with uncertainty, i.e., where coefficients in the differential operator, boundary terms
or right-hand sides are random fields. Recent work has led to the formulation of an adaptive collocation
method that is capable of accurately approximating functions with discontinuities and steep gradients.
These methods, however, usually depend on an assumption that the random variables involved in
expressing the uncertainty are independent with marginal probability distributions that are known
explicitly. In this work we combine the adaptive collocation technique with kernel density estimation
to approximate the statistics of the solution when the joint distribution of the random variables is
unknown.

� 2012 Elsevier B.V. All rights reserved.
1. Problem statement

Let ðX;R; PÞ be a complete probability space with sample space
X, r-algebra R � 2X and probability measure P : R! ½0;1�. Let
D � Rd be a d-dimensional bounded domain with boundary @D.
We investigate partial differential equations (PDEs) of the form

Lðx;x; uÞ ¼ f ðxÞ; 8x 2 D; x 2 X

Bðx;x; uÞ ¼ gðxÞ; 8x 2 @D; x 2 X:
ð1:1Þ

Here L is a partial differential operator with boundary operator B,
both of which can depend on the random parameter x. As a conse-
quence of the Doob–Dynkin lemma, it follows that u is also a ran-
dom field, dependent on both the spatial location x and the event
x. In order to work numerically with the expressions in (1.1), we
must first represent the operators in terms of a finite number of
random variables n ¼ ½n1; n2; . . . ; nM �T . This is often accomplished
using a truncated Karhunen–Loève (KL) expansion [17]. If we de-
note C ¼ ImageðnÞ, then we can write (1.1) as

Lðx; n; uÞ ¼ f ðxÞ; 8x 2 D; n 2 C

Bðx; n; uÞ ¼ gðxÞ; 8x 2 @D; n 2 C:
ð1:2Þ

For a given realization of the random vector n, the system (1.2) is a
deterministic partial differential equation that can be solved using a
deterministic solver. Throughout this paper we assume that
ll rights reserved.
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D;L;B; f , and g are defined so that the above problem (1.2) is well
posed for all values of n 2 C. In this paper we will explore several
different sampling methods for solving the system (1.2).

One is typically interested in methods that allow statistical
properties of u to be computed. If qðnÞ denotes the joint probability
density function of the random vector n, then the kth moment of
the solution u is defined as

EðukÞ ¼
Z

C
ukqðnÞdn: ð1:3Þ

One may also be interested in computing probability distributions
associated with u, for example Pðuðx; nÞP cÞ.

Several methods have been developed for computing approxi-
mations to the random field u and the associated statistical quan-
tities. The most widely known is the Monte–Carlo method, where
the desired statistics are obtained by repeatedly sampling the dis-
tribution of n, solving each of the resulting deterministic PDEs, and
then estimating the desired quantities by averaging. Recently,
much attention has been paid to alternative approaches such as
the stochastic Galerkin and stochastic sparse grid collocation
methods [2,9,12,22,21,27]. These methods typically approximate
the solution u as a high-degree multivariate polynomial in n. If this
approximation is denoted upðx; nÞ, then the error u� up can be
measured in terms of an augmented Sobolev norm

k � kL2
P ;V ¼

Z
X
k � k2

V dP
� �1

2

: ð1:4Þ

Here V is an appropriate Sobolev space that depends on the spatial
component of the problem and k � kV is the norm over this space. It
can be shown that as the total degree of the polynomial approxima-
tion is increased, the error in the above norm, ku� upkL2

P ;V , decays
very rapidly provided that the solution u is sufficiently smooth in
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n [22]. If u is not sufficiently smooth then the convergence of these
methods can stall or they may not converge at all [18]. Several
methods have been proposed for treating problems that are discon-
tinuous in the stochastic space. One approach partitions the sto-
chastic space into elements and approximates the solution locally
within elements by polynomials, continuous on the domain
[3,25]. Another approach is to use a hierarchical basis method
developed in [16], which approximates u using a hierarchical basis
of piecewise linear functions defined on a sparse grid. This idea was
used with stochastic collocation in [18] where the sparse grid is re-
fined adaptively using an a posteriori error estimator.

If the truncated Karhunen–Loève expansion is used to express L
and B, then the random variables n1; n2; . . . ; nM have zero mean and
are uncorrelated [17]. It is frequently assumed that the random
variables are independent and that their marginal density functions
qiðniÞ are known explicitly. In this case the joint density function is
simply the product of the marginal densities qðnÞ ¼ PM

k¼1qiðniÞ. This
assumption simplifies the evaluation of the moments of the solu-
tion since the multidimensional integral in (1.3) can be written as
the product of one-dimensional integrals. It is not the case, how-
ever, that uncorrelated random variables are necessarily indepen-
dent, and in the worst case the support of the product of the
marginal densities may contain points that are not in the support
of the true joint density. Thus, it may not be appropriate to define
the joint density function as the product of the marginal density
functions. See [13] for further discussion of this point. In this paper
we explore a method for approximating the statistics of the solution
u when an explicit form of the joint distribution is not available and
we only have access to a finite number of samples of the random
vector n. In particular, we are able to treat the case where informa-
tion on the parameters of the problem is only available in the form
of experimental data. The method works by constructing an
approximation q̂ðnÞ to the joint probability distribution qðnÞ using
kernel density estimations [23]. This construction is then combined
with an adaptive collocation strategy similar to the one derived in
[18] to compute an approximation to the random field u. Moments
can then be efficiently evaluated by integrating this approximation
with respect to the approximate probability measure q̂ðnÞ.

The remainder of this paper proceeds as follows. Section 2 dis-
cusses the adaptive collocation method in [18]. Section 3 presents
an overview of the kernel density estimation technique used for
approximating the unknown distribution of n. Section 4 presents
the method developed in this paper for approximating solutions
to problems of the form (1.2). An error bound for the method is gi-
ven in Section 4.1, and Section 4.2 presents techniques for extract-
ing solution statistics. Section 5 presents the results of numerical
experiments showing the performance of the new method and
comparing this performance with that of the Monte Carlo method.
Finally in Section 6 we draw some conclusions.
1 For unbounded C, interpolation is carried out on a bounded subset of C, see e.g.
[26].
2. The adaptive collocation method

Collocation methods work by solving the Eq. (1.2) for a finite
number of pre-determined parameters fnð1Þ; . . . ; nðNcÞg using a suit-
able deterministic solver. The solutions at each sample point are
then used to construct an interpolant to the solution for arbitrary
choices of the random vector n. We denote such an approximation
generally asAðuÞðnÞ. Collocation methods were first used for solving
PDEs with random coefficients in [2]. The interpolant was formed
using a Lagrangian polynomial basis defined on tensor product grids.
The cardinality of these grids is exponential in the dimension of the
random vector so that this method is not viable for problems with
high-dimensional random inputs. Sparse grid collocation methods
were developed in [27] and an error analysis of the method was
presented in [22]. These methods use the Smolyak interpolation
formula [24] to construct a high-order polynomial interpolant using
many fewer points than the full tensor grid. A refinement of this
method for problems where the solution depends on the parameters
in an anisotropic manner was presented in [21]. For all of these
methods, the solution random field is expressed globally as a poly-
nomial in the random vector n. These methods are therefore only
useful when the random field u is sufficiently regular in n.

An adaptive collocation method was developed in [18]. This meth-
od is designed to compute approximations of random fields that pos-
sess discontinuities or strong gradients, and for which the image setC
is bounded.1 In the following, we present an overview of this method
and our proposed modifications. To simplify the presentation we de-
scribe the case of a function u defined by a single random parameter
whose image is a subset of [0,1]. This can be generalized in a straight-
forward manner to a function defined by M parameters with image con-
tained in any M-dimensional hypercube. Define

mi ¼
1 if i ¼ 1;
2i�1 þ 1 if i > 1;

�
ð2:1Þ

ni
j ¼

j�1
mi�1 for j ¼ 1; . . . ;mi; if mi > 1;

0:5 for j ¼ 1; if mi ¼ 1:

(
ð2:2Þ

For i ¼ 1;2; . . ., we have that hi ¼ fni
jg

mi
j¼1 consists of mi distinct

equally spaced points on ½0;1�. We also have that hi � hiþ1. Since
these points are equidistant, the use of global polynomial interpola-
tion as in [27] is not appropriate due to the Runge phenomenon. We
make no assumptions on the smoothness of u; for example, it may
contain singularities that global polynomial approximations will
not resolve. To address these issues, a hierarchical basis of piece-
wise linear functions is used to construct the interpolant. Define
h0 ¼ ; and Dhi ¼ hi n hi�1. Note that jDhij ¼ mi �mi�1. Let the mem-
bers of Dhi be denoted fnDi

j g
jDhi j�1
j¼0 . The hierarchical basis is defined

on the interval ½0;1� as

a1
0ðnÞ ¼ 1 ð2:3Þ

ai
jðnÞ ¼

1� ðmi � 1Þjn� nDi
j j if jn� nDi

j j < 1=ðmi � 1Þ;
0 otherwise;

(
ð2:4Þ

for i > 1 and j ¼ 0; . . . ; jDhij � 1; see Fig. 2.1. These functions are
piecewise linear and have the property that ai

jðn
Di
k Þ ¼ djk, and

ai
jðn

s
kÞ ¼ 0 for all s < i. Note that there is a binary tree structure on

the nodes in hi. That is, we can define the set of children of a point
nDi

j as

childðnDi
j Þ ¼

fnDiþ1
j g if i ¼ 2

fnDiþ1
2j ; nDiþ1

2jþ1g otherwise:

(
ð2:5Þ

We also denote the parent of a point in this tree as parðnDi
j Þ.

Algorithm 1 defines an interpolation scheme using the hierar-
chical basis functions.

Algorithm 1. Interpolation with hierarchical basis functions

Define A0ðuÞðnÞ ¼ 0.
Define k ¼ 1
repeat

Construct Dhk

Evaluate uðnDk
j Þ 8nDk

j 2 Dhk

wk
j ¼ uðnDk

j Þ � Ak�1ðuÞðnDk
j Þ 8nDk

j 2 Dhk

Define AkðuÞðnÞ ¼
Pk

i¼1
PjDhi j�1

j¼0 wi
ja

i
jðnÞ.

k ¼ kþ 1
until maxðjwk�1

j jÞ < s
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The quantities fwk
j g are referred to as the hierarchical surplus.

They represent the correction to the interpolantAi�1ðuÞ at the points
inDhi. For functions with values that vary dramatically at neighboring
points, the hierarchical surpluses fwi

jg remain large for several itera-
tions. This provides us with a natural error indicator as well as a con-
vergence criterion for the method, whereby we require that the
largest hierarchical surplus be smaller than a given tolerance. The
hierarchical surpluses also provide a mechanism to implement adap-
tive grid refinement. The grid is adaptively refined at points with large
hierarchical surpluses. For such a point, its children are added to the
next level of the grid. Algorithm 2 defines such an adaptive interpola-
tion algorithm that is similar to the one appearing in [18].

Algorithm 2. Adaptive interpolation with hierarchical basis
functions

Define A0ðuÞðnÞ ¼ 0:
Define k ¼ 1
Initialize Dh1

adaptive ¼ h1:

repeat

Dhkþ1
adaptive ¼ ;

fornDk
j 2 Dhk

adaptive do

Evaluate uðnDk
j Þ

wk
j ¼ uðnDk

j Þ � Ak�1ðuÞðnDk
j Þ

ifkwk
j k > s then

Dhkþ1
adaptive ¼ Dhkþ1

adaptive [ childðnDk
j Þ

end if
end for

Define AkðuÞðnÞ ¼
Pk

i¼1
P

jw
i
ja

i
jðnÞ.

k ¼ kþ 1
until maxðjwk�1

j jÞ < s

This method can be generalized in a straightforward way to
functions defined on ½0;1�M . All that is needed is to define a multi-
dimensional hierarchical basis set and a method for generating the
Fig. 2.1. The hierarchical basi
children of a given grid point. The multidimensional hierarchical
basis consists of tensor products of the one-dimensional hierarchi-
cal basis functions. Given i ¼ ½i1; . . . ; iM� 2 NM and j ¼ ½j1; . . . ; jM �
2 NM , let

ai
jðnÞ ¼ ai1

j1
ðn1Þ � � � � � aiM

jM
ðnMÞ: ð2:6Þ

We can define the multidimensional interpolation grids by

h1¼ ½0:5;0:5; . . . ;0:5� ð2:7Þ
childðnDi

j Þ¼ fnj9!j21; . . . ;M s:t: ½n1; . . . ;nj�1;parðnjÞ;njþ1; . . .nM� ¼ nDi
j g:

From this we can see that each grid point has at most 2M children.
It was shown in [15] that the interpolation error associated with

this method bounded by

Oðjhkj�2logðjhkj3ðMþ1ÞÞÞ: ð2:8Þ

This bound grows rapidly with increasing dimension. Numerical
experiments presented in [18] show that, in practice, the interpola-
tion error is significantly smaller than this bound, both for smooth
functions and functions that contain steep gradients or
discontinuities.

This method can be used to approximate the solutions to (1.2)
by applying a suitable deterministic solver to the equations at col-
location points nDi

j . We can then construct an interpolant of u;AkðuÞ
using the formula in Algorithm 2. In principle, the expected value
of u can be approximated by

EðuÞ �
Z

C
AkðuÞqðnÞdn ¼

X
i

X
j

wi
j

Z
C

ai
jðnÞqðnÞdn; ð2:9Þ

although in the cases under discussion q will not be known explic-
itly. Even in the case where q is known explicitly and can be ex-
pressed as the product of univariate functions, the integral in
(2.9) can still be difficult to calculate when it is of high dimension.
s functions for i ¼ 1;2;3.
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3. Kernel density estimation

Let KðnÞ be a function satisfying the following conditions:Z
RM

KðnÞdn ¼ 1; ð3:1ÞZ
RM

KðnÞndn ¼ 0;Z
RM

KðnÞknk2dn ¼ k2 <1;

KðnÞP 0;

where knk is the Euclidean norm of the M-dimensional vector n. Let
nð1Þ; nð2Þ; . . . ; nðNÞ be N independent realizations of the random vector
n. The kernel density approximation to the joint distribution of n is
given by

q̂ðnÞ ¼ 1

NhM

XN

k¼1

K
n� nðiÞ

h

 !
; ð3:2Þ

where h is a user-defined parameter called the bandwidth. It is
straightforward to verify that the function q̂ defined above satisfies
the conditions for being a probability density function. The main
challenge here lies in the selection of an appropriate value for h. If
h is chosen to be too large then the resulting estimate is said to
be oversmoothed and important features of the data may be ob-
scured. If h is chosen to be too small then the resulting estimate
is said to be undersmoothed and the approximation may contain
many spurious features not present in the true distribution.
Fig. 3.1 shows kernel density estimates of a bimodal distribution
for a small and large value of h. The oversmoothed estimate does
not detect the bimodality of the data whereas the undersmoothed
estimate introduces spurious oscillations into the estimate.

One method for specifying h is to choose the value that mini-
mizes the approximate mean integrated square error (AMISE). For
a given value of h, the AMISE is given by

AMISEðh;NÞ ¼ 1
4

h4a2
Z

RM
ðDqðnÞÞ2dnþ N�1h�Mb; ð3:3Þ

where

a ¼
Z

RM
knk2

1KðnÞdn; b ¼
Z

RM
KðnÞ2dn; ð3:4Þ

and D here denotes the Laplace operator [23]. From this expression
the optimal value of h can be derived as [23]

hMþ4
opt ¼ Mba�2

Z
ðDqðnÞÞ2dn

� ��1

N�1: ð3:5Þ

It can be shown that the optimal bandwidth is of magnitude
OðN�1=ðMþ4ÞÞ as the number of samples N increases. If the optimal
value of h is used it can also be shown that the AMISE decays like
OðN�

4
4þMÞ.

For numerical computations, choosing h to minimize the AMISE
is impractical since it requires a priori knowledge of the exact
distribution. Many techniques have been proposed for choosing
the smoothing parameter h without a priori knowledge of the
underlying distribution, including least-squares cross-validation
and maximum likelihood cross-validation [23]. In the numerical
experiments below we employ maximum likelihood cross-valida-
tion (MLCV). This method proceeds as follows. Given a finite set
of samples, nð1Þ; nð2Þ; . . . ; nðNÞ, of the random vector n, define

q̂�iðnÞ ¼
1

NhM

XN

k¼1;k–i

K
n� nðkÞ

h

 !
ð3:6Þ

to be the kernel density estimate constructed by omitting the ith
sample. The maximum likelihood cross-validation method is to
choose h that maximizes
CVðhÞ � 1
N

XN

i¼1

logðq̂�iðnðiÞÞÞ: ð3:7Þ

Note that this value of h only depends on the data. The intuition be-
hind this method is that if we are given an approximation to the
true density based on N � 1 samples and we draw another sample,
then the approximate density should be large at this new sample
point. In the numerical experiments described below, we solved
this optimization problem using Brent’s method [6]. The asymptotic
cost of evaluating (3.7) is OðN2Þ. Thus as the number of samples
grows large this method can become costly. In this case one typi-
cally only uses a randomly selected subset of the samples to evalu-
ate (3.7) [14]. In the numerical experiments described below, we
observed that for the sample sizes used, the cost of this optimiza-
tion was significantly lower than the cost of repeatedly solving
the algebraic systems of equations that arise from the spatial dis-
cretization of the PDE (1.2).

In [23] it is shown that the choice of kernel does not have a
strong effect on the error associated with kernel density estimation.
In our experiments we use the multivariate Epanechnikov kernel

KðnÞ ¼ 3
4

� �MYM
i¼1

ð1� n2
i Þ1f�16ni61g: ð3:8Þ

This kernel is frequently used in the case of univariate data as it
minimizes the asymptotic mean integrated square error over all
choices of kernels satisfying (3.1). It also has the advantage that it
is compactly supported. This causes the approximate density func-
tion q̂ to be compactly supported, which is important in assuring
the well-posedness of some stochastic partial differential equations.

4. Adaptive collocation with KDE driven grid refinement

The interpolation method in [18] distributes interpolation
nodes so that discontinuities and steep gradients in the solution
function are resolved; however the method does not take into ac-
count how significant a given interpolation node is to the statistics
of the solution function since the refinement process does not de-
pend on q. The kernel density estimate described above can also be
used to drive refinement of the adaptive sparse grid in Algorithm 2.
The algorithm we propose is as follows. First construct an estimate
q̂ to the true density q using a finite number of samples fnðiÞgN

i¼1.
Second, replace the refinement criterion in Algorithm 2 with

jwk
j jq̂ðn

Dk
j Þ > s: ð4:1Þ

A similar approach is used in [19] to drive the refinement. However
in that study it is again assumed that one has access to an explicit
form of the joint density function. With the refinement criterion
(4.1), the grid is only adaptively refined at points near the data
fnðiÞgN

i¼1 since the kernel density estimate is only supported near
the samples. In the sequel we refer to this proposed method, i.e.,
Algorithm 2 with refinement criterion (4.1), as adaptive KDE colloca-
tion. The refinement criterion (4.1) could also be employed in any
method where the stochastic domain can be refined locally, e.g.,
the multi-element stochastic collocation method [10,11]. The
remainder of this section is divided into two parts. In Section 4.1
we present interpolation error estimates associated with adaptive
KDE collocation and in Section 4.2 we present methods for approx-
imating the solution statistics of the random field u. Note that
throughout this discussion we can ignore the spatial component
of the problem.

4.1. Error analysis of adaptive KDE collocation

For simplicity we present the results for the case where the
problem only depends on a single parameter and interpolation is



Fig. 3.1. Under-smoothed kernel density estimate (left) and over-smoothed (right).

40 H.C. Elman, C.W. Miller / Comput. Methods Appl. Mech. Engrg. 245–246 (2012) 36–46
carried out on ½0;1�. Extension of the argument to multi-parameter
problems defined on an arbitrary hypercube is straightforward.
Also we ignore the spatial component of the problem as it has no
effect on the discussion of the errors resulting from the discretiza-
tion of the stochastic portion of the problem. Assume that AkðuÞ is
an interpolant generated using adaptive KDE collocation with
tolerance s. Let q̂ be the kernel density estimate used in computing

Ak and let Ĉ be the support of q̂. Let Acomplete
k ðuÞ be the interpolant

constructed by Algorithm 1 with grid points Dhk ¼ fnDi
j g and set of

hierarchical surpluses fwi
jg at those grid points. By definition,

Dhk
adaptive � Dhk. Define Dhk

remaining ¼ Dhk � Dhk
adaptive. Then if nDi

j 2
Dhk

remaining , it follows from (4.1) that jwi
jq̂ðn

Di
j Þj 6 s. We can bound

the difference between u and AkðuÞ on Ĉ as

kðu�AkðuÞÞqkL1ðĈÞ 6
q
q̂

����
����

����
����
L1ðĈÞ
ðkðu�Acomplete

k ðuÞÞq̂kL1ðĈÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�1

þ kðAcomplete
k ðuÞ � AkðuÞÞq̂kL1ðĈÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�2

Þ: ð4:2Þ

The term �1 is the interpolation error associated with piecewise
multilinear approximation on a full grid. This case is studied in
[15]. The interpolation error is bounded by

ku�Acomplete
k ðuÞkL1ðCÞ ¼ OðjDhkj�2jlog2ðjDhkjÞj3ðM�1ÞÞ ð4:3Þ

Since q̂ is bounded it follows that the bound on �1 decays at the
same rate.

Bounding �2 depends on counting the points in Dhk
remaining and

using the fact that at those points jwi
jq̂j 6 s. We have that

kðAcomplete
k ðuÞ � AkðuÞÞq̂kL1ðCÞ 6

X
Dhk

remaining

jwi
jjkai

jðnÞq̂ðnÞkL1ðCÞ: ð4:4Þ

Expanding q̂ in a Taylor series around nDi
j and noting that ai

jðnÞq̂ðnÞ is
only supported on an interval of size 1

2i gives
kðAcomplete
k ðuÞ � AkðuÞÞq̂kL1ðCÞ 6

X
Dhk

remaining

jwi
jq̂ðn

Di
j Þj

þ jwi
jj
kq̂0kL1ðCÞ

2i
6 sjDhk

remaining j þ
X

Dhk
remaining

jwi
jj
kq̂0kL1ðCÞ

2i
: ð4:5Þ

The sums here are over all i; j such that nDi
j 2 DHk

remaining . For decreas-
ing s, the number of points in Dhk

remaining decreases, since more points
are locally refined and those points that remain in Dhk

remaining for
large k correspond to basis functions with very small support. If s
is chosen to be small and k is allowed to grow so that the refine-
ment criterion (4.1) is satisfied at every leaf node, the term �2 will
converge to zero.

4.2. Estimation of solution statistics

Computation of the moments of the solution via the methods
presented in [2,3,12,18,22,27] all require that the joint density
function q be explicitly available in order to evaluate the integralR
C ûðx; nÞqðnÞdn where û is an approximation to u computed by

either the stochastic Galerkin method [3,12] or by the stochastic
collocation method [2,18,22,27]. In practice this may be an unreal-
istic assumption since we often only have access to a finite sample
from the distribution of n. This section describes two ways of
approximating the solution statistics when only a random sample
from the distribution of n is available. The first is the well-known
Monte–Carlo method [20]; the second is a variant of the
Monte–Carlo predictor method presented in [26].

Given a random field uðx; nÞ and a finite number of samples
fnðiÞgN

i¼1, the Monte–Carlo method approximates the mean of u by
the sample mean

EðuÞðxÞ � 1
N

XN

i¼1

uðx; nðiÞÞ � �uðxÞ: ð4:6Þ
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This method has the advantage that the convergence is independent
of the dimension of the random parameter. The error in the ex-
pected value can be approximated by first noting that the estimate
is unbiased,

BiasMC ¼ EðuÞðxÞ � E
1
N

XN

i¼1

uðx; nðiÞÞ
 !

¼ 0; ð4:7Þ

and that

Varð�uðxÞÞ ¼ Varðuðx; nÞÞ
N

; ð4:8Þ

where Varð�uðxÞÞ is the variance of the sample mean. An application
of Chebyshev’s inequality then gives a standard probabilistic esti-
mate, that for a > 0,

P EðuÞðxÞ � 1
N

XN

i¼1

uðx; nðiÞÞ
�����

�����P a

 !
6

VarðuÞ
Na2 : ð4:9Þ

Note that a factor of 2 error reduction requires an increase of the
sample size by a factor of 4. This slow rate of convergence is often
cited as the chief difficulty in using the Monte–Carlo method
[2,12]. It is also important to note that this bound is probabilistic
in nature and that it is possible for the Monte–Carlo method to per-
form much worse (or much better) than expected. For a fixed choice
of the quantity on the left hand side of (4.9), which we call P here,
say P ¼ :05, we have that

a 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðuÞ
:05N

r
; ð4:10Þ

and from this we can conclude with 95% percent confidence that the
Monte–Carlo estimate is bounded by

ffiffiffiffiffiffiffiffiffiffi
VarðuÞ
:05N

q
. Smaller values of P

lead to looser bounds but greater confidence in those bounds.
The method presented in [26] is to construct an approximation

û of the solution function in the stochastic space using conven-
tional sparse grid collocation and then, given a finite number of
samples fnðiÞgN

i¼1, to approximate the expected value by

EðuÞðxÞ � 1
N

XN

i¼1

ûðx; nðiÞÞ: ð4:11Þ

Instead of using conventional sparse grid collocation, we construct
an approximation û using the adaptive KDE collocation method.
Assuming that one has already constructed the interpolant, compu-
tation of the expected value can be carried out very quickly this way
since the interpolant is simple to evaluate. Note also that while the
standard Monte–Carlo method was used to evaluate (4.11), adap-
tive KDE collocation is also compatible with other sampling meth-
ods such as quasi-Monte Carlo [7], multilevel Monte–Carlo [4,8].
In the case of quasi-Monte Carlo, the sample points used in (4.11)
are simply chosen to be the quasi-Monte Carlo sample points, and
in the case of multilevel Monte–Carlo an expression similar to
(4.11) is computed at each level of the computation. We expect
sampling strategies would yield combined benefits; we do not ex-
plore this issue here.

The error associated with this method separates into two terms
as follows,

j�sparsej ¼ EðuÞðxÞ � 1
N

XN

i¼1

AðuÞðx; nðiÞÞ
�����

����� 6 EðuÞðxÞ � 1
N

XN

i¼1

uðx; nðiÞÞ
�����

�����
þ 1

N

XN

i¼1

ððx; nðiÞÞ � AðuÞðx; nðiÞÞÞ
�����

����� ¼ �MC þ �interp: ð4:12Þ

The first term is statistical error and depends only on the number of
samples taken and the variance of u, and decays according to (4.9).
The second term is the interpolation error and is bounded since the
infinity norm of the interpolation error is bounded in the neighbor-
hood of the sample points using (4.2).

Given N samples of n, evaluation of (4.6) requires N evaluations of
the random field u. In the case where u is defined by a system such as
(1.2), this requires N solutions of a discrete PDE. In contrast, evalua-
tion of (4.11) requires Ninterp evaluations of u to construct AðuÞ and
then it requires N evaluations of AðuÞ. The relative computational
efficiency of (4.11) then depends on two factors: first, whether an
accurate interpolantAðuÞ can be constructed using Ninterp 	 N func-
tion evaluations, and second, whether the cost of evaluatingAðuÞ is
significantly less than the cost of evaluating u. The first condition, as
shown by (4.3), depends on the dimension of the problem as well as
the number of samples we have access to. For most problems of
interest the second condition is satisfied in that it is much less
expensive to evaluate a piecewise polynomial than it is to solve a dis-
crete algebraic system associated with a complex physical model.
Note that in order for �interp to be small the interpolation error only
needs to be small near the sample points. For adaptive KDE colloca-
tion the kernel density estimate is designed to make the interpolant
more accurate in the neighborhoods of these points by indicating
where large clusters of points are located.

4.3. Analysis of errors arising from spatial discretization

Thus far, we have focused on the statistical errors associated
with the adaptive KDE collocation method in the absence of errors
arising from spatial discretization. Within the context of stochastic
partial differential equations, however, errors are also introduced
by discretizing the equation in space at each collocation point.
Generally this error is analyzed by separating the error into spatial
and stochastic components [2,3,22]. We will present an outline of
this approach here.

As above, let uðx; nÞ be the solution to (1.2). Let uhðx; nÞ be an
approximation to uð�; nÞ obtained by a discrete deterministic PDE
solver. Let AðuhÞ be the approximation to uhð�; nÞ obtained by adap-
tive KDE collocation, that is, a discrete PDE solver is used to solve
(1.2) at each collocation point. The approximation error in both
the spatial and probabilistic dimensions can be written as

k½uðx; nÞ � AðuhÞðx; nÞ�qkL1ðCÞ;V

6 k½uðx; nÞ � uhðx; nÞ�qkL1ðCÞ;V þ k½uh �AðuhÞðx; nÞ�qkL1ðCÞ;V ; ð4:13Þ

where k � kL1ðCÞ;V is the tensor product norm induced by the L1 norm
on C and a suitable norm defined on D, e.g., a Sobolev norm. The
first term in (4.13) is associated with the spatial discretization
and can be bounded using standard techniques for deterministic
problems [1,5]. The second term is the interpolation error on C
and is bounded by (4.2). In a practical computation, the spatial
and stochastic discretizations should be configured so that these
two errors are approximately equal. Our concern in this study is
the stochastic component and we restrict our attention to this in
the sequel.

5. Numerical experiments

In this section we assess the performance of adaptive KDE col-
location applied to several test problems. We aim to measure
quantitatively the two terms in the estimate (4.2) and to compare
the computational efficiency of our method with the Monte–Carlo
method.

5.1. Example 1: interpolation of a highly oscillatory function

Before exploring our main concern, the solution of PDEs with
stochastic coefficients, we first examine the utility of adaptive
collocation for performing a simpler task, to interpolate a



Fig. 5.1. uðnÞ ¼ jnjsinð1=nÞ.
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scalar-valued function whose argument is a random vector. We use
adaptive KDE collocation to construct an approximation to the
function

uðnÞ ¼
QM

k¼1jnkjsinð1=nkÞ if nk – 0
0 otherwise;

(
ð5:1Þ

where n is a random variable uniformly distributed over the set
½�1;�0:5�M [ ½0:5;1�M . Fig. 5.1 shows a plot of the function uðnÞ for
the single parameter case. The density of n is given explicitly by

qðnÞ ¼ 2M�11½�1;�0:5�M[½0:5;1�M : ð5:2Þ

The function u is everywhere continuous but infinitely oscillatory
along each axis of n. The axes however are not contained in the sup-
port of q so the oscillations do not have any effect on the statistics
of u with respect to the measure on n. Algorithm 2 with the refine-
ment criterion used in [18] would place many collocation points
near the origin in an attempt to resolve the oscillatory behavior.
Provided that the approximate density q̂ is a good approximation
to the true density, adaptive KDE collocation will only place colloca-
tion points near the support of q.

In our experiments, the density estimate for each choice of M
will be constructed from 5000 samples of n with the bandwidth
h chosen by maximum likelihood cross validation. For a given va-
lue of n let jðuðnÞ � AkðuÞðnÞÞqðnÞj be the interpolation error scaled
by q. First we measure the scaled interpolation error at 500 equally
spaced points on ½�1:5;1:5� and use the maximum observed error
as an estimate for the infinity norm of the error kðuðnÞ�
AkðuÞðnÞÞqðnÞkL1ðCÞ for the one-parameter (i.e. M ¼ 1 in (5.1)) prob-
lem. We denote this estimate by kðuðnÞ � AkðuÞðnÞÞqðnÞkl1 Fig. 5.2
shows the interpolation error in the mesh-norm k � qðnÞk1. This
norm only indicates the error on the support of q. Fig. 5.2 shows
that the interpolation error decays rapidly where the random var-
iable n is supported. Fig. 5.2 shows that adaptive KDE collocation
converges significantly faster than Algorithm 2. The reason is that
Algorithm 2 places many points near the origin, attempting to re-
solve the oscillations. After a few initial global refinements of the
grid the new method concentrates all of the new collocation points
inside the support of n.2 Fig. 5.3 shows the collocation nodes used by
the adaptive method with KDE driven refinement.

Now we examine the performance for the same task when u de-
pends on multiple parameters in (5.1). Fig. 5.4 shows the number
2 Algorithm 2 with the refinement criterion (4.1) indicates that a node is not
refined if q̂kwk

j k is small. In practice however it is necessary to perform some initial
global grid refinements to achieve a minimum level of resolution.
of collocation points required as a function of the convergence cri-
terion s and the number of parameters. The figure shows that as
the number of parameters is increased, the efficiency of the pro-
posed method slows. This is due to the factor log2ðjDhkjÞ3ðM�1Þ

appearing in the estimate (4.3). Note however that for any fixed va-
lue of M, the asymptotic interpolation error bound (4.3) decays fas-
ter than the Monte–Carlo error bound (4.9). The results in
Section 5.3 indicate that the asymptotic bound (4.3) may be pessi-
mistic for problems of interest.

5.2. Example 2: two-parameter stochastic diffusion equation

Next, we use the method derived in Section 4 to compute statis-
tics associated with the solution to the stochastic diffusion
equation

�r � ðaðx; n1; n2Þruðx; n1; n2ÞÞ ¼ 1; 8x 2 D ð5:3Þ
uðx; n1; n2Þ ¼ 0; 8x 2 @D ð5:4Þ

where D ¼ ½0;1�2. The diffusion coefficient a is defined for this
example as follows. Define the set LL ¼ fx : 0 < x1; x2 6 0:5g and
the set UR ¼ fx : 0:5 < x1; x2 < 1:0g. Let 1LLðxÞ and 1URðxÞ be the indi-
cator functions on LL and UR respectively. The diffusion coefficient
is piecewise constant and is given by

aðx; n1; n2Þ ¼ 1þ 1LLðxÞn1 þ 1URðxÞn2: ð5:5Þ

Here n1 and n2 are assumed to be independently distributed log-
normal random variables. The PDF of ni for i = 1, 2 is given by

qiðniÞ ¼
1

ni

ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2
p e�

ðlogðni Þ�lÞ2

2r2 ; ð5:6Þ

with r = 1 and l = 2. Since n1 and n2 are assumed to be independent,
their joint distribution is given by

qðn1; n2Þ ¼
1

2pn1n2
e
�ðlogðn1 Þ�2Þ2�ðlogðn2 Þ�2Þ2

2 : ð5:7Þ

Note that n1 and n2 take on values in the range ð0;1Þ. This, com-
bined with the definition of the diffusion coefficient in (5.5) ensures
that the diffusion coefficient will be positive at all points in D for all
possible values of the random variables n1 and n2. This is sufficient
to ensure the well-posedness of (5.3) [2]. In the numerical experi-
ments, interpolation was carried out on the domain ½1
 10�6;6�2.
This computational domain contained all of the samples of ðn1; n2Þ
generated by the log-normal random number generator.
Fig. 5.2. kðuðnÞ � AkðuÞðnÞÞqðnÞk1 versus the number of collocation points.



Fig. 5.5. Collocation points for various values of the error tolerance s.

Fig. 5.4. The tolerance s vs the number of collocation points.

Fig. 5.3. uðnÞ and the collocation points used in constructing approximate solution.
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The method described above generates a set of collocation
points in the stochastic space. At each of these points (5.3) must
be solved by using a suitable deterministic solver. In this example
the spatial discretization is accomplished using finite differences
on a uniform 32 
 32 mesh. The discrete difference operators are
formed using the five point stencil

aðx; yþ hD
2 ; n1; n2Þ

aðx� hD
2 ; y; n1; n2Þ aðx; y; n1; n2Þ aðxþ hD

2 ; y; n1; n2Þ
aðx; y� hD

2 ; n1; n2Þ

2
664

3
775;
ð5:8Þ

for x ¼ ½x; y�T 2 D, and where hD is the spatial discretization param-
eter. For this example the resulting linear systems are solved using
a direct solver, although an iterative solver may also be used as in
[9]. Although the spatial discretization of the problem introduces
an additional source of error, it is known that the error resulting
from the spatial discretization of the problem separates from the er-
ror associated with discretization of the stochastic component [2,3].
Thus we can focus solely on the error introduced by interpolating in
the stochastic space and by approximating the true joint density by
a kernel density estimate.

First we proceed as in Section 5.1 and evaluate the interpolation
error. Since the exact solution is not known we compute AðuÞ with
a very tight error tolerance s ¼ 10�9. We treat this as an accurate
solution and observe the decay in error for interpolants obtained
using a looser error tolerance. For each interpolant, the kernel den-
sity estimate is derived from 5,000 samples of n ¼ ½n1; n2� where n1

and n2 are independently distributed log-normal random variables
as described above. The bandwidth for the kernel density estimates



Fig. 5.6. Kernel density estimates for varying numbers of samples.

44 H.C. Elman, C.W. Miller / Comput. Methods Appl. Mech. Engrg. 245–246 (2012) 36–46
is chosen using the maximum likelihood cross-validation method
described in Section 3.

Fig. 5.5 shows the collocation points used for several values of
the error tolerance s. Comparing these with the contour plot of
the true joint density function in Fig. 5.6, it can be seen that the
method is concentrating collocation points in regions where the
estimated joint PDF is large. Thus the method is only devoting re-
sources towards computing an accurate interpolant in regions that
are significant to the statistics of u. Fig. 5.7 shows the interpolation
error as a function of the number of collocation points. Since an ex-
act solution to (5.3) is not available we treat the solution obtained
by using the method with s ¼ 10�10 as an exact solution. As
Fig. 5.7. kðuhðx; nÞ � AðuhÞðx; nÞÞqðnÞkl2ðDÞ
l1ðCÞ versus the number of collocation
points
opposed to the first example, the solution u here depends on both
the spatial location and the value of the random parameter. We re-
port the error in the discrete norm k � qkl2ðDÞ
l1ðCÞ, where the space
l2ðDÞ consists of square summable mesh-functions defined on the
spatial grid and l1ðCÞ consists of bounded mesh-functions defined
on a 500
 500 uniform grid on C. Fig. 5.7 shows that the interpo-
lation error decays quickly for the two parameter problem. The
apparent slowdown in convergence rate is attributable to the fact
that the exact solution is not available and the error is being mea-
sured with respect to an approximate solution.

5.3. High-dimensional stochastic diffusion

We now examine the performance of adaptive KDE collocation
for evaluating the statistics of a random field that depends on a
large number of parameters. The problem is given by

� d
dx
ðaMðx; nÞ

d
dx

uðx; nÞÞ ¼ 1; 8x 2 ð0;1Þ ð5:9Þ

uð0; nÞ ¼ uð1; nÞ ¼ 0: ð5:10Þ

The diffusion coefficient aM is defined for even M by

aM ¼ lþ
XM=2�1

k¼0

kkðn2kcosð2pkxÞ þ n2kþ1sinð2pkxÞÞ; ð5:11Þ

where kk ¼ expð�kÞ;l ¼ 3 and nk is uniformly distributed on ½0;1�.
The problem (5.9) is well posed on the image of n. The system
(5.9) was solved at each collocation point by using central finite dif-
ferences on a uniform mesh with 128 degrees of freedom. Experi-
mental results for these problems are shown in Tables 5.1 (for
M = 4 random variables), 5.2 (M = 10), and 5.3 (M = 20). The con-
tents of the tables are as follows.

First, for each M, we performed a Monte–Carlo simulation with
several choices of number of samples N. This sample size is shown
in the first column of the tables. In addition, for each value of



Table 5.2
Monte–Carlo error (left) and k 1

N

PN
i¼1uhðx; nðiÞÞ � AðuhÞðx; nðiÞÞkl2ðDÞ , 10 parameter problem.

N s

5
 10�2 1
 10�3 5
 10�4 1
 10�4 5
 10�5

100 7:66
 10�3 8:86
 10�4 4:41
 10�4 4:48
 10�5 8:28
 10�6

9:08
 10�2 (76) (1026) (1655) (5026) ð8111Þ
500 7:13
 10�3 6:08
 10�4 3:36
 10�4 2:34
 10�5 1:01
 10�5

4:06
 10�2 (92) (1170) (1189) (5773) (9404)

1000 9:19
 10�3 6:03
 10�4 2:65
 10�4 1:95
 10�5 1:77
 10�5

2:87
 10�2 (59) (1216) (1989) (5996) (9664)

5000 7:16
 10�3 6:62
 10�4 3:03
 10�4 2:04
 10�5 1:02
 10�5

1:28
 10�2 (93) (1120) (2041) (6095) (9787)

20000 7:25
 10�3 6:27
 10�4 2:66
 10�4 1:96
 10�5 5:67
 10�6

6:42
 10�3 (93) (1187) (2127) (6050) (9942)

Table 5.1
Monte–Carlo error (left) and k 1

N

PN
i¼1uhðx; nðiÞÞ � AðuhÞðx; nðiÞÞkl2ðDÞ , 4 parameter problem.

N s

5
 10�2 1
 10�3 5
 10�4 1
 10�4 5
 10�5

100 5:25
 10�3 2:23
 10�4 1:18
 10�4 9:42
 10�6 9:42
 10�7

8:43
 10�2 (28) (212) (301) (813) (1169)

500 5:47
 10�3 2:71
 10�4 9:84
 10�5 1:12
 10�5 1:76
 10�6

3:78
 10�2 (28) (211) (315) (777) (1210)

1000 4:29
 10�3 2:36
 10�4 1:24
 10�4 9:78
 10�6 2:61
 10�6

2:67
 10�2 (33) (200) (297) (762) (1207)

5000 4:36
 10�3 3:88
 10�4 1:36
 10�4 1:67
 10�5 4:73
 10�6

1:19
 10�2 (33) (172) (286) (745) (1104)

20000 4:32
 10�3 2:73
 10�4 1:30
 10�4 1:09
 10�5 3:58
 10�6

5:96
 10�3 (33) (180) (294) (780) (1107)
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M;var½uðx; nÞ� was estimated at the spatial grid points using
20;000 samples. Eq. (4.10) can then be used to compute a 95% con-
fidence bound of the Monte–Carlo error. This estimate is shown in
the first column of Tables 5.1, 5.2, and 5.3 beneath the number of
samples used to construct the Monte–Carlo estimate.

The other columns of the tables contain results for adaptive KDE
collocation where the kernel density estimates are generated using
the same set of sample points used for the Monte–Carlo simula-
tion. The total error for this method is bounded by (4.12). The term
k�MCkl2D is estimated by the 95% confidence bound in the first col-
umn of the tables, as discussed in the previous paragraph. The
other quantities in the table are the l2ðDÞ-norm of the sample mean
interpolation error, k�interpkl2ðDÞ, in the top of each box, together
with (in parentheses) the number of collocation points Ninterp used
to construct AðuÞ. For example, the second from left entry in the
Table 5.3
Monte–Carlo error (left) and k 1

N

PN
i¼1uhðx; nðiÞÞ � AðuhÞðx; nðiÞÞkl2ðDÞ , 20 parameter problem.

N s

5
 10�2 1
 10�3

100 1:64
 10�2 1:65
 10�3

9:14
 10�2 (41) (878)

500 1:45
 10�2 2:77
 10�3

4:09
 10�2 (41) (1045)

1000 8:45
 10�3 1:46
 10�3

2:89
 10�2 (119) (1618)

5000 8:70
 10�3 9:58
 10�4

1:29
 10�2 (156) (2459)

20000 7:25
 10�3 6:52
 10�4

6:46
 10�3 (193) (3108)
bottom row of Table 5.3 shows that for the 20-parameter problem
and the 20;000 sample set, AðuÞ was constructed using 3;108 col-
location points and k�interpkl2ðDÞ ¼ 6:52
 10�4.

The costs of the two methods are essentially determined by the
number of PDE solves required, N for the Monte–Carlo simulation
and Ninterp for adaptive KDE collocation. In the tables, the number
of collocation points Ninterp in parentheses are shown in bold type-
face when they are smaller than the number of samples. For such
cases, if k�interpkl2ðDÞ is significantly smaller than k�MCkl2ðDÞ, then
adaptive KDE collocation is less expensive than Monte–Carlo sim-
ulation. It can be seen from the results that the savings can be sig-
nificant when the number of samples increases. For example, the
second from left entry in the bottom row of Table 5.3 shows that
(by (4.12)) the error in mean for the adaptive collocation method
is bounded by k�interpkl2ðDÞ þ k�MCkl2ðDÞ ¼ 7:11
 10�3 while only
5
 10�4 1
 10�4 5
 10�5

2:15
 10�3 5:81
 10�4 2:39
 10�4

(1299) (4126) (6958)

1:38
 10�3 3:75
 10�4 1:67
 10�4

(1738) (5545) (9106)

9:02
 10�4 1:66
 10�4 7:13
 10�5

(2622) (8580) (14012)

4:99
 10�4 7:88
 10�5 2:59
 10�5

(4169) (13389) (22276)

3:38
 10�4 3:48
 10�5 2:35
 10�5

(4991) (15963) (26081)
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requiring 3108 PDE solves, an error comparable in magnitude to
that obtained with the Monte–Carlo method (6:46
 10�3) with
20,000 solves.

We also note that these results suggest that the factor
log2ðjDhkjÞ3ðM�1Þ in the estimate (4.3) may be pessimistic for many
problems of interest. Care must be taken when using the predictor
method not to over-resolve the interpolant when one only has ac-
cess to only a small amount of data. Doing so results in an interpolant
that is too accurate given the number of samples available and re-
sults in wasted computation. This is the case in the right-hand col-
umns of the tables where the interpolant is being resolved to a
much higher level of accuracy than the associated Monte–Carlo er-
ror bound.

6. Conclusions

We have presented a new adaptive sparse grid collocation
method based on the method proposed in [18] that can be used
when the joint PDF of the stochastic parameters is not available
and all one has access to is a finite set of samples from that distri-
bution. It is shown that in this case a kernel density estimate can
provide a mechanism for driving the refinement of an adaptive
sparse grid collocation strategy. Numerical experiments show that
in cases involving a large number of samples it can be economical
to construct a surrogate to the unknown function using fewer func-
tion evaluations and then to perform the Monte–Carlo method on
that surrogate.
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