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Abstract. Using a technique for constructing analytic expressions for discrete solutions to
the convection-diffusion equation, we examine and characterize the effects of upwinding strategies
on solution quality. In particular, for grid-aligned flow and discretization based on bilinear finite
elements with streamline upwinding, we show precisely how the amount of upwinding included in
the discrete operator affects solution oscillations and accuracy when different types of boundary layers
are present. This analysis provides a basis for choosing a streamline upwinding parameter which also
gives accurate solutions for problems with non-grid-aligned and variable speed flows. In addition,
we show that the same analytic techniques provide insight into other discretizations, such as a finite
difference method that incorporates streamline diffusion and the isotropic artificial diffusion method.
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1. Introduction. There are many discretization strategies available for the lin-
ear convection-diffusion equation

−ε∇2u(x, y) +w · ∇u(x, y) = f(x, y) in Ω,(1.1)

u(x, y) = g(x, y) on δΩ,

where the small parameter ε and divergence-free convective velocity fieldw = (w1(x, y),
w2(x, y)) are given. In this paper, we analyze some well-known methods which in-
volve the addition of upwinding to stabilize the discretization for problems involving
boundary layers. In particular, we focus on characterizing exactly how this upwinding
affects the resulting discrete solutions.

A standard discretization technique is the Galerkin finite element method (see,
for example, [5], [9], [10], [11], [13]). This is based on seeking a solution u of the weak
form of (1.1),

ε(∇u,∇v) + (w.∇u, v) = (f, v) ∀ v ∈ V,

where the test functions v are in the Sobolev space V = H1
0(Ω). Restricting this to a

finite-dimensional subspace Vh of V gives

ε(∇uh,∇v) + (w.∇uh, v) = (fh, v) ∀ v ∈ Vh,(1.2)

where fh is the L2(Ω) orthogonal projection of f into Vh and h is a discretization
parameter. Choosing the test functions equal to a set of basis functions for Vh (usually
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continuous piecewise polynomials with local support) leads to a sparse linear system
whose solution can be used to recover the discrete solution uh.

One quantity which has an important effect on the quality of the resulting discrete
solution is the mesh Péclet number

P el
e =

hel|w|
2ε

,

where hel is a measure of element size and |w| represents the strength of the convective
field within an element. In particular, if the mesh Péclet number is greater than
one, then the discrete solution obtained from the Galerkin method may exhibit non-
physical oscillations. For the one-dimensional analogue of (2.1), this is well understood
(see, for example, [10, p. 14]); for an analysis of the Galerkin discretization of the
two-dimensional case, see [2]. An approach for minimizing the deleterious effects of
these oscillations, especially in areas of the domain away from boundary layers, is
to stabilize the discrete problem by using an upwind discretization. A particularly
effective implementation of this idea is via the streamline diffusion method (see, e.g.,
[8], [9, sect. 9.7]). For linear or bilinear elements, the weak form (1.2) is replaced by

ε(∇uh,∇v) + (w.∇uh, v) +
∑

αel(w · ∇uh,w · ∇v)el = (fh, v) +
∑

αel(fh,w · ∇v)el

∀v ∈ Vh,(1.3)

where the sums are taken over all elements in the discretization. The stabilization
parameters αel are given by

αel =
δelhel

|w| ,(1.4)

where δel ≥ 0 are parameters to be chosen. Note that setting δel = 0 on each
element reduces (1.3) to the standard Galerkin case (1.2): this is the usual practice
when P el

e < 1. Formulation (1.3) has additional coercivity in the local flow direction,
resulting in improved stability. More on the motivation behind this method can be
found in [6, p. 289]. However, the best way of choosing δel for a general convection-
diffusion problem is not known: for a discussion of this difficulty, see, for example,
[13, Remark 3.34, p. 234].

In [2], we developed an analytic technique for characterizing the nature of os-
cillations in discrete solutions arising from the Galerkin discretization (1.2). More
specifically, for the case of grid-aligned flow, we presented an analytic representation
of the discrete solution, enabling isolation of any oscillatory behavior in the direction
of the flow. Using this framework, we studied the dependence of solution behavior on
the mesh Péclet number in some detail.

In this paper, we apply the tools developed in [2] to various upwinding strategies
for discretizing (1.1). For the most part, we focus on the streamline diffusion method
(1.3), examining the effect of stabilization on the quality of the resulting discrete
solutions. In section 2, we summarize the Fourier analysis presented in [2] and derive
an explicit formula for the discrete streamline diffusion solution for a model problem
with constant grid-aligned flow. Section 3 contains the details of this process in
the case of bilinear finite elements. The resulting formulae allow us to investigate
various issues which influence the choice of stabilization parameters. In section 4,
we characterize the effect of stabilization on oscillations in the discrete solution in
the flow direction for three test problems whose solutions exhibit different types of
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Fig. 1. Boundary conditions.

boundary layers. The implications of this analysis for solution accuracy are examined
in section 5. In section 6, we discuss the relevance of our results for problems with non-
grid-aligned and variable flow and present our recommended choice for the streamline
diffusion parameters. Finally, in section 7, we illustrate how the same approach
can be used to understand other discretization methods. We analyze an analogous
streamline diffusion (upwind) discretization for a finite difference stencil and explain
the comparative lack of effectiveness of isotropic artificial diffusion.

2. Summary of Fourier analysis. In this section, we summarize the Fourier
techniques used in [2] to construct an analytic expression for the entries in the discrete
solution vector u.

Setting w = (0, 1) and f = 0 in (1.1), we obtain the “vertical wind” model
problem

−ε∇2u+
∂u

∂y
= 0 in Ω = (0, 1)× (0, 1),(2.1)

with Dirichlet boundary conditions as shown in Figure 1. Using a natural ordering of
the unknowns on a uniform grid of square bilinear elements with N = 1/h elements
in each dimension, both (1.2) and (1.3) give rise to a linear system

Au = f ,(2.2)

where the coefficient matrix A is of order (N − 1)2. Denoting the coefficients of the
computational molecule by

m4 m3 m4

↖ ↑ ↗
m2 ← m1 → m2

↙ ↓ ↘
m6 m5 m6

,(2.3)

the matrix A can be written as

A =




M1 M2 0
M3 M1 M2

. . .
. . .

. . .

M3 M1 M2

0 M3 M1


 ,(2.4)
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whereM1 = tridiag(m2,m1,m2),M2 = tridiag(m4,m3,m4), andM3 = tridiag(m6,m5,
m6) are all tridiagonal matrices of order N −1. Given that the eigenvalues and eigen-
vectors of the blocks of A satisfy

M1vj = λjvj , λj = m1 + 2m2 cos
jπ
N ,

M2vj = σjvj , σj = m3 + 2m4 cos
jπ
N ,

M3vj = γjvj , γj = m5 + 2m6 cos
jπ
N

(2.5)

for j = 1, . . . , N − 1, where the eigenvectors are

vj =

√
2

N

[
sin

jπ

N
, sin

2jπ

N
, . . . , sin

(N − 1)jπ
N

]T
,(2.6)

we may obtain the decomposition

A = (VP )T (VP )T ,(2.7)

where V = diag(V, V, . . . , V ) is a block diagonal matrix with each block V having the
N − 1 eigenvectors (2.6) as its columns, and P is a permutation matrix of order (N −
1)2. The matrix T is also block diagonal, with diagonal blocks Ti = tridiag(γi, λi, σi),
i = 1, . . . , N − 1. Using this decomposition and observing that P and V are both
orthogonal, (2.2) implies

u = VPy,(2.8)

where the vector y is the solution to the linear system

Ty = PTVT f ≡ f̂ .(2.9)

As T is block diagonal, this system can be partitioned into N−1 independent systems
of the form

Tiyi = f̂i,(2.10)

where Ti is defined above and y and f̂ are partitioned in the obvious way. Because Ti is
a Toeplitz matrix, each of these systems can be considered as a three-term recurrence
relation which can be solved analytically to give an expression for each entry yik of
yi, k = 1, . . . , N − 1, in (2.10). Finally, to obtain an explicit formula for the entries
of u, we permute and transform these entries via (2.8) to get

ujk =

√
2

N

N−1∑
i=1

sin
ijπ

N
yik(2.11)

for j, k = 1, . . . , N − 1.
To obtain an expression for the entries yik in (2.11), we must consider the vectors

f̂i. As f = 0 in (2.1), the only nonzero entries in the original right-hand side vector f
in (2.2) involve sums of certain matrix coefficients times boundary values, which are

transformed and permuted to obtain f̂ in (2.9). The details of this process can be

found in [2]. Here we simply state that each right-hand side vector f̂i, i = 1, . . . , N−1,
in (2.10) can be written as

f̂i =




b̄i + s̄i
s̄i
...
s̄i

t̄i + s̄i



N−1

,
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where b̄i involves data from the bottom boundary values, t̄i involves data from the
top boundary values, and s̄i combines information from the left and right boundary
values. We will make the same assumption as in [2] that the functions fl(y) and fr(y)
on the left and right boundaries are constant. This simplifies the presentation of the
analysis.

The solution of each system (2.10) is now the solution of a three-term recurrence
relation with constant coefficients whose auxiliary equation has roots

µ1(i) =
−λi +

√
λ2
i − 4σiγi

2σi
, µ2(i) =

−λi −
√

λ2
i − 4σiγi

2σi
.(2.12)

The solution of this recurrence relation can be written as

yik = F3(i) + [F1(i)− F3(i)]G1(i, k) + [F2(i)− F3(i)]G2(i, k),(2.13)

where

G1(i, k) =
µk

1 − µk
2

µN
1 − µN

2

,

G2(i, k) = (1− µk
1)− (1− µN

1 )

[
µk

1 − µk
2

µN
1 − µN

2

]
,

and the functions

F1(i) = − t̄i
σi

, F2(i) =
s̄i

σi + λi + γi
, F3(i) = − b̄i

γi

involve the coefficient matrix entries and boundary condition information (see [2] for
details).

We emphasize that the functions Fm(i), m = 1, 2, 3, in (2.13) are independent of
the vertical grid index k: for fixed i, the behavior of y in the streamline (vertical)
direction depends only on the functions G1(i, k) and G2(i, k). In addition, as F1(i) is
related to the top boundary values, F2(i) is related to the sum of the left and right
boundary values (which have been assumed to be constant for this analysis), and F3(i)
is related to the bottom boundary values, (2.13) shows that different boundary condi-
tions will dictate how the functions G1(i, k) and G2(i, k) combine to produce different
two-dimensional recurrence relation solutions yik. In the next section, we analyze the
behavior of these solutions in some detail for the streamline diffusion finite element
discretization (1.3) with bilinear elements.

3. Streamline diffusion discretization. In [2], an explicit expression for (2.13)
for the Galerkin finite element method with bilinear elements was derived and ana-
lyzed. Here we present the equivalent analysis for the streamline diffusion finite ele-
ment discretization (1.3) with a view to precisely characterizing the effect of the extra
diffusion on the oscillations that occur with the Galerkin method when P el

e > 1. We
again use bilinear elements. Note that for a uniform grid and constant grid-aligned
flow, δ = δel is constant over all elements.

3.1. The recurrence relation solution. The coefficients in stencil (2.3) for a
streamline diffusion discretization (1.3) using bilinear finite elements are given by

m1 =
4
3 (δh+ 2ε), m2 =

1
3 (δh− ε), m3 = − 1

3 [(2δ − 1)h+ ε],

m4 = − 1
12 [(2δ − 1)h+ 4ε], m5 = − 1

3 [(2δ + 1)h+ ε], m6 = − 1
12 [(2δ + 1)h+ 4ε].
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For convenience, we introduce the notation

Ci = cos
iπ

N

and write the eigenvalues (2.5) as

γi =
1

6
{−2[δh(2 + Ci) + ε(1 + 2Ci)]− h(2 + Ci)},

λi =
2

3
{[δh(2 + Ci) + ε(1 + 2Ci)] + 3ε(1− Ci)},

σi =
1

6
{−2[δh(2 + Ci) + ε(1 + 2Ci)] + h(2 + Ci)},

i = 1, . . . , N − 1. Substituting these into (2.12) gives the expressions

µ1,2 =

−2δ −
[
4− Ci

2 + Ci

]
1

Pe
±
√
1 +

12δ(1− Ci)

(2 + Ci)

1

Pe
+
3(5 + Ci)(1− Ci)

(2 + Ci)2
1

P 2
e

−2δ + 1−
[
1 + 2Ci

2 + Ci

]
1

Pe

(3.1)

for the auxiliary equation roots in (2.13).

3.2. Oscillations in the recurrence relation solution. We know from [2,
Thm 5.1] that if Pe > 1, then the recurrence relation solution y and the related
discrete solution u to the pure Galerkin problem (1.2) usually exhibit oscillations. In
this section we address the question of how the streamline diffusion parameter δ can
be chosen to eliminate oscillations in the recurrence relation solution y. The issue of
how this affects the resulting u will be discussed in section 3.3.

Theorem 3.1. If Pe > 1, then for any value of i ∈ SN ≡ {1, . . . , N − 1} there
exists a parameter

δci =
1

2

(
1−
[
1 + 2Ci

2 + Ci

]
1

Pe

)
(3.2)

such that δ > δci implies that G1(i, k) and G2(i, k) in (2.13) are nonoscillatory func-
tions of k.

Proof. We have

G1(i, k) =
µk

1 − µk
2

µN
1 − µN

2

=



(
µ1

µ2

)k

− 1
(
µ1

µ2

)N

− 1


µk−N

2 = Θ(i, k)µk−N
2 .

As |µ1/µ2| < 1, Θ(i, k) is always positive. Hence if µ2 is negative, G1(i, k) alternates
in sign as k goes from 1 to N − 1, that is, G1(i, k) is oscillatory for fixed i ∈ SN .
From (3.1), the numerator of µ2 is always negative so, for δci given by (3.2), we have
the conditions 


δ > δci ⇒ µ2 > 0, G1(i, k) is nonoscillatory,

δ < δci ⇒ µ2 < 0, G1(i, k) is oscillatory.
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(b) i = N/2.
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(c) i = N − 1.

Fig. 2. Plots of G1(i, k) against k for fixed i with δ = 0.2 (solid, o), δ = 0.4 (dotted, ♦), and
δ = 0.6 (dashed, �).

In addition, it can be shown that 0 < µ1 < 1 so that if G1(i, k) is nonoscillatory, then
G2(i, k) = (1− µk

1)− (1− µN
1 )G1(i, k) must also be nonoscillatory.

Sample plots of G1(i, k) for various values of i ∈ SN when N = 16 and Pe = 3.125
are given in Figure 2. Only the right half of the range of k has been plotted in each
case to magnify the area of interest. Each subplot shows the behavior for three distinct
values of δ, namely δ = 0.2 (solid line, o), δ = 0.4 (dotted line, ♦), and δ = 0.6 (dashed
line, �). Given the relevant critical values δc1 � 0.34, δcN/2 � 0.42, and δcN−1 � 0.65
for this problem, the dependence of oscillations on the value of δ is clear. For δ = 0.2
(that is, δ < δci for all i ∈ SN ), all functions G1(i, k) are oscillatory; for δ = 0.4,
G1(1, k) is nonoscillatory (as δ > δc1) and G1(N/2, k) is only very mildly oscillatory;
for δ = 0.6, only G1(N − 1, k) is oscillatory (as δ > δci for i = 1, N/2). Analogous
behavior is seen in Figure 3 for G2(i, k) with the same parameter values, although the
oscillations here occur about the function 1− µk

1 rather than zero.

We now define

δ∗ =
1

2

(
1− 1

Pe

)
, δ∗ =

1

2

(
1 +

1

Pe

)
(3.3)
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Fig. 3. Plots of G2(i, k) against k for fixed i with δ = 0.2 (solid, o), δ = 0.4 (dotted, ♦), and
δ = 0.6 (dashed, �).

(as in [3]) so that

δ∗ < δci < δ∗(3.4)

for all values of i ∈ SN . If δ ≥ δ∗, then δ > δci for each i ∈ SN and all of the
functions G1(i, k) and G2(i, k) will be nonoscillatory in terms of k. We therefore have
the following corollary to Theorem 3.1.

Corollary 3.2. For any value of δ such that δ ≥ δ∗, the functions G1(i, k)
and G2(i, k) in (2.13) are nonoscillatory functions of k for every i ∈ SN . Hence
the recurrence relation solution y is a sum of smooth functions and will not exhibit
oscillations in the streamline direction.

The case δ = δci requires special attention. With this value, σi = 0 in (2.5) and
the resulting matrix Ti in (2.10) is bidiagonal. This leads to a two-term recurrence
relation with auxiliary equation root

ρ =
1

1 +
3(1− Ci)

2 + Ci

1

Pe
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and solution

yik = F3(i)ρ
k + F2(i)(1− ρk).(3.5)

As 0 < ρ < 1 for any i ∈ SN , yik is nonoscillatory in the streamline direction. In
addition, ρ → 1 as Pe → ∞, giving the solution yik = F3(i). Looking ahead to
section 3.3, applying transformation (2.11) gives ujk = fb(xj) (see (3.8)). This is
the solution to the reduced problem (obtained by setting ε = 0 in (2.1)) where the
bottom boundary values are simply transported in the direction of the flow without
any diffusion present. That is, with the choice δ = δci for each i, the discrete solution
is exact at every interior node in the limit as Pe → ∞.

3.3. Oscillations in the discrete solution. In this section we consider the
impact of transformation (2.11) on the recurrence relation solution y, with a view to
choosing δ to obtain an oscillation-free discrete solution u. We begin by considering
the functions Fm(i), m = 1, 2, 3, in (2.13). Following the analysis of [2, sect. 4.4 and
appendix] we can derive the following expressions

F1(i) =

√
2

N

N−1∑
s=1

ft(xs) sin
siπ

N
,

F2(i) = fl

√
2

N

N−1∑
s=1

sin
siπ

N
,(3.6)

F3(i) =

√
2

N

N−1∑
s=1

fb(xs) sin
siπ

N

for the streamline diffusion weight functions in the special case where the constant
left and right boundary values fl and fr are equal. From (2.13), we therefore have

yik =

√
2

N

N−1∑
s=1

fb(xs) sin
siπ

N
+

√
2

N

N−1∑
s=1

[ft(xs)− fb(xs)] sin
siπ

N
G1(i, k)

+

√
2

N

N−1∑
s=1

[fl − fb(xs)] sin
siπ

N
G2(i, k)(3.7)

[2, Thm 4.2]. Note that the expressions in (3.6) hold for any stencil of the form (2.3)
whose entries sum to zero. In particular, this implies that the functions in (3.6) are
the same for discretizations (1.2) and (1.3).

We now apply transformation (2.11) to (3.7) to obtain an expression for the entries
of the discrete solution vector u. As in [2], for the first term we have

√
2

N

N−1∑
i=1

sin
ijπ

N

{√
2

N

N−1∑
s=1

fb(xs) sin
siπ

N

}
= fb(xj),(3.8)

where fb(x) is the bottom boundary function in Figure 1. Applying (2.11) to the full
expression (3.7) therefore gives

ujk = fb(xj) +
2

N

N−1∑
i=1

[aijG1(i, k) + bijG2(i, k)] ,(3.9)



SMOOTHING EFFECTS OF UPWINDING 263

where

aij = sin
ijπ

N

N−1∑
s=1

[ft(xs)− fb(xs)] sin
siπ

N
,

(3.10)

bij = sin
ijπ

N

N−1∑
s=1

[fl − fb(xs)] sin
siπ

N
.

That is, along a streamline (j fixed), u consists of the bottom boundary value on that
line plus a linear combination of the functions G1(i, k) and G2(i, k) for i ∈ SN . Note
that ai(N−j) = aij and bi(N−j) = bij , so that if fb(x) is symmetric about the center
vertical line of the grid, then so is u.

We can use the representation (3.9) to obtain insight into the effect of δ on the
quality of the solution in the streamline direction. Recall from section 3.2 that if
δ ≥ δci in (3.2), then the functions G1(i, k) and G2(i, k) are nonoscillatory in the
streamline direction for that particular i ∈ SN . It follows from Corollary 3.2 that if
δ ≥ δ∗ in (3.3), then (3.9) is a sum of smooth functions. We have therefore established
a sufficient condition for the discrete solution to be nonoscillatory.

Theorem 3.3. For a streamline diffusion discretization of (2.1) with bilinear
finite elements, the discrete solution u does not exhibit oscillations in the streamline
direction when δ ≥ δ∗.

4. Analysis of boundary layer effects. In practice, it turns out that the
restriction on δ given by Theorem 3.3 is too harsh, and better solutions can be obtained
using values of δ smaller than δ∗ due to the “smoothing” nature of transformation
(2.11). The precise effect of this transformation in the context of the behavior of the
Galerkin finite element solution for different mesh Péclet numbers was studied in [2].
Here we present a discussion of the effects of varying δ in the streamline diffusion
method. We illustrate the ideas with three examples containing different types of
boundary layers. The first two examples contain an exponential layer at the outflow
and parabolic layers along the characteristic (vertical) boundaries, respectively. The
third example has a Neumann boundary condition at the outflow, and we show that
the analysis generalizes to this case.

Throughout this section we will use notation based on considering ujk in (3.9)
as a sum of smooth and oscillatory parts. That is, letting i∗ be the lowest value of
i ∈ SN such that δ < δci , we write

(4.1)

ujk = fb(xj) +
2

N

(
i∗−1∑
i=1

[aijG1(i, k) + bijG2(i, k)] +

N−1∑
i=i∗

[aijG1(i, k) + bijG2(i, k)]

)

= fb(xj) + Ssmooth + Sosc.

Note that the preceding analysis implies Ssmooth = 0 when δ ≤ δ∗ and Sosc = 0 when
δ ≥ δ∗. As δ increases from δ∗, i∗ will increase so that Ssmooth contains more and
more of the terms, with the overall smoothness of u dependent on the relative size of
the two sums Ssmooth and Sosc.

Problem I. In this example we apply the Dirichlet boundary conditions

ft(x) = 1, fb(x) = fl(y) = fr(y) = 0,



264 HOWARD C. ELMAN AND ALISON RAMAGE

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

i

(a) j = 1.

0 5 10 15
−2

−1

0

1

2

3

4

5

6

7

8

i

(b) j = N/4.

0 5 10 15
−4

−2

0

2

4

6

8

10

12

i

(c) j = N/2.

Fig. 4. Plots of coefficients aij against i for N = 16.

as per Figure 1, so that the solution has an exponential boundary layer of width ε
along the top boundary. For this problem, (3.7) implies

yik =

√
2

N

N−1∑
s=1

sin
siπ

N
G1(i, k)(4.2)

so the coefficients in (3.10) simplify to

aij = sin
ijπ

N

N−1∑
s=1

sin
siπ

N
, bij = 0,(4.3)

with the magnitude of each aij decreasing rapidly as i goes from 1 to N−1 as shown in
Figure 4 (taken from [2]). This means that the contributions to ujk from the functions
G1(i, k) are much larger for small indices i, so that the smoothness of G1(i, k) for small
i plays a much more important role. In particular, it is not necessary for G1(i, k) to be
nonoscillatory for all i ∈ SN in order for |Ssmooth| to dominate |Sosc| and the resulting
function u to be smooth.

We illustrate these ideas in Figures 5 and 6 for this example problem with N = 16
and Pe = 2. The first figure shows u1k (or, equivalently, u(N−1)k) plotted against k.
This is the vertical cross-section of the solution obtained by fixing j = 1, which is
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Fig. 5. Comparison of Ssmooth (dashed line, o) and Sosc (dotted line, o) with u1k (solid line,
x) for Problem I.

the most oscillatory of the vertical cross-sections for this problem. Each plot shows
a comparison of Ssmooth (dotted line, o) and Sosc (dashed line, o) with u1k (solid
line, x) for a different value of δ, where again only the right half of the range of k
has been plotted to magnify the area of interest. For this example, δ∗ = 0.25 and
δ∗ = 0.75. Plot (a) shows the Galerkin case (δ = 0) where all of the functions G1(i, k)
are oscillatory and Ssmooth is zero. This is still true in plot (b), where δ = δ∗, but
the magnitude and extent of the oscillations has been reduced considerably. The
result of choosing δ = δ∗ according to Theorem 3.3 to guarantee an oscillation-free
discrete solution by ensuring a nonoscillatory y is shown in plot (d). Here too much
extra diffusion has been added. Plot (c) shows u1k for δ = δs = 0.354, which lies in
the interval (δc7,δ

c
8), that is, i

∗ = 8. This is the lowest value of i∗ such that Ssmooth

dominates (3.9) for this problem and u1k is nonoscillatory.

The corresponding full two-dimensional solutions u are shown in Figure 6, where
the boundary values have been omitted so that the fine detail of each solution is
visible. The overall behavior corresponds to that seen from the cross-sections: the
severe oscillations present when δ = 0 are almost eliminated by choosing δ = δ∗, and
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Fig. 6. Discrete solution at interior node points for Problem I with N = 16, Pe = 2.

setting δ = δ∗ gives a smooth but overly diffuse solution. For δ = δs, the oscillations
along the lines u1k and u(15)k have just been eliminated to give a completely smooth
solution in the flow direction.

Problem II. Next we consider the Dirichlet boundary conditions

fb(x) = ft(x) = 0, fl(y) = fr(y) = 1,

which result in a solution which has parabolic layers on both vertical sides of the
domain. The recurrence relation solution is

yik =

√
2

N

N−1∑
s=1

sin
siπ

N
G2(i, k),(4.4)

which is the same as for Problem I, except with G2 in place of G1 (see (4.2)). In
addition, the coefficients in the full solution (3.10) are identical to those in Problem I
as given by (4.3). The analysis for this problem is therefore very similar. In particular,
as observed in section 3.2, G2 is oscillatory if and only if G1 is oscillatory, so exactly
the same argument applies as to the effect of δ on solution quality.

Sample solutions for N = 16 with Pe = 2 are shown in Figure 7. These plots
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Fig. 7. Discrete solution at interior node points for Problem II with N = 16, Pe = 2.

show the effect of increasing δ on the solution in the streamline direction: again, the
solutions with δ = 0 and δ = δ∗ exhibit oscillations while the solution with δ = δ∗ is
overly diffuse. The value δs is the first for which the smooth part dominates to give
a smooth solution. Figure 8 shows cross-sections of these plots for fixed values j = 1
on the left and k = 15 on the right.

It is known that parabolic layers such as those exhibited by the solution of this
problem are wider than the exponential layers of the previous example (the widths
are proportional to

√
ε and ε, respectively [13]). Oscillations transverse to the flow

caused by inadequate resolution of parabolic layers will occur, but only for mesh Péclet
numbers much larger than in the examples shown. However, the results given here
demonstrate that streamwise effects also cause difficulties for problems with parabolic
layers. The analysis shows that these are manifested in Problem II by the presence
of G2 in the solution and that streamline upwinding ameliorates these difficulties by
making G2(i, ·) smoother for enough indices i. The right-hand plot in Figure 8 also
shows that excessive diffusivity in the streamline direction gives the appearance of
smearing of the characteristic layers.

Problem III. For this example, we replace the Dirichlet boundary condition u =
ft(x) on the top boundary in Problem I by the Neumann boundary condition ∂u

∂n = 1.
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Fig. 8. Cross-sections of solutions to Problem II for N = 16; Pe = 2 for δ = 0 (solid line, ×),
δ = δ∗ (dashed line, ◦), δ = δs (dotted line, ∗), and δ = δ∗ (dot-dash line, ♦).

The other Dirichlet boundary conditions remain the same. The analysis of section 2
needs to be modified slightly to handle this case. There are now N(N −1) unknowns,
and the coefficient matrix A in (2.4) is replaced by

A� =




M1 M2 0
M3 M1 M2

. . .
. . .

. . .

M3 M1 M2

0 M3 M�
1


 ,

where there are N rows of (N − 1) × (N − 1) blocks. For bilinear finite elements on
a square mesh, M�

1 = tridiag(m
�
2,m

�
1,m

�
2) with entries

m�
1 =

1

3
[(2δ + 1)h+ 4ε], m�

2 = − 1

12
[(2δ − 1)h+ 2ε].

As the vectors vj in (2.6) are eigenvectors of M
�
1 , we may construct a matrix V� with

N copies of V on its diagonal and a permutation matrix P � of order N(N − 1) such
that a decomposition of type (2.7) exists. The associated block tridiagonal matrix T �

has N − 1 diagonal blocks, each one of the form

T �
i =




λi σi 0
γi λi σi

. . .
. . .

. . .

γi λi σi

0 γi λ�
i



N×N

,

where

λ�
i = m�

1 + 2m
�
2 cos

iπ

N
, i = 1, . . . , N − 1,
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are the eigenvalues of M�
1 . Similarly, the transformed right-hand side vector f̂� can

be partitioned into N − 1 vectors of length N to give N − 1 independent systems

T �
i yi = f̂�i .(4.5)

For this specific example, the vectors f̂�i are given by

f̂�i = εh




0
...
0√

2
N

∑N−1
s=1 sin

siπ
N



N

.

The solution of each system (4.5) is therefore the solution of the same constant-
coefficient recurrence relation as in the Dirichlet case, but with the right-hand bound-
ary condition now of Neumann type. The roots of the auxiliary equation are given
by (2.12), and the recurrence relation solution is

y�ik = εh

√
2

N

N−1∑
s=1

sin
siπ

N
G�

1(i, k),(4.6)

where

G�
1(i, k) =

µk
1 − µk

2

(γi + λ�
iµ1)µ

N−1
1 − (γi + λ�

iµ2)µ
N−1
2

.

This expression compares with (4.2) in the Dirichlet case. The most significant dif-
ference is the factor of εh in front of the Neumann solution: this means that for this
problem the oscillations will be much smaller than those in the Dirichlet case. Because
of the nature of G�

1 and G1, however, the effect of changing δ will be very similar in
both cases. This is borne out by the plots of the Neumann solution shown in Figure 9
(for N = 16 and Pe = 2 so that εh = 9.8× 10−4). As predicted by the analysis, these
solutions are almost identical in shape to those obtained for the Dirichlet problem
(see Figure 6), but any oscillations are much smaller in magnitude.

5. Solution accuracy. We have now characterized the effect of δ on oscillations
in the flow direction. One important question which remains is how the choice of δ
affects the overall accuracy of the discrete solution. To investigate this, we begin with
the example problems of the previous section. In each case, we compare solutions on
a 16× 16 grid with ε = 1/64 (so Pe = 2) with a reference solution for the same value
of ε on a 256 × 256 grid. On this fine grid, we use the Galerkin method (δ = 0) as
Pe = 0.125� 1 and there are no oscillations. In what follows, we will denote the fine
grid nodal solution vector by u256 and its associated finite element solution by u256,
likewise for the coarse grid solutions uδ

16 and uδ
16.

Figure 10 shows the variation with δ of the error for our test problems measured
in two different norms. In all cases the norm of the error is plotted against δ for
0 ≤ δ ≤ 1 with the values of δ∗ (o), δs (♦), and δ∗ (x) highlighted. For Pe = 6.25
(ε = 1/200), δ∗ = 0.42, δs = 0.468, and δ∗ = 0.58. The solid line represents the
discrete L∞[0, 1] norm defined by

‖u256 − uδ
16‖∞ = max

i,j
|u256(xi, yj)− uδ

16(xi, yj)|,
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Fig. 9. Discrete solution at interior node points for Problem III with N = 16, Pe = 2.

where the points (xi, yj) = (ih, jh) are the nodes of the 16× 16 grid. When using the
finite element method, it may be more natural to work with the L2 norm

‖u256 − uδ
16‖2 =

{∫
Ω

(
u256 − uδ

16

)2} 1
2

.(5.1)

However, this measure leads to misleading results for certain singular perturbation
problems of this type where the overall error is heavily dominated by the error in the
boundary layer, which we cannot hope to resolve on a 16× 16 uniform grid using low
order elements. For Problems I and III, a more meaningful measure of the error for
our purposes is obtained using the L2 norm of the error away from the boundary layer;
that is, in these cases, we omit the top row of coarse grid elements from the region of
integration in (5.1) and integrate over (0, 1)× (0, 0.9375) instead of Ω = (0, 1)× (0, 1).
This norm is represented by a dotted line in the error plots. We note in passing that
in all of the examples, this curve is very similar to that obtained for the discrete L2

norm defined by

‖u256 − uδ
16‖2 =




N∑
i,j=0

(
u256(xi, yj)− uδ

16(xi, yj)
)2

1
2

,
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Fig. 10. Error variation with δ in the discrete L∞ norm (solid) and L2 norm (dotted) for
N = 16.

where (xi, yj) is again a node of the coarse grid.

From Figure 10, we see that the optimal choice of δ in terms of solution accuracy
depends on the norm in which the error is measured, although in most cases both δ∗
and δs are closer than δ∗ to the optimal choice. Note that setting δ = δs to produce
a completely oscillation-free discrete solution u does not result in the most accurate
solution.
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6. Guidelines for choosing the streamline diffusion parameter in prac-
tice. In sections 2–4, we presented model problem analysis which enabled us to char-
acterize the behavior of the discrete finite element solutions. Three highlighted values
of δ play important roles in this analysis: δ∗, where the solution is oscillatory but
the oscillations are extremely small; δs, which is the smallest value of δ such that the
solution is found by numerical experiment to be oscillation free; and δ∗, where the
solution is guaranteed to be oscillation free via Theorem 3.3. The analysis, based on
Fourier techniques, is restricted to grid-aligned flow. (This is needed for the tridiag-
onal matrices M1, M2, and M3 of (2.4) to be symmetric and have a common set of
eigenvectors.) In this section, we consider several more complex problems and make
some observations about choosing δ in practice.

First, we observe that although with δ = δ∗ we have a way of guaranteeing
that there are no oscillations, the resulting discrete solutions are overly diffuse and
inaccurate: both δ∗ and δs are in general much better values to use. The choice δ = δs

produces a completely oscillation-free solution but δs is not readily determined even
for the model problems considered above. However, we know that δs lies between
δ∗ and δ∗, and the empirical results for Problems I–III suggest that the computable
expression

δ• =
1

2

(
1− 0.8

Pe

)
(6.1)

is a good approximation to it. Note that in the limit as Pe → ∞, both δ∗ and δ• tend
to 0.5.

We now introduce three new test problems with non-grid-aligned or variable
winds. For these problems, we use a stabilization strategy which fixes δel locally
on each element by using the local element mesh Péclet number

P el
e =

hel‖wel‖2

2ε

in formulae (3.3) and (6.1). This is calculated using the discrete L2 norm of the
wind value at the element center wel, with the local grid size value hel taken as the
distance across the element measured in the direction of the wind. In what follows,
these element-based values of δ will be denoted using the superscript el. In all cases,
the value of the stabilization parameter used is max(δel, 0) on each element.

Problem IV. Here we impose the Dirichlet boundary conditions

fb(x) =

{
0, 0 < x ≤ 1

2 ,
1, 1

2 < x < 1,
ft(x) = fl(y) = 0, fr(y) = 1

on the domain in Figure 1 and apply the wind w = (cos 115◦, sin 115◦) which has
constant magnitude and direction but is not aligned with the grid. This problem has
an exponential boundary layer on a portion of the outflow boundary and an internal
layer along the characteristic caused by the discontinuity on the inflow boundary. A
sample solution with N = 16, ε = 1/200, and δ = δel∗ is shown in Figure 11 (a).

Error calculations carried out as described in the previous section lead to the
plots in Figure 12 (a) and (d), where the values δel∗ (◦), δel,∗ (×), and δel• (♦) have
been highlighted. When δ = 0, the error is dominated by difficulties associated with
the exponential layers at the outflow. As δ is increased so that these layers begin
to be resolved, the error is then dominated by the effect of the discontinuity in the
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Fig. 11. Sample solutions with N = 16, ε = 1/200, and δ = δel∗ .

inflow boundary condition which is relatively insensitive to the value of δ, causing the
middle of the plots to look fairly flat.

Problem V. Our two variable wind test problems are variants of the “IAHR/CEGB”
test problem proposed in [14]. In this first case, we solve (1.1) on the unit square with

w = (2y(1− (2x− 1)2),−2(2x− 1)(1− y2)).(6.2)

The Dirichlet boundary conditions are given by

u(x, 0) = 1 + tanh[10 + 20(2x− 1)](6.3)

on the inflow boundary (the interval 0 ≤ x ≤ 0.5, y = 0) and u(x, 0) = 2 on the
outflow boundary (the interval 0.5 < x ≤ 1, y = 0). On the remaining boundaries, we
impose ft(x) = fl(y) = fr(y) = 0. The Dirichlet boundary conditions at the bottom
y = 0 are continuous but there is an exponential layer at the outflow portion, i.e.,
where x ≥ 1/2. A sample solution for N = 16 and ε = 1/200 is shown in Figure 11
(b).

As the wind now varies in magnitude and direction from element to element, we
cannot identify a single parameter δ which can be varied for the purposes of comparing
errors as in the previous examples. However, we can compare various strategies for
choosing δel locally within elements by considering the parameterized version of δel
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Fig. 12. Error variation with δ in the discrete L∞ norm (solid) and L2 norm (dotted) for
N = 16.

given by

δel =




t

2

(
1− 1

P el
e

)
, 0 ≤ t ≤ 1,

1

2

(
1 + (t− 2) 1

P el
e

)
, 1 < t ≤ 3.

(6.4)
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As t varies from 0 to 3, the value of δel on each element first increases linearly from
0 to δel∗ (at t = 1) and then varies linearly between δel∗ and δel,∗. The variation with
t of the error for this problem for N = 16 with two different values of ε is shown
in Figure 12 (b) and (e). The errors are again calculated as described in section 5.
The values δel∗ (◦), δel,∗ (×), and δel• (♦) are highlighted. The error is dominated by
problems caused by the exponential layer along the outflow boundary in a similar way
to Problem I.

Problem VI. Our final test problem also has a variable wind given by (6.2) but
the boundary conditions are now of mixed type. We again impose the Dirichlet
condition (6.3) on the inflow boundary but now the condition imposed on the outflow
boundary is a homogeneous Neumann one. The Dirichlet boundary conditions on
the remaining boundaries are ft(x) = fl(y) = 0, fr(y) = 2. This results in the
formation of a characteristic boundary layer along the right-hand wall. A sample
solution for N = 16 and ε = 1/200 is shown in Figure 11 (c). Error plots for this
problem with δ parameterized by t as in (6.4) are shown in Figure 12 (c) and (f). This
problem features a characteristic layer, so we expect the effects of changing δ to be
less pronounced, as for Problem II. This is supported by the error plots: increasing
δ helps to resolve the characteristic layer until the error becomes dominated by the
effects of boundary discontinuities.

The results in these experiments are essentially the same as those for the model
problems. We have not displayed oscillations here, but in all of the examples, the
solutions for δ = δ∗ contain slight oscillations near layers, and the choice δ = δ•
reduces but does not eliminate them in these examples. There is little difference
between these values in terms of solution quality obtained, and both choices are
generally better than δ∗, which adds too much diffusion. Although it is tempting to
use the interpolated value δ• to produce a qualitatively smoother solution, in our view
δ∗ is a better choice. The oscillations it produces indicate that in fact the layers are
not fully resolved and that mesh refinement is needed where they occur; the smoothing
of these effects will be misleading (see, e.g., [4]). Streamline diffusion alone cannot
completely resolve this issue, and the choice δ∗ adds the right amount of diffusion to
keep the errors small in most of the domain. Note that this value has previously been
recommended as a good choice in [1] and was shown to be good for efficient solution
of the resulting linear system by the GMRES iterative method [3]. We also remark
that although the analysis of sections 2–4 does not apply to linear elements, we have
performed a few experiments which indicate that δ∗ yields more accurate solutions
than δ• in the linear case and that the latter choice adds excessive diffusion in this
setting.

7. Application to other discretizations. To conclude, we emphasize that
analysis of this type can be applied to any discretization whose stencil is of the form
(2.3). We comment on two particular cases of interest here.

7.1. Finite differences with streamline diffusion. The usual central finite
difference discretization of (1.1) can also be stabilized using streamline diffusion; see,
for example, [12, p. 1465]. Specifically, we apply the finite difference method to the
differential equation

−(ε∇2 +∇ ·D∇)u(x, y) +w · ∇u(x, y) = f(x, y),
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where diffusion in the streamline direction is added using

D = α

[
c2 cs
cs s2

]

with

c =
w1

‖w‖2
, s =

w2

‖w‖2
,

and α as in (1.4). Assuming for convenience that ‖w‖2 = 1, the full computational
molecule is given by

w1w2δ

2h
− ε

h2
+

w2

2h
− w2

2δ

h
−w1w2δ

2h↖ ↑ ↗
− ε

h2
− w1

2h
− w2

1δ

h
← 4ε

h2
+
2δ

h
→ − ε

h2
+

w1

2h
− w2

1δ

h↙ ↓ ↘
−w1w2δ

2h
− ε

h2
− w2

2h
− w2

2δ

h

w1w2δ

2h

.

This simplifies to a stencil of standard five-point type for our model problem (2.1)
with grid-aligned flow. Using the notation of (2.3), the stencil entries are

m1 =
4ε

h2
+
2δ

h
, m2 = − ε

h2
, m3 = − ε

h2
+
1

2h
− δ

h
,

m4 = 0, m5 = − ε

h2
− 1

2h
− δ

h
, m6 = 0

with related eigenvalues

γi =
1

h2

[
−(ε+ δh)− h

2

]
, λi =

1

h2
[2(ε+ δh) + 2ε(1− Ci)] ,

σi =
1

h2

[
−(ε+ δh) +

h

2

]
.

This results in the expressions

µ1,2 =

−2δ − [2− Ci]
1

Pe
±
√
1 + 4δ(1− Ci)

1

Pe
+ (1− Ci)(3− Ci)

1

P 2
e

−2δ + 1− 1

Pe

for the roots of the recurrence relation which appear in (2.13).
Here the sign of µ2 (and hence the nature of the corresponding functions G1(i, k)

and G2(i, k), i ∈ SN ) is independent of i: as the numerator of µ2 is always negative,
we simply have the conditions


δ > δ∗ ⇒ µ2 > 0, G1(i, k) is nonoscillatory,

δ < δ∗ ⇒ µ2 < 0, G1(i, k) is oscillatory,
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where δ∗ is given by (3.3). Hence the result equivalent to Theorem 3.1 is given by the
following theorem.

Theorem 7.1. For a streamline diffusion finite difference discretization with
Pe > 1, δ > δ∗ implies that G1(i, k) and G2(i, k) in (2.13) are nonoscillatory functions
of k for any value of i ∈ SN .

The special case δ = δ∗ leads to the two-term recurrence with auxiliary equation
root

ρ =
1

1 +
(1− Ci)

Pe

and solution (3.5). Because ρ < 1, this solution is nonoscillatory in the streamline
direction for all i ∈ SN and, as in the finite element case, tends to the nodally exact
solution in the limit as Pe → ∞.

The fact that there is one critical parameter (independent of i) here means that
there is no issue about selecting a global parameter δ as we had in the finite element
case. Furthermore, the analysis of the effect of transforming from y to u (cf. section
3.3) is greatly simplified. In particular, for the same specific example problem with
ft = 1 and fb = fl = fr = 0 studied in section 3.3, the equivalent expression to (4.2)
using finite differences has Ssmooth = 0 when δ < δ∗ and Sosc = 0 when δ > δ∗. Thus
we immediately have the following theorem (cf. Theorem 3.3).

Theorem 7.2. For a streamline diffusion finite difference discretization of (2.1),
the discrete solution u does not exhibit oscillations in the streamline direction when
δ ≥ δ∗.

That is, in contrast to the finite element case, there is no “smoothing” introduced
by the Fourier transformation: the same single parameter governs the presence of
oscillations in both the recurrence relation solution y and the discrete two-dimensional
solution u.

7.2. Artificial diffusion. So far we have focused on adding smoothing in the
streamline direction only, which is just one of the many stabilization methods avail-
able. In this section we analyze the artificial diffusion method (see, for example, [7,
pp. 218–219]) with a view to comparing its smoothing effect with that of streamline
diffusion. The artificial diffusion method works by adding diffusion in an isotropic
way which does not take account of flow direction, and it is well known that this can
result in smearing of internal layers. We can use the analytical techniques presented
in this paper to confirm that the streamline diffusion method avoids this problem.

We again consider a vertical wind model problem using bilinear finite elements
on a uniform grid. The idea of the artificial diffusion method is to replace equation
(2.1) with

−(ε+ δh)∇2u+
∂u

∂y
= 0 in Ω = (0, 1)× (0, 1),(7.1)

with δ once again a stabilization parameter to be chosen. When Pe < 1, we set δ = 0
as before. Galerkin discretization using bilinear finite elements results in a matrix of
the form (2.4), which is therefore covered by our analysis. The stencil entries in this
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case are given by

m1 =
8

3
(δh+ ε), m2 = −1

3
(δh+ ε), m3 = −1

3
[(δ − 1)h+ ε],

m4 = − 1

12
[(4δ − 1)h+ 4ε], m5 = −1

3
[(δ + 1)h+ ε], m6 = − 1

12
[(4δ + 1)h+ 4ε],

so the roots (2.12) of the corresponding recurrence relation are given by

µ1,2 =

−
(
2δ +

1

Pe

)[
4− Ci

2 + Ci

]
±
√
1 +

3(1− Ci)(5 + Ci)

(2 + Ci)2

(
2δ +

1

Pe

)2

1−
(
2δ +

1

Pe

)[
1 + 2Ci

2 + Ci

] .(7.2)

First we briefly consider the issue of oscillations in the streamline direction. Here,
as in section 3.2, the sign of µ2 (and hence the presence of oscillations in the recurrence
relation solution) depends on the value of i ∈ SN . Defining the new critical value

δ̃ci =
1

2

([
2 + Ci

1 + 2Ci

]
− 1

Pe

)
,

we have different conditions for two sets of i values, namely

1 ≤ i ≤ 2
3N :




δ > δ̃ci ⇒ µ2 > 0, G1(i, k) is nonoscillatory,

δ < δ̃ci ⇒ µ2 < 0, G1(i, k) is oscillatory,

2
3N < i ≤ N − 1 : µ2 < 0, G1(i, k) is oscillatory.

Notice that this is different from the streamline diffusion case (cf. Theorem 3.1) in that
there is no choice of δ which will make the recurrence relation solution oscillation free,
as some of the contributing functions G1(i, k) are always oscillatory. However, it can
be seen using an argument of the type presented in section 3.3 that the transformed
solution is again dominated by contributions from functions pertaining to lower values
of i. Hence, despite the fact that G1(i, k) is always oscillatory for large i, it is still
possible to obtain a nonoscillatory discrete solution u. Note that inequality (3.4) is
satisfied with δic replaced by δ̃ic. For the particular (i-independent) choice δ = δ∗ from
(3.3), equation (7.1) (and hence the artificial diffusion solution) is independent of ε.

To gain insight into the main difference between this method and the streamline
diffusion technique, we must examine solution behavior in the “crosswind” direction,
that is, perpendicular to the direction of the flow. To fix ideas, we will use the
discontinuous boundary conditions

fb(x) =

{
0, x < 0.5,
1, x ≥ 0.5,

fr(y) = 1, ft(x) = fl(y) = 0

so that the solution has an internal layer along x = 0.5 as well as a boundary layer
along the right half of the top boundary. The internal layer derives from propagation
of the bottom boundary condition through the domain and, as ε → 0, the width
of this layer tends to zero. Ideally, this phenomenon should be reproduced by a
discretization method, that is, we would like to obtain a set of discrete solutions u in
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this limit whose variation from the bottom boundary function is independent of j for
fixed k. We now show that while the streamline diffusion method has this property,
the artificial diffusion method does not.

Consider the recurrence relation solution vector y for this problem. From (2.13),
its entries are given by

yik = F3(i) (1−G1(i, k)) + [F2(i)− F3(i)]G2(i, k)(7.3)

with

F2(i) =

√
2

N


 (−1)

i+1 sin
iπ

N

2

(
1− cos iπ

N

)



[2, appendix] and F3(i) as in (3.6). As the functions F2(i) and F3(i) are the same for
both discretizations, any difference in solution behavior must come from a difference
in the behavior of the functions G1(i, k) and G2(i, k) associated with the two methods.
We therefore now focus on how these functions vary with i ∈ SN as ε → 0 (Pe → ∞)
for k ∈ SN fixed. To simplify the presentation of this analysis, we will assume that δ
is fixed independent of Pe, with δ != 0, 0.5.

With the streamline diffusion discretization, neglecting terms of O(P−1
e ) and

higher in (3.1) gives the approximations

µ1 � 1, µ2 � 2δ + 1

2δ − 1 ≡ β

so that

G1(i, k) =
µk

1 − µk
2

µN
1 − µN

2

� 1− βk

1− βN
≡ Ga

1(k),

G2(i, k) = (1− µk
1)− (1− µN

1 )G1(i, k) � 0.

Thus, in the limit as Pe → ∞, both functions are independent of i. We then have
yik � F3(i)(1−Ga

1(k));

hence, using (2.8),

ujk � fb(xj)(1−Ga
1(k)).

That is, the variation of ujk from the bottom boundary function is independent of j
in this limit. For the artificial diffusion discretization, however, neglecting terms of
O(P−1

e ) and higher in (7.2) gives

µ1,2 � −2δ(4− Ci)±
√
4(1 + 15δ2) + 4(1− 12δ2)Ci + (1− 12δ2)C2

i

2(1− δ) + (1− 4δ)Ci
,

leading to approximations for G1(i, k) and G2(i, k) which depend on i through Ci.
From (7.3) the solution is therefore

ujk � fb(xj)−
√
2

N

N−1∑
i=1

sin
ijπ

N
(F3(i)G1(i, k)− [F2(i)− F3(i)]G2(i, k)) .
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(a) Streamline diffusion: Pe = 2.
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(b) Streamline diffusion: Pe = 200.
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(c) Artificial diffusion: Pe = 2.
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(d) Artificial diffusion: Pe = 200.

Fig. 13. Solutions and contour plots for δ = 0.4 and N = 16.

This has a j-dependence which the continuous solution in this limit does not.

This fundamental difference between the discretizations is demonstrated pictori-
ally in Figure 13, which shows streamline and artificial diffusion approximations (and
associated contour plots) for this example problem with two values of ε, δ = 0.4,
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and N = 16. Plots (a) and (b) show that the streamline diffusion method captures
the narrowing of the internal layer exhibited by the continuous solution as ε → 0
(Pe → ∞). The equivalent artificial diffusion approximation does not, as shown in
plots (c) and (d).

8. Summary. In this study, we have performed a Fourier analysis of model prob-
lems with grid-aligned flow that identifies the effects of upwinding in discretizations of
the convection-diffusion equation. Our emphasis is on streamline-diffusion discretiza-
tion with bilinear elements, where we show how the choice of streamline diffusion
parameter affects the qualitative behavior of the solution with respect to oscillations.
This analysis gives theoretical justification for the choice

δ = δ∗ =
1

2

(
1− 1

P el
e

)
.

Our analysis also shows that δ∗ is the optimal choice for finite difference discretiza-
tions, provides insight into the method of isotropic artificial diffusion, and yields
qualitatively good solutions in a variety of computational experiments.
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