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SUMMARY

We demonstrate the performance of a fast computational algorithm for modeling the design of a
microfluidic mixing device. The device uses an electrokinetic process, induced charge electroosmosis
(J. Fluid Mech. 2004; 509), by which a flow through the device is driven by a set of polarizable
obstacles in it. Its design is realized by manipulating the shape and orientation of the obstacles in order
to maximize the amount of fluid mixing within the device. The computation entails the solution of
a constrained optimization problem in which function evaluations require the numerical solution of a
set of partial differential equations: a potential equation, the incompressible Navier–Stokes equations,
and a mass-transport equation. The most expensive component of the function evaluation (which must
be performed at every step of an iteration for the optimization) is the solution of the Navier–Stokes
equations. We show that by using some new robust algorithms for this task (SIAM J. Sci. Comput. 2002;
24:237–256; J. Comput. Appl. Math. 2001; 128:261–279), based on certain preconditioners that take
advantage of the structure of the linearized problem, this computation can be done efficiently. Using this
computational strategy, in conjunction with a derivative-free pattern search algorithm for the optimization,
applied to a finite element discretization of the problem, we are able to determine optimal configurations
of microfluidic devices. Copyright � 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Improvements in techniques for manufacturing devices at small length scales have created a growing
interest in the construction of miniature devices for use in biomedical screening and chemical
analysis. These microfluidic devices manipulate fluid flows over small length scales, between 10
and 100�m, with a low fluid volume, and correspondingly low Reynolds number. This results
in laminar flow of the type commonly found in blood samples, bacterial cell suspensions, or
protein/antibody solutions. Methods for controlling and manipulating fluids at such length scales
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are a key ingredient in this process [1]. However, robust strategies for pumping and mixing in
microfluidic devices are in short supply. Although mixing is one of the most time-consuming
steps in biological agent detection, research and development of microfluidic mixing systems is
relatively new. In this paper, we develop an efficient numerical algorithm for modeling this process
using Induced Charge Electro-osmosis (ICEO) [2]. Our goal is to use this model to determine an
optimal mixing design for a microfluidic device by manipulating the shape of the obstructions in
the flow domain.

In the course of modeling the mixing process, we need to compute the numerical solution of a
collection of partial differential equations (PDEs): a potential equation, a mass-transport equation,
and the incompressible Navier–Stokes equations. Solving the third of these is by the far the most
complex and time consuming and one of our aims is to demonstrate the utility of some new
solution algorithms for performing this task efficiently. Moreover, the systems of equations have
on the order 105–108 unknowns, and these sets of numerical computations must be performed for
the function evaluations required at every step of an algorithm used to optimize the structure of
the ICEO device. Thus, it is critical that the solutions are computed efficiently.

The methods we use to solve the algebraic systems for the incompressible Navier–Stokes
equations are built from preconditioners using ‘approximate commutator’ methods [3]. These
methods are based on the approximation of the Schur complement operator by a technique proposed
by Kay et al. [4], Silvester et al. [5], and Elman et al. [6]. They use multilevel multigrid methods and
in our particular case, algebraic multilevel methods (AMG) as building blocks for the linear solver.

The paper is organized as follows. Section 2 gives a brief description and justification of the
physical motivation for modeling ICEO mixing devices. Section 3 describes the steps necessary to
model ICEO flows. Section 4 describes the Navier–Stokes solver used in this problem. Section 5
provides a brief overview of the parallel implementation of the optimization process including the
choices of non-linear and linear solvers. Details of the numerical experiments and the results of
these experiments are described in Section 6. Concluding remarks are provided in Section 7.

2. HISTORICAL CONTEXT AND BACKGROUND

We are concerned with mixing chemical or biological samples with reagents for the detection of
specific agents. Microfluidic mixing strategies can be divided into two general classes, passive
(pressure/capillary) and active (electric/magnetic) mixing. Passive mixing, which occurs when
liquids are forced through winding paths (baffles, turns, etc.), continually dilutes the sample as long
as the process continues. Such pressure-driven flows are commonly used in microfluidic devices
and can be very effective when the channel dimensions are not too small (>10�m). However, these
methods scale poorly with miniaturization, disperse the sample, and do not offer local control of
flow direction.

Active mixing does not suffer from these difficulties because an independent source of motion
is used to mix liquids. Strategies for active mixing include production of recirculating flows by
ultrasonic means or by electrokinetic instabilities [7]. The drawback of ultrasonic methods is
that these strategies are only useful for large and bulky mixing platforms. Generating flows by
electrokinetic instabilities requires different conductivities in the two liquids being mixed and large
voltages. ICEO [2, 8] has advantages over these approaches because it has been shown to mix dyes
in a few seconds [9] and scales well for smaller devices.

ICEO occurs when an electrical conductor is placed in a liquid with dissolved electrolytes in
the presence of an electric field. Consider a cylindrical conductor immersed in a liquid in the
presence of an electric field, as shown in Figure 1 (left). The conductor is free of current and is
electrically floating so it becomes polarized, thus making the field within it zero. Then the charge
on the surface of the conductor attracts counter ions in the surrounding liquid so an electric double
layer that acts like a capacitor is formed adjacent to the conductor surface. The applied field acts
on this ionic charge layer, which has been created by the field, causing the ions to move. The
mobile ions move in response to the electric field, and the ions drag the surrounding fluid with
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Figure 1. Double layer flows around a circular and triangular conductor as described in [9].

them by viscous forces. This produces an effective ‘slip’ velocity at the conductor surface which
is proportional to the product of the electric field squared and the characteristic length of the
conductor [2].

Both Adjari [10] and Ramos et al. [11] observed that electric double layers could form on
charged electrodes and induce fluid motion. The theory that the polarization of conducting objects
can lead to non-linear electro-osmotic flows for spherical polarizable colloids was first described
by Murtsovkin and colleagues in [12, 13]. Squires and Bazant [2] extended this description to
general shapes and derived analytical solutions for spheres and cylinders. They characterized both
time-independent and dependent non-linear ICEO flows and suggested microfluidic pumping and
mixing devices using symmetric bodies and electrodes. Subsequently they derived asymptotic
solutions for symmetric shapes with asymmetric perturbations [14] and suggested microfluidic
devices with asymmetric shapes [8]. ICEO has been experimentally observed in [9, 15, 16].

This ICEO process for mixing fluids is produced by placement of one or more electrically
floating obstructions in a microchannel which are subjected to an applied voltage to create the
electrokinetic motion. The shape and layout of the obstructions or posts are designed to generate
streamlines that cross between the two fluids being mixed, effectively stretching their interface so
diffusion can act more quickly. ICEO provides a bounty of desirable effects, including generating
velocities proportional to the square of the voltage, scaling well to smaller devices, and enabling
a range of possible configurations for different applications. Moreover, the posts can be charged
to a fixed potential, allowing more control over the flow field, although this is more costly.
Additional advantages of ICEO are that flows can be made to recirculate within a given volume,
reducing dispersion [9], and that time-dependent electric fields can be used to create chaotic
streamlines [17, 18]. Since we use background (Navier–Stokes) flow in our models, the motion in
our flow field through the ICEO vortices acts like time modulation.

The ICEO flow pattern depends on the shape of the conductor(s). A symmetric shape typi-
cally results in symmetric recirculating flows surrounding the conductor. For a single cylindrical
conductor such as that shown on the left of Figure 1, the flow will be composed of four symmetric
vortices. If there are many of these conductors a periodic flow pattern is produced. An asymmetric
shape, such as the triangle shown on the right of Figure 1, creates a non-symmetric flow which
can transport fluid between the top and bottom halves to promote mixing [19]. Similar designs
of ICEO flows around polarizable corners for triangular designs have been studied in [20, 21],
whereas other recent work on general motion for elongated spherical shapes can be found in [22].
One initial configuration we have investigated can be found in Figure 2.

The objective of this work is to generate and solve numerically a model of an ICEO-driven
microfluidic mixing device for combining a sample fluid with a reagent, building upon previous
experimental, theoretical, and computational studies of ICEO flows and their applications. This
device could be useful as part of a miniaturized biological detector. However, the best shapes and
topology for the conductors that generate the ICEO flow is currently unknown. Our goal is to
investigate this issue by solving a shape optimization problem to maximize the mixing of two
fluids by manipulating the shape and topology of the charged region. Shape optimization has been
applied to microfluidics in [9, 23, 24]. At each step of the optimization algorithm, a sequence
of computationally expensive fluid problems must be solved requiring scalable linear solvers to
effectively solve these optimization problems.
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Figure 2. Sample initial domain for the multiple cylinder problem, with plot of
the initial horizontal velocity.

3. MODEL DESCRIPTION

A finite element model was used to calculate the electric field, the ICEO flow as described in [2, 16],
and the mass transport for a multispecies liquid. The DC field is assumed to be in a liquid with
neutral charge. Under these conditions the electric field is governed by Laplace’s equation,

E =∇2�=0 (1)

where � is the electric potential and E is the calculated electric field. The boundary conditions
for (1) are Neumann conditions (zero normal gradient of the potential) at the channel boundaries
and Dirichlet conditions (specified potential of 0.05) at the electrodes. Note that the insulating
boundary condition applied on the surfaces of the posts is the same as that for the channel walls.
The metallized posts are assumed to be completely shielded from the field by the double layer.

The electric field, E , induces a flow in the device, which is modeled by the incompressible
Navier–Stokes equations

−�∇2u+(u·grad)u+gradp= f (2)

−divu=0 (3)

in �⊂Rd (d =2 or 3) and used to calculate momentum transport. Here u is the fluid velocity,
p represents the hydrodynamic pressure, � the kinematic viscosity, and f the body forces. No-slip
velocity boundary conditions were used on all channel surfaces on �� except the metallized post
surfaces, for which the boundary conditions, determined by E , are

u= ��Et

�
(4)

where � is the fluid permittivity, � is the potential drop across the electrical double layer, Et
is the tangential electric field obtained from solving (1), and � is the fluid viscosity [2]. For
low concentration and low voltage ICEO flows, the flow is driven by the velocity boundary
conditions along the posts, so the body forces, f, are zero [2]. The above relationship is valid in
the Debeye–Huckel limit of low surface charge (in practice, at low voltages and concentrations) in
which no Stern layer forms and the diffuse layer is modeled by an exponentially decaying charge
concentration. While practical devices may operate outside of these regimes, more complex models
that can partially account for the Stern layer have demonstrated that the flow topology is largely
independent of this boundary condition [9, 16], so it is reasonable to expect shapes generated
by optimization using these boundary conditions would still perform well in actual devices. The
difference would lie in the mixing time scale (i.e. the time taken to perform the mixing from
an unmixed initial condition) and using boundary conditions that would completely describe this
process is beyond the scope of this work.
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Once the velocities are obtained from the Navier–Stokes equations, the mass fraction of the
solute is determined by the mass transport (or advection-diffusion) equation,

u·∇m = D∇2m (5)

where m is the mass fraction of solute and D is the diffusivity.
The mass-transport equation in (5) is a useful formula to model mixing because it corresponds to

a mass transfer process that occurs through a combination of convection and diffusion. The fluids
of interest here are liquids, where diffusive mass transport is very slow over the distances typical of
microchannels. Thus, convective transport is used to stretch and fold the liquids, that is, to increase
interfacial area between the two liquid volumes and to reduce the distances over which diffusion
must occur. We chose the diffusivity coefficient, D =1.8×10−9cm2/s, which represents ∼3�m
particles in an aqueous solution. This value was used in [9]. It corresponds to a relatively small
diffusivity constant, so that the problem is convection-dominated. A (mildly diffusive) model of
this type creates a challenge for mixing and makes this a good test case for modeling a mixing
device. A small value of D results in a large (∼105) Peclet number, Pe=uL/D, where L is the
characteristic length scale of the device, so much of the mass transport needed for mixing occurs
by advection. For the boundary conditions in this equation, we use Neumann zero flux conditions
on the solid surfaces and Dirichlet conditions of 1 on one inflow boundary and 0 on the other
inflow boundary.

A mixing metric, defined in [9], was used to quantify the extent of mixing based on the calculated
results,

M =
∫

(m−m̄)2 dV

V
(6)

where m̄ is the average concentration of solute in the liquid mixture and the integral is over
the volume, V , of the mixing domain. The initial value of this metric depends on the degree of
segregation at the beginning of the mixing process and after the loading process for our initial
configuration. As the shape of the obstructions are changed in the course of the optimization, the
metric decreases. If perfect mixing is approached, the metric is zero.

Our goal is to determine an optimal geometry for mixing by varying the shape of the elec-
trically charged posts. The shape of the posts are defined as functions parameterized by N
design variables, d . It is necessary to introduce constraints on the design parameters in order to
avoid degenerate post shapes. We use simple bound constraints Li�di�Ui . Both the choice of
bounds and function parameterizations for different initial configurations are described further in
Section 6.

The velocity field u depends on the design variables implicity through the boundary conditions
for the Navier–Stokes equations. We consider the mixing metric M to be an implicit function of
the design variables, and write the problem as

min M(d) s.t. Li�di�Ui (7)

The algorithm used to solve this optimization problem is asynchronous parallel pattern search
(APPS), described further in Section 5 where we discuss the software used in this study.

To compute M(d) at each iteration of the optimization algorithm it is necessary to compute the
velocity field, u(d), by solving problems (1), (2)–(3), and (5). Typically, hundreds of such solves
are necessary to be able to solve these equations efficiently, motivating our use of fast solvers.

Finally, we note that the optimization problem is not convex and that multiple minima are
possible. The APPS algorithm finds local minima, and different initial configurations may result
in different locally optimal shapes. As will be seen in Section 6 below that is the case for this
problem. To find a global minimum it would be necessary to embed the present problem in an
outer global optimization algorithm such as stochastic tunneling [25]. We expect the change of
optimization algorithm to have little impact on the fast computational algorithms that are the focus
of this study.
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4. THE PRESSURE CONVECTION–DIFFUSION NAVIER–STOKES PRECONDITIONER

In the course of the optimization process (i.e. solving a series of problems (1), (2), (3), and (5)), the
dominant cost in terms of CPU time is in solving the Navier–Stokes equations. We use a solution
algorithm with convergence rates independent of the mesh size that we describe in this section.

We solve the nonlinear systems by Picard iteration, which is derived by lagging the convection
coefficient in the quadratic term, (u·grad)u. For a low Reynolds number flow such as this one,
Picard’s method is an adequate choice of a non-linear solver. This procedure begins with an initial
guess u(0) for the velocities and p(0) for the pressure, and updates to the velocities and pressures
are computed by solving the Oseen equations

−�∇2(�u(k))+(u(k) ·grad)�u(k) +grad�p(k) = f−(−�∇2(u(k))+(u(k) ·grad)u(k) +grad p(k))

−div�u(k) = divu(k)
(8)

The iterated sequence is determined by u(k+1) =u(k) +�u(k) and p(k+1) = p(k) +�p(k). The discrete
linear system has the form (

F BT

B 0

)(
Duk

�pk

)
=
(

fk
u

f k
p

)
(9)

where F is a discrete convection–diffusion operator, BT is the discrete gradient operator, and B is
the discrete divergence operator. The right-hand side vector, (fu, f p)T, contains, respectively, the
non-linear residual for the momentum and continuity equations.

The strategies we employ for solving (9) are derived from the LDU block factorization of this
coefficient matrix where the diagonal (D) and upper triangular (U ) factors are grouped together,(

F BT

B 0

)
=
(

I 0

B F−1 I

)(
F BT

0 −S

)
(10)

and

S =BF−1 BT (11)

is the Schur complement. We note that there is a similarity between the factorization (10) and
methods developed for evolutionary problems in [26–28]. Connections among these approaches
are discussed in [29] and [3, p. 376]. For large-scale computations, the Schur complement is a
dense matrix, so its not feasible to use it in computations. For our preconditioner, we only use the
upper triangular factor of (10), and replace the Schur complement S by some approximation Ŝ (to
be specified later).

We motivate this strategy by examining the computational issues associated with applying this
upper triangular preconditioner in a Krylov subspace iteration. At each step, the application of the
action of the inverse of this operator to a vector is needed. By expressing this operation in factored
form, (

F BT

0 −S

)−1

=
(

F−1 0

0 I

)(
I −BT

0 I

)(
I 0

0 −S−1

)

two potentially difficult operations can be seen: S−1 must be applied to a vector in the discrete
pressure space and F−1 must be applied to a vector in the discrete velocity space. The application of
F−1 can be performed relatively cheaply using an iterative technique, such as multigrid. However,
applying S−1 to a vector is too expensive. An effective preconditioner can be built by replacing
this operation with an inexpensive approximation. We discuss the pressure convection–diffusion
(P–CD) preconditioners where the basic idea hinges on the notion of an approximate commutator.
Consider a convection–diffusion operator of the form

(�∇2 +(w ·grad)) (12)
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When w is an approximation to the velocity obtained from the previous nonlinear step, (12) is an
Oseen linearization of the non-linear term in (2). Suppose there is an analogous operator defined
on the pressure space,

(�∇2 +(w ·grad))p

where the subscript p here and below is intended to emphasize that operators are defined on the
pressure space. Consider the commutator of these operators with the gradient:

�= (�∇2 +(w ·grad))∇−∇(�∇2 +(w ·grad))p (13)

Supposing that � is small, multiplication on both sides of (13) by the divergence operator gives

∇2(�∇2 +(w ·grad))−1
p ≈∇ ·(�∇2 +(w ·grad))−1∇ (14)

In discrete form, using finite elements, this usually takes the form

(Q−1
p Ap)(Q−1

p Fp)−1 ≈ (Q−1
p B)(Q−1

v F)−1(Q−1
v BT)

Ap F−1
p Q p ≈ (BF−1 BT )

where here F represents a discrete convection–diffusion operator on the velocity space, Fp is the
discrete convection–diffusion operator defined on the pressure space, Ap is a discrete Laplacian
operator, Qv the velocity mass matrix, and Q p is a pressure mass matrix (or a lumped version
of it). This suggests the approximation for the Schur complement

S ≈ Ŝ = Ap F−1
p Q p (15)

for a stable finite element discretization. A similar approximation can be made for stabilized finite
element discretizations [3, 29].

Applying the action of the inverse of Ap F−1
p Q p to a vector requires solving a system of

equations with a discrete Laplacian operator, then multiplication by the matrix Fp, and solving a
system of equations with the pressure mass matrix. In practice, Q p can be replaced by its lumped
approximation with little deterioration of effectiveness. Both the convection–diffusion system,
F , and the Laplace system, Ap, can also be handled using multigrid with little deterioration of
effectiveness. Considerable evidence for two and three-dimensional problems indicates that this
preconditioning strategy is effective, leading to convergence rates that are independent of mesh
size and mildly dependent on Reynolds numbers for steady flow problems [4, 5, 30, 31]. A proof
that convergence rates are independent of the mesh is given in [32]. For this microfluidic problem,
this new methodology enables the efficient solution of the ICEO model.

5. IMPLEMENTATION AND TESTING ENVIRONMENT

We have modeled the ICEO mixing process using Sundance, a finite element code developed at
Sandia National Laboratory [33]. To minimize the objective function we use APPSPACK, which
is an Asynchronous Parallel Pattern Search code also developed at Sandia National Laboratory.
We describe both Sundance and APPSPACK in this section.

At each step of the optimization loop we need to perform a series of computations. Given the
new set of design variables, which determine the domain �, we automatically generate a mesh
on � from a template. We use that mesh to solve a series of problems to model the ICEO flow and
the mixing process. We generate the mesh using the software package CUBIT, which is developed
at Sandia National Laboratory [34]. The unstructured meshes use triangular elements with an
extra level of refinement around the conducting surfaces. This is done to accurately capture the
wall-parallel flow and effect of the post on the potential field. Then we model the ICEO flow, by
solving a potential equation, (1), which we use to implement a slip velocity boundary condition, (4),
for the Navier–Stokes Equations (2)–(3). The calculated velocity value from the solution of the
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Navier–Stokes equations is used in the mass-transport equation, (5). The mass fraction, calculated
from the mass-transport equation, is used to evaluate the mixing metric, (6), which is the value
we want to minimize. These are the major calculations required at each step of the optimization
algorithm. In the remainder of this section we describe the discretization details for each equation,
our solver choice for each of the discrete systems of equations, and the software used for modeling
the ICEO optimization process.

We discretize the potential equation using piecewise quadratic, P2, finite elements integrated with
second-order Gaussian quadrature. For solving the linear system resulting from the discretization of
the potential equation we use conjugate gradient (CG) preconditioned with two levels of algebraic
multigrid. The smoother for this problem is an incomplete LU factorization. For the coarsest level
in the multigrid scheme, we used a direct LU solve. We terminate this iteration when the residual
is reduced by a factor of 10−10, that is,

‖b− A�‖�10−10‖b‖ (16)

We discretize the incompressible Navier–Stokes equations using Taylor–Hood P2 − P1 finite
elements with fourth-order Gaussian quadrature [3]. This is a div-stable finite element discretization,
so no pressure stabilization is required. Moreover, these problems have Reynolds numbers on the
order of 1, and stabilization of the transport term is also not needed. The non-linear system is
solved by Picard’s method where the structure of a two-dimensional steady version of F is a 2×2
block matrix consisting of a discrete version of the operator(−��+u(k) ·∇ 0

0 −��+u(k) ·∇

)
(17)

where u(k) is a velocity value from a previous iteration. We terminate the non-linear iteration when
the relative error in the residual is 10−4, that is,∥∥∥∥∥

(
fu −(F(u)u+ BT p)

f p − Bu

)∥∥∥∥∥�10−4

∥∥∥∥∥
(

fu

f p

)∥∥∥∥∥ (18)

At each step of the non-linear iteration, we terminate the linear iteration with the Oseen system,
when the residual is reduced be a factor of 10−5, that is,∥∥∥∥∥

(
f k
u

f k
p

)
−
(

F BT

B 0

)(
Duk

�pk

)∥∥∥∥∥�10−5

∥∥∥∥∥
(

f k
u

f k
p

)∥∥∥∥∥ (19)

with zero initial guess. We solve the resulting linear system using GMRES with a Krylov subspace
size of 300 and a maximum of 600 iterations, preconditioned with the pressure convection–
diffusion preconditioner. We described this method in Section 4 and have found it to work well on
some realistic benchmark problems in [3, 29]. This method is scalable, mesh independent and is
built using algebraic multigrid for its core operations. This makes this strategy straightforward to
construct and apply. Moreover, this strategy is robust to grids and grid spacing, so it is advantageous
for a problem like this one where the grid is automatically generated with parameters from the
optimization code.

The operators Fp, Ap, and Q p required by the pressure convection–diffusion strategy are
generated by the application code, Sundance. For the pressure convection–diffusion preconditioner,
we solve the subsidiary pressure Poisson type and convection–diffusion subproblems to a tolerance
of 10−5, that is, this iteration for the convection–diffusion problem is terminated when

‖y− Fu‖�10−5‖y‖ (20)

For this system, we use GMRES preconditioned with four levels of smoothed aggregation alge-
braic multigrid, and for the pressure Poisson problem (with coefficient matrix Ap), we use
CG preconditioned with four levels of smoothed aggregation algebraic multigrid. For both the
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convection–diffusion and pressure Poisson problem, a traditional point GS smoother is used for the
smoothing operations. For the coarsest level in the multigrid scheme we used a direct LU solve.

We discretize the mass-transport equation (5) using P2 finite elements with fourth-order
Gaussian quadrature. For solving (5), we use GMRES preconditioned with three levels of smoothed
aggregation algebraic multigrid. The smoother at the finest two levels is an incomplete LU factor-
ization. On the coarsest level, we use a direct LU solve. We terminate this iteration when the
residual is reduced by a factor of 10−5, that is,

‖b− Am‖�10−5‖b‖ (21)

For the optimization loop, where we want to minimize the objective function found in (7) and
determine the optimal mixing strategy for a microfluidic device by manipulating the shape of the
obstruction we use APPSPACK, which is a derivative-free Asynchronous Parallel Pattern Search
code developed at Sandia National Laboratory. This code minimizes the objective function by
asynchronous parallel Generating Set Search (GSS), which is an extension of pattern search to
handle linear constraints. To prevent false convergence to suboptimal points, GSS methods use a
core set of search directions that conform to the local geometry of the feasible region, permitting
tangential movement along nearby constraints. A bound on optimality conditions is derived in
terms of the maximum step size and convergence is determined when the step size for each search
direction drops below a user specified tolerance. The ability to perform computationally expensive
function evaluations asynchronously in parallel can dramatically reduce solve time and CPU
inefficiencies due to load imbalance. APPSPACK is written in C++ and uses MPI for parallelism.
Our approach for using APPSPACK to solve optimization problems is that only function values
are required for the optimization, so it can be applied easily. We have a small number of design
variables (i.e. n�100), but expensive objective function evaluations. Parallelism is achieved by
assigning the individual function evaluations to different processors. The asynchrony enables better
load balancing.

APPSPACK can solve optimization problems of the basic form

min M(d) (22)

s.t. cL�AId�cu (23)

AE d =b (24)

l�d�u (25)

where M(d) is the objective function, the inequality constraints are denoted by the matrix AI and
the upper and lower bounds by cL and cU, respectively. The equality constraints are denoted by
the matrix AE and the right-hand side, b. Finally, l and u denote lower and upper bounds on the
component variables [35, 36]. For our problem, we only use the linear constraints found in (25),
which we describe further in Section 6. The objective function, M(d), is the expression found in (6).
The evaluation of this expression requires the solution of (1), (2)–(3), and (5), which all depend
on the shape and orientation of the charged posts that are varied by the optimization algorithm.
We have a non-linear constraint that is not directly handled by APPSPACK. This constraint is the
requirement that the shape being meshed by Cubit is realistic. If Cubit successfully meshes the
shape, then we evaluate the function and solve the ICEO flow. If Cubit fails to mesh the shape,
then we return a large value to APPSPACK.

We use Sundance [33] for the finite element discretization, which is a tool developed at Sandia
National Laboratory for specifying, building, and developing finite element solutions of PDEs. It
uses automatic differentiation for symbolic objects, which allows the user to create differentiable
simulations for use in optimization problems. Another feature of Sundance is that it allows a user
to abstractly code a finite element problem, while providing a set of components with which the
user can set up, describe, and solve a problem without worrying about bookkeeping details. This
approach allows a high degree of flexibility in the formulation, design, discretization, and solution
of a problem [33].
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Our implementation of the pressure convection–diffusion preconditioner and the other solvers
for the discrete systems of equations uses Trilinos [37], a software environment developed at Sandia
National Laboratories for implementing parallel solution algorithms using a collection of object-
oriented software packages for large-scale, parallel multiphysics simulations. The main Trilinos
components we use are Meros, Epetra, TSF/Thyra, AztecOO, and ML. Meros provides scalable
block preconditioning for problems with coupled simultaneous solution variables. The pressure
convection–diffusion preconditioner studied here is implemented in this package. Epetra provides
the fundamental routines and operations needed for serial and parallel linear algebra libraries.
Epetra also facilitates matrix construction on parallel distributed machines. TSF/Thyra provides an
abstract interface to other Trilinos packages. The AztecOO package is a massively parallel iterative
solver library for sparse linear systems. It supplies all of the Krylov methods used in solving (9),
the F , and Schur complement approximation subsystems. We use the multilevel algebraic multigrid
preconditioning package, ML with AztecOO to solve the potential equation system, the mass-
transport system, as well as the subsidiary systems required for the preconditioner for (9).

We conclude this section with some comments on the relation between this work and other,
related, approaches. First, we note that problems of the type considered here can be solved using
commercial software packages such as COMSOL. One of our main aims was to explore a specific
new class of algorithms for performing the function evaluations (M(d) of (22)) needed to perform
the optimization. The objective function, M(d), is the expression found in (6) (where it should be
understood that m of (6) depends implicitly on the design variables d). This could in principal
be done using COMSOL. Sundance, or more generally, the complete suite of Sandia software
available to us, allowed us a great deal of flexibility in designing and modifying our solution
strategy. This includes specifying the problem, gridding, and development of the solution algorithm.
COMSOL uses Matlab’s solvers, which are not specifically tailored for the problems (i.e. Poisson,
convection–diffusion and Navier–Stokes equations) embedded in the function evaluations. These
will be significantly less efficient for large-scale problems than the Trilinos-implemented solvers
we are using here. In addition, COMSOL uses a derivative-based, primarily serial algorithm,
SNOPT [38], for optimization. We do not have derivatives available for the optimization strategy
and, moreover, the pattern search algorithm in APPSPACK that we used is naturally parallelizable
and very robust. A direct comparison between the two approaches for optimization is beyond
the scope of this project, but the technique we are studying offers the advantage of very natural
parallelism, and it avoids the computational overhead associated with computing or estimating
gradients (of the objective function M(d)) for a gradient-based optimization strategy.

In Section 6, we include details on the optimization process and choice of objective function,
and include a few sample meshes and numerical results that were created in the course of the
optimization loop. The results were obtained in parallel on Sandia’s Institutional Computing Cluster
(ICC) using 8–100 processors per run. Each of this cluster’s compute nodes is dual Intel 3.6 GHz
Xenon processors with 2 GB of RAM.

6. SIMULATION AND NUMERICAL RESULTS

Our goal is to optimize the shape of the microfluidic mixing device to maximize the amount of
mixing being done in the channel. We have tested two different initial configurations consisting of
circular posts (Figure 2) and alternating triangular posts as described in [9]. All of these designs
use the mixing metric described in (6). We have also tested a continuous flow mixer, which we
describe in Section 6.3, where the flow field is driven by both ICEO and an inflow boundary
condition.

In Section 3, we described the steps needed to solve our optimization problem. In this section,
we show a variety of flow fields obtained from various steps of the optimization loop and include
the value of the mixing metric to show the quality of mixing for that particular mesh. We show the
performance of the solvers with tabulated listings of iteration counts and CPU times for the various
steps of the computation together with other costs such as mesh generation and matrix assembly.
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Figure 3. Sample mesh for the multiple cylinder domain.

The solver for the Navier–Stokes component of the ICEO flow was GMRES preconditioned with
the pressure convection–diffusion preconditioner. This method generated scalable results in other
applied settings [29] and we see similar trends when applying this technology to this problem. We
validated our workflow by calculating the resultant ICEO flow for a model of a single post in a
uniform field. Qualitatively the flow structure (four vortex structures emerging from the main post)
between our calculated flow and the solution of a similar model in [2] matched. Quantitatively,
the calculated velocity of this single post model problem matched (to three significant digits) the
velocity of a single post model computed using the computational simulation tools mentioned
in [9]. Note that the computed velocity is able to accurately predict the size of ICEO flow features,
which is important because ICEO drives our mixing metric and helps determine the quality of the
mixing performed in a device. In this sample problem, we also verified that the velocity computed
by our code recovers the linear ICEO model that was implemented in it since the computed velocity
depends on ∇2�.

6.1. Circle initial configuration

For our first configuration, we begin with 10 circular posts. We use the objective function (6)
constrained to 38 design variables. We parameterize each post as a set of piecewise line segments
that connect 10 points, as in Figure 3. Each of these points is characterized in polar coordinates by
a distance from a reference point of the post together with an angle with respect to the horizontal
axis of our system. This results in 20 design variables. In the initial configuration, the reference
points are the centers of the circular posts, which lie on a common horizontal line, and the vertical
coordinate of each reference point is fixed throughout the simulation. The 10 posts are required
to have the same shape, and each post other than the leftmost one is offset by a distance from its
reference point to the reference point for the post to its left and rotated by an angle. This gives
18 more variables. The 38 variables are linearly constrained (25) as follows. The angles for points
defining the posts are constrained to be between 0 and 360◦, and the radii are constrained to have
a value between 0.001 and 0.005�m. Likewise, the rotation angle is constrained by 0 and 360◦,
and the linear constraint for the offset distance from one reference point to that of its neighbor
to the left is bounded between 0.01 and 0.02�m. Each corner is smoothed to a radius of 5�m
which allows the points to be collocated, helps with mesh generation, and is a tolerance to permit
an acceptable physically manufacturable device. Note that the height of the domain is fixed at
0.01�m, while the length of the domain is variable because the distance from the inlet to the first
post and outlet to the last post is held constant at 0.005�m. Therefore, the domain can expand or
contract in the streamwise direction (horizontally), but not vertically.
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Figure 4. Preliminary design with mixing value of 0.032451.

Figure 5. Intermediate design with mixing value of 0.0249871.

Figure 6. Intermediate design with mixing value of 0.018406.

The original configuration of the circular posts, shown in Figure 2, has an initial mixing metric
value of 0.0287106. The optimization strategy improves on this value by manipulating the posts.
In Figures 4–8 we show the flow field at various points of the optimization and list the value of the
mixing metric in the caption of each figure. Notice that the posts are dimpled. The optimization
strategy tests some configurations that increase the metric and rejects them. Figure 4 is one of these.
This configuration produces a flow field where the fifth and sixth posts have been stretched apart;
this resulted in an increase in the mixing metric from the initial value. Owing to this increase, the
pattern search algorithm tended to stay away from configurations of this type. Figures 5–7 show
a few sample flow fields where the mixing function value is decreasing, but the obstructions are
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Figure 7. Intermediate design with mixing value of 0.00127773.

Figure 8. Intermediate design with mixing value of 0.000923394.

not aligned for optimal mixing. Figures 8 and 9 show two configurations for a low mixing metric
(values of 0.000811796 and 0.00092394). The value of the mixing metric in these two examples
is significantly lower than the value of the original mixing metric. It is interesting to note that
the final configurations retained a strong memory to the initial configuration. This suggests that
this initial configuration (symmetric circles) leads to a local minimum. We consider this to be an
adequate reduction in the cost function. However, we expect the circle configuration to perform
poorly because it allows little cross-flow between the two liquids. In the next section, we change
the initial post configuration from circles to alternating triangles and see what change this has on
the final post configuration and ICEO mixing process.

In Table I, we list the CPU costs for each major component of the function evaluation required
for these computations. In column one of this table we list the figure number, followed by the
total CPU time for a given function evaluation in column two, the total CPU time for Cubit to
generate the mesh in column three, followed by the time to assemble the matrices in column four
and the solver CPU time in column five. The CPU times are very consistent from one type of
configuration to another. The dominant costs are in solving the discretized PDE systems required
by the ICEO mixing process. We further break down these times in Table II.

In this table, we list the iteration counts and CPU time required for each computation required
in the ICEO mixing process. We list the figure number in column one, the total solver CPU time
in column two, followed by the number of iterations and CPU time required for the potential
equation in column three. In column four we list the number of iterations and CPU time required to
solve the Navier–Stokes equations, followed by the iterations and CPU time required to solve the
mass-transport equation in column five. The CPU time required to solve the potential equation and
mass-transport equations is very modest when compared with the time to solve the Navier–Stokes
equations. The iteration counts for this problem are all in the range of 60–70 average iterations
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Figure 9. Final design with mixing value of 0.000811796.

Table I. CPU time for each major computational component.

Figure Total CPU Mesh generation Matrix Solver CPU
number time (s) time (s) assembly (s) time (s)

2 20 765.1 907.1 680.1 17 714.1
4 20 874.1 909.2 679.1 17 987.2
5 19 923.9 991.7 684.5 16 505.4
6 19 643.1 947.2 691.2 16 410.9
7 19 173.8 958.1 672.9 16 008.4
9 19 515.5 932.3 668.1 16 689.1
8 19 488.9 899.1 690.1 16 340.1

Table II. CPU time and iteration count break down for solving the ICEO optimization of a multiple
circular post microfluidic problem.

Potential equation Navier–Stokes equation Mass-transport
Figure Solver
Number CPU Time Iters Time Iters Time Iters Time

2 17 714.1 21 2.6 64.0 17 412.1 6 2.5
4 17 987.2 17 2.2 67.1 17 643.2 8 2.8
5 16 505.4 18 2.3 66.1 16 284.2 5 2.3
6 16 410.9 14 1.8 68.2 16 105.1 6 2.4
7 16 008.4 16 1.9 69.2 15 698.2 7 2.7
9 16 689.1 20 2.5 60.4 16 300.1 5 2.4
8 16 340.1 18 2.3 67.3 15 901.1 8 2.8

per nonlinear Picard step. This suggests that changes in the obstruction have little effect on the
solver for the discrete Navier–Stokes linear systems of equations. Note that in the iteration counts
for the Navier–Stokes equations the non-linear iteration requires between 5 and 8 non-linear steps
to converge to the specified tolerance of (18).

6.2. Triangle initial configuration

Here we begin with an initial configuration of 10 alternating triangular posts. We use the objective
function found in (6) constrained to 38 design variables. We parameterize each triangular post
in a similar way as the circle initial configuration, that is, as a set of piecewise line segments
that connect 10 points. Each of these points is defined in polar coordinates using a distance and
angle with respect to the origin of our system. The difference from the circular configuration is
that we place three of these points at two of the triangle vertices and four at the alternate vertex.
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Figure 10. Initial design with mixing value of 0.00610832.

Figure 11. Intermediate design with mixing value of 0.00489152.

Figure 12. Intermediate design with mixing value of 0.00086896.

This results in 20 design variables. Again, each of the other 9 posts is offset by a distance from
its reference point to that of its left neighbor and rotated by an angle, giving 18 more variables.

Figures 10–15 show examples of design configurations produced during the optimization of this
initial configuration. Note that the optimized design (Figure 15) consists of non-convex obstacles.
In Table III, we list the CPU costs for each major component of the function evaluation. In column
one of this table we list the figure number, followed by the total CPU time for a given function
evaluation in column two, the total CPU time for Cubit to generate the mesh in column three,
followed by the time to assemble the matrices in column four and the solver CPU time in column
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Figure 13. Intermediate design with mixing value of 0.00079312.

Figure 14. Intermediate design with mixing value of 0.000626595.

Figure 15. Final design with mixing value of 0.000489152.

five. The CPU times are very consistent from one type of configuration to another. The dominant
costs are in solving the discretized PDE systems required by the ICEO mixing process.

In Table IV, we list the number of iterations and CPU time required for each subsequent
computation required in the ICEO mixing process. We list the figure number in column one, the
total solver CPU time in column two, followed by the number of iterations and CPU time required
for the potential equation in column three. In column four we list the number of iterations and
CPU time required to solve the Navier–Stokes equations, followed by the number of iterations and
CPU time required to solve the mass-transport equation in column five. The CPU time required
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Table III. CPU time for each major computational component.

Figure Total CPU Mesh generation Matrix Solver CPU
number time (s) time (s) assembly (s) time (s)

10 19 876.8 997.2 730.6 17 949.2
11 20 786.8 1007.2 704.3 18 321.2
12 23 474.2 1031.7 743.2 19 867.2
13 19 912.7 1207.8 709.1 17 692.1
14 20 643.4 1186.2 720.1 17 810.1
15 21 710.3 1020.0 705.1 18 615.2

Table IV. CPU time and iteration count break down for solving the ICEO optimization of a multiple
cylinder microfluidic problem.

Potential equation Navier–Stokes equation Mass-transport
Figure Solver
Number CPU Time Iters Time Iters Time Iters Time

10 17 949.2 19 4.1 60.1 17 591.1 5 2.2
11 18 321.2 27 5.6 62.1 17 892.1 6 2.3
12 19 867.2 21 4.4 67.1 19 302.1 7 2.9
13 17 692.1 24 4.8 61.2 17 092.1 6 2.2
14 17 810.1 15 4.1 62.2 17 110.2 6 2.2
15 18 615.2 25 5.2 63.2 18 005.1 5 2.1

to solve the potential equation and mass-transport equations is relatively modest when compared
with the time to solve the Navier–Stokes equations. The number of iterations for this problem are
all in the range of 60–70 average iterations per non-linear Picard step. The shape of the obstacle
has no impact on the performance.

6.3. Continuous flow mixer

In the previous two sections, we examined the quality of mixing for two fixed mode initial
configurations. Here we explore a continuous flow ICEO mixer and examine the quality of mixing
for this mode. For this example, we begin with the triangle configuration discussed in Section 6.2
with a fixed inflow boundary condition (i.e. ux =5�m per second and uy =0) on the left inlet for
the Navier–Stokes equations. The quality of mixing is measured using a mixing metric similar to
(6), but defined only at the outflow. In other words,

M =
∫

(m−m̄)2 dA

A
(26)

where m̄ is the average concentration of solute in the liquid mixture and the integral is evaluated
over the outflow area, A, of the mixing domain. Being concerned only with the quality of mixing
along the outflow is a realistic goal for a designer of a microfluidic device since this is the place
where the fluid is to be analyzed.

In the process of optimizing this microfluidic device, we have seen a significant reduction in
the mixing metric using the continuous flow mixer compared with the fixed volume configurations
discussed in the previous subsections. For the continuous flow case, in the course of the optimization
algorithm, we were able to reduce the mixing metric from 0.00073088 (Figure 16) to 8.562×10−9

(Figure 20), where Figures 17, 18 and 19 show the results at intermediate steps of the optimization.
It seems that the addition of a cross-flow component to the ICEO flow has helped to mix the fluids
at the outlet. We also tested the mixing metric defined in (6) which is defined over the entire flow
domain and saw a similar reduction in this metric for the continuous flow problem.

In Tables V and VI, we describe the performance of the solver for the various components of the
ICEO flow. We have found that the solvers perform in a similar manner to the fixed volume case.
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Figure 16. Mixing Value: 0.00073088.

Figure 17. Mixing Value: 0.000032701.

Figure 18. Mixing Value: 0.0000006605.

In Table V we list the CPU costs for each major component of the function evaluation required for
these computations. The dominant costs are in solving the discretized PDE systems required by
the ICEO mixing process, which we discuss further in Table VI. In this table, we list the iteration
counts and CPU time required for each subsequent computation required in the ICEO mixing
process. The CPU time required to solve the potential equation and mass-transport equations is
relatively modest when compared with the time to solve the Navier–Stokes equations. The iteration
counts for solving the Navier–Stokes problem with the pressure convection–diffusion preconditioner
are all in the range of 50–60 average iterations per non-linear Picard step. This suggests that
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Figure 19. Mixing Value: 0.000000297.

Figure 20. Mixing Value: 0.000000008562.

changes in the obstruction have little effect on the solver for the discrete Navier–Stokes linear
systems of equations. Note that in the non-linear (Picard) iteration for the Navier–Stokes equations,
5–7 non-linear steps are needed to converge to the specified tolerance found in (18).

6.4. Extensions to the physical model

The results presented above are focused on optimizing the geometry of the microchannel for
an ICEO mixing device. Recently, there has been a large amount of work on designing AC
electro-osmosis (ACEO) devices. Similar applications of numerical methods have been applied to
designing effective pumping devices driven by ACEO around micro-electrodes [11]. Ajdari [10]
predicted that microfluidic pumps could be designed using directional flows that are created by
breaking the spatial symmetry of the device. Bazant and Ben [39] predicted that the flow of ACEO
around asymmetric pairs of electrodes [40] can be improved by creating a ‘fluid conveyor belt’ of
opposing slip velocities that more effectively drives the flow field [41, 42]. The theory behind this
work has been validated experimentally in [43].

The work described in this paper, that is, using ICEO to optimize a mixing device, could be easily
expanded to optimize designs for ACEO-driven pumping devices. In ACEO, the linear response
time averages the solution over many AC oscillations to produce an equation identical to ICEO
except that a complex impedance representing the equivalent circuit response is used as a boundary
condition on the electric field equation. We expect the use of AC current to affect the magnitude
of the flow field, but not the topology, so that the flow topology designs obtained from ICEO
and ACEO will be similar. Therefore, the main difference from what we have described above
is that the boundary conditions for the electric field equation (1) change, and the function being
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Table V. CPU time for each major computational component.

Figure Total CPU Mesh generation Matrix Solver CPU
number time (s) time (s) assembly (s) time (s)

16 15 212.3 907.1 656.3 13 721.3
17 15 859.9 897.4 698.2 14 214.1
18 14 486.9 912.3 604.3 12 821.6
19 15 765.1 951.8 675.2 14 044.9
20 15 045.1 964.2 665.4 13 331.8

Table VI. CPU time and iteration count break down for solving the ICEO optimization of a multiple
circular post microfluidic problem.

Potential equation Navier–Stokes equation Mass-transport
Figure Solver
number CPU time Iters Time Iters Time Iters Time

16 13 721.3 19 2.3 54.0 13 212.1 6 2.5
17 14 214.1 21 2.6 52.0 13 703.2 7 2.6
18 12 821.6 22 2.7 53.4 12 298.9 8 2.8
19 14 044.9 18 2.2 56.1 13 542.7 6 2.5
20 13 331.8 20 2.5 55.0 12 892.3 7 2.6

optimized would be slightly different. (Additional optimization parameters for the post voltages
would have to be added.) Since Sundance is extremely flexible it can easily handle the different
boundary conditions. Moreover, given the simplicity and robustness of APPSPACK, the additional
optimization parameters should have little effect on its ability to find a solution.

Finally, other studies [44, 45] have considered non-linear effects that go beyond the circuit model
at the electrodes that was used in this project. Modeling all of the non-linear effects is still an
open question. We expect that modeling non-linear effects would take the form of a non-linear
dependence of the current as a function of voltage (or changes in the relationship between current
and slip velocity) in the boundary conditions of the Navier–Stokes equations; these can be easily
added to our model. Modeling non-dilute solutions is also an open question [46] and would require
finding the right relationship between voltage and current for the boundary conditions of the flow
equations.

7. CONCLUSIONS

In this paper, we have explored the numerical solution of the optimization problems that arise
in models in of ICEO mixing in microfluidic mixing devices. We have used a combination of
derivative-free optimization together with iterative solution of the collection of PDEs that determine
function values. We have explored several models of devices, including different configurations of
obstacle shapes defining the devices and several mixing metrics, and we have shown the solution
algorithms used to optimize mixing metrics to be robust and efficient with respect to device topology
and choice of metric. The numerical solution strategies are based on effective preconditioned
Krylov subspace solvers for the incompressible Navier–Stokes equations, and the computations
were performed using a derivative-free optimization code, APPSPACK, together with two software
environments, Sundance and Trilinos.
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