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FAST INEXACT IMPLICITLY RESTARTED ARNOLDI METHOD
FOR GENERALIZED EIGENVALUE PROBLEMS WITH SPECTRAL

TRANSFORMATION∗

FEI XUE† AND HOWARD C. ELMAN‡

Abstract. We study an inexact implicitly restarted Arnoldi (IRA) method for computing a few
eigenpairs of generalized non-Hermitian eigenvalue problems with spectral transformation, where in
each Arnoldi step (outer iteration) the matrix-vector product involving the transformed operator is
performed by iterative solution (inner iteration) of the corresponding linear system of equations. We
provide new perspectives and analysis of two major strategies that help reduce the inner iteration
cost: a special type of preconditioner with “tuning,” and gradually relaxed tolerances for the solution
of the linear systems. We study a new tuning strategy constructed from vectors in both previous and
current IRA cycles, and we show how tuning is used in a new two-phase algorithm to greatly reduce
inner iteration counts. We give an upper bound of the allowable tolerances of the linear systems and
propose an alternative estimate of the tolerances. In addition, the inner iteration cost can be further
reduced through the use of subspace recycling with iterative linear solvers. The effectiveness of these
strategies is demonstrated by numerical experiments.
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1. Introduction. Many scientific and engineering applications require a small
group of eigenvalues closest to a specified shift or those with largest or smallest real
parts. The shift-invert and Cayley transformations [24] are the two most commonly
used spectral transformations to map these eigenvalues to the dominant ones of the
transformed operator, so that they can be readily computed by eigenvalue algorithms.
The major challenge of this approach is that a linear system of equations involving
a shifted matrix needs to be solved in each step (outer iteration) of the eigenvalue
algorithm. For large-scale applications, for instance, finite element discretization of
three-dimensional partial differential equations, this linear solve has to be done using
iterative solvers (inner iteration) instead of factorization-based direct solvers. This of-
fers the prospect of inexact eigenvalue algorithms with “inner-outer” structure, where
the required solution of linear systems is computed only to a specified accuracy. This
paper concerns efficient iterative solution of the linear systems of equations that arise
when the inexact implicitly restarted Arnoldi (IRA) method with spectral transfor-
mation is used to detect a few eigenpairs of generalized non-Hermitian eigenvalue
problems (GNHEP) Av = λBv.

In the past decade, considerable progress has been made in understanding in-
exact eigenvalue algorithms, especially the simplest one—inexact inverse iteration.
Systematic study of this algorithm is mainly carried out by Spence and his collabo-
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434 FEI XUE AND HOWARD C. ELMAN

rators (see [1, 2, 3, 13, 14, 15]). A major concern in these papers is the connection
between the error of the inner solve and the convergence of the outer iteration, with
different choices of variable shifts, tolerances, and formulations of the linear systems.
Meanwhile, there has been increasing interest in reducing the inner iteration cost to
enhance the effectiveness of the algorithm. Reference [29] gives some new insights
into preconditioning the linear systems arising in inexact Rayleigh quotient iteration
by modifying the right-hand side of the preconditioned system. This idea is extended
in [1, 2, 3] and further refined in [14, 15] for inexact inverse iteration or Rayleigh quo-
tient iteration, where a special type of preconditioner with “tuning” is constructed
and analyzed. In [27, 42], tuning is used in the iterative solution of the block linear
systems arising in inexact subspace iteration. In all these algorithms, tuning makes
the preconditioned right-hand side of the linear system an approximate eigenvector
(or invariant subspace) of the preconditioned system matrix, and hence the inner it-
eration counts are considerably reduced. This motivation of tuning has also recently
been shown in [16] to bear an interesting relation to the Jacobi–Davidson method.

In the meantime, some developments have been made in understanding inexact
projection-based eigenvalue algorithms, such as the Lanczos and the Arnoldi methods.
It was found in [20] and [4] that the matrix-vector product must be computed accu-
rately in the initial Lanczos or Arnoldi steps, but the accuracy can be relaxed as the
algorithm proceeds without obviously affecting the convergence of approximate eigen-
pairs. An analysis of this phenomenon is given in [28] for the Arnoldi method, using
perturbation theory of invariant subspaces. It is shown there that the allowable er-
rors of matrix-vector products in Arnoldi steps should be inversely proportional to the
eigenvalue residual norm of the desired eigenpair. Therefore, as the Arnoldi method
proceeds and converges to the eigenpair of interest, the accuracy of matrix-vector
products can be relaxed. The use of inexact matrix-vector products has also been stud-
ied in the setting of Krylov subspace linear solvers; see [5, 6], [30, 31, 32], and [40, 41].

Further study of inexact Arnoldi methods is given in [17], where the tuning strat-
egy and the relaxed accuracy of matrix-vector products are extended to inexact IRA
with shift-invert transformation for standard eigenvalue problems. For the linear
systems arising in Arnoldi steps (outer iterations) in a given IRA cycle, tuning is
developed using all available Arnoldi vectors in that cycle. Numerical experiments
show that for a test problem from Matrix Market [23], an ILU preconditioner with
this tuning considerably reduces the inner iteration counts. It is observed there and
confirmed in this paper that this improvement is mainly due to the fact that tuning
helps cluster the eigenvalues of the preconditioned system matrix of the linear system
in each Arnoldi step. In addition, [17] proposes a practical estimate of the allowable
relaxed tolerances for the solution of the linear systems, using the distance between
the spectra of two matrices containing the wanted and unwanted Ritz values; this is
proposed as a simpler alternative to the separation between the two matrices [36].
Numerical experiments show that the total inner iteration counts of inexact IRA can
be substantially reduced by the combined use of tuning and relaxed tolerances.

In this paper, we refine the tuning strategy and further study the allowable tol-
erances for inner solves of the inexact IRA method for generalized non-Hermitian
eigenvalue problems. We first study a new tuning strategy constructed for a given
Arnoldi step using the solutions of linear systems obtained in previous Arnoldi steps.
In addition, we propose a two-phase strategy to solve the linear system in the current
Arnoldi step. Specifically, we first use tuning to obtain a minimum residual solution
in the direction of the right-hand side of the current linear system, then solve a correc-
tion equation with any appropriate preconditioned linear solver; in particular, tuning
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is not needed for the correction equation. We show that the approximate solution
obtained in the first phase can be a very good one if enough solution vectors from
previous Arnoldi steps are used. With this special approximate solution, the correc-
tion equation can be solved with a relative tolerance much larger than that of the
original linear system, and inner iteration counts can hence be reduced considerably.
In addition, we use a special type of iterative linear solver with subspace recycling
to solve the sequence of correction equations as the IRA method proceeds. We show
that subspace recycling is cheap to use in this setting and can further reduce the inner
iteration counts substantially.

The second goal of this paper is to present a refined analysis of the allowable
tolerance for the linear systems in the inexact IRA method. We first give an upper
bound of the allowable tolerance, showing that violation of this bound necessarily
leads to contamination of the desired approximate invariant subspace by excessive
errors from the inner solves. We then give a theoretically more accurate estimate of
the allowable tolerance, which is between the upper bound and a conservative lower
bound from [17]. As this estimate contains information not available until the end
of the current IRA cycle, we use a computable substitute obtained at the end of the
previous IRA cycle. We then compare this heuristic estimate with that from [17] and
discuss the impact of the accuracy of the estimate on the inner solves.

This paper is organized as follows. In section 2, we briefly review spectral trans-
formations, the IRA method and some properties of the algorithm when exact shifts
(unwanted Ritz values) are used in filter polynomials. We discuss a few strategies for
the inner solves in section 3, studying the properties of the new tuning strategy and
the new two-phase strategy for solving the linear system in each Arnoldi step. We
also explain the effectiveness of the linear solver with subspace recycling applied to
solve the correction equations. In section 4, we study the allowable tolerances of the
linear systems and give a necessary upper bound for the tolerance. A new heuristic
estimate of the allowable tolerance is proposed and used in numerical experiments to
corroborate the accuracy of the estimate from [17]. Numerical experiments in sec-
tion 5 show that the combined use of the new tuning, subspace recycling, and relaxed
tolerances greatly reduces the total inner iteration counts. In section 6 we make some
concluding remarks.

2. Review: Spectral transformations and the IRA method. To make the
exposition smooth, we briefly review two commonly used spectral transformations
and the IRA method.

The shift-invert and generalized Cayley transformations (see [24]) are usually used
to detect interior eigenvalues or ones with large imaginary parts. They are defined as
follows:

Av = λBv ⇔ (A− σB)−1Bv =

(
1

λ− σ

)
v (shift-invert),(2.1)

Av = λBv ⇔ (A− σ1B)−1(A− σ2B)v =

(
λ− σ2

λ− σ1

)
v (generalized Cayley).

The shift-invert transformation maps eigenvalues near σ to dominant eigenvalues of
A = (A − σB)−1B; the Cayley transformation maps eigenvalues to the right of the
line Re(λ) = σ1+σ2

2 to eigenvalues of A = (A − σ1B)−1(A − σ2B) outside the unit
circle, and those to the left of this line to ones inside the unit circle (assuming that
σ1 > σ2). The dominant eigenvalues of A can then be found by iterative eigenvalue
algorithms. Once the eigenvalues of the transformed problem are obtained, they are
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transformed back to those of the original problem; the eigenvectors do not change
with the transformation.

Without loss of generality, we use the generic notation A = A−1B for which
we seek the k eigenvalues of Av = λBv with smallest magnitude (i.e., k dominant
eigenvalues of A). This notation, in principle, covers both types of operators in (2.1)

with any shifts. For example, let Â = A− σ1B and B̂ = A− σ2B, so that the Cayley
operator is A = Â−1B̂. This generic notation A = A−1B is used throughout this
paper, unless otherwise stated.

Both the shift-invert and the Cayley transformations have been implemented in
ARPACK [22], a mathematical software package of high quality which has become the
standard solver for large non-Hermitian eigenvalue problems. ARPACK is based on
the implicitly restarted Arnoldi (IRA) method, a well-known and important method
for eigenvalue computation developed by Sorensen [34] in 1992.

The key technique of the IRA method is the implicit application of a filter poly-
nomial to a given Arnoldi decomposition to produce the effect of several steps of a
restarted Arnoldi computation without any matrix-vector multiplications. Specifi-
cally, at the end of the ith IRA cycle we have an m-step Arnoldi decomposition

(2.2) AU (i)
m = U (i)

m H(i)
m + h

(i)
m+1,mu

(i)
m+1e

T
m.

Suppose κ1, κ2 · · ·κm−k ∈ C are estimates of m − k eigenvalues of A obtained from
this process corresponding to a part of the spectrum we are not interested in. We can

use these numbers as shifts to apply m− k shifted QR steps to H
(i)
m and get a Krylov

decomposition

(2.3) AŨ (i)
m = Ũ (i)

m H̃(i)
m + h

(i)
m+1,mu

(i)
m+1(e

T
mQ(i)),

where Q(i) = Q1Q2 · · ·Qm−k is the product of m − k upper Hessenberg unitary

matrices, Ũ
(i)
m = U

(i)
m Q(i), H̃

(i)
m = Q(i)∗H(i)

m Q(i) is upper Hessenberg, and eTmQ(i) is
the last row of Q(i) with k − 1 zero leading entries. For details, see [34] or [19, 36].

The restarted Arnoldi decomposition is then obtained from the first k columns of
the above Krylov decomposition as follows

AŨ (i)
k = Ũ

(i)
k H̃

(i)
k + h̃

(i)
k+1,kũ

(i)
k+1e

T
k + (h

(i)
m+1,mq

(i)
m,k)u

(i)
m+1e

T
k(2.4)

or AU (i+1)
k = U

(i+1)
k H

(i+1)
k + h

(i+1)
k+1,ku

(i+1)
k+1 eTk .

Here q
(i)
m,k is the (m, k) entry of Q(i), U

(i+1)
k = Ũ

(i)
k , and H

(i+1)
k = H̃

(i)
k . Note

that both ũ
(i)
k+1 and u

(i)
m+1 are orthogonal to U

(i+1)
k . Let û

(i+1)
k = h̃

(i)
k+1,kũ

(i)
k+1 +

(h
(i)
m+1,mq

(i)
m,k)u

(i)
m+1; then h

(i+1)
k+1,k = ‖û(i+1)

k ‖ and u
(i+1)
k = (h

(i+1)
k+1,k)

−1û
(i+1)
k . Clearly,

no additional matrix-vector product involving A is used for the restart. For the

restarted Arnoldi decomposition, it can be shown that u
(i+1)
1 = (A − κ1I)(A −

κ2I) · · · (A − κm−kI)u
(i)
1 up to a constant scaling factor. In other words, the eigen-

vector component corresponding to the unwanted spectrum in u
(i)
1 is filtered out by

the filter polynomial.
An inexact implicitly restarted Arnoldi method is given as follows.
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Algorithm 1. Inexact implicitly restarted Arnoldi (IRA) method.

Given a normalized u
(0)
1 ∈ Cn, ε > 0 and τ > 0. Let j = 1

For IRA cycles i = 0, 1, 2, . . .

1. Compute Au(i)
j by solving Ay = Bu

(i)
j to a prescribed relative tolerance δ(i,j)(ε).

2. Expand the Arnoldi decomposition by orthogonalizing y against u
(i)
1 , . . . , u

(i)
j

and normalizing; we have AU (i)
j + F

(i)
j = U

(i)
j H

(i)
j + h

(i)
j+1,ju

(i)
j+1e

T
j , where the

columns of F
(i)
j (not computable) are the errors introduced at each Arnoldi step.

3. j ← j + 1. If j = m, make sure that ‖AU (i)
m − U

(i)
m H

(i)
m − hm+1,mum+1e

T
m‖ � ε.

If this condition cannot be satisfied, claim that IRA fails; otherwise, invoke the

implicit restart to get AU (i+1)
k + F

(i+1)
k = U

(i+1)
k H

(i+1)
k + h

(i+1)
k+1,ku

(i+1)
k+1 eTk ,

and j ← k + 1. If |h(i+1)
k+1,k| ≤ τ , stop and output U

(i+1)
k ; otherwise, continue.

End For

In this study, we choose the “exact shifts” strategy for the IRA method, which

uses the unwanted eigenvalues of H
(i)
m (Ritz values) as shifts for the implicit restart.

This is the default choice in ARPACK and has proved successful in many applications.
Some properties of the IRA method with the exact shifts strategy are given as follows.

Proposition 2.1 (see Corollary 2.3, Chapter 5 of [36]). Suppose μ1, . . . , μm are

eigenvalues of H
(i)
m . If the implicit QR steps are performed with shifts {μk+1, μk+2, . . . ,

μm}, then

(2.5) H̃(i)
m = Q(i)∗H(i)

m Q(i) =

[
H̃

(i)
k H̃

12(i)
m

0 H̃
22(i)
m

]
,

where H̃
22(i)
m is an upper triangular matrix with μk+1, μk+2, . . . , μm on its diagonal.

The proposition shows that h̃
(i)
k+1,1 = 0 if exact shifts are used. This observation

immediately leads to the following result.

Proposition 2.2. Let the Schur decomposition of H
(i)
m be H

(i)
m = W

(i)
m T

(i)
m W

(i)∗
m ,

where W
(i)
m = [W

1(i)
m , W

2(i)
m ] is unitary, and

(2.6) T (i)
m =

[
T

11(i)
m T

12(i)
m

0 T
22(i)
m

]

with λ(T
11(i)
m ) = {μ1, μ2, . . . , μk}, λ(T 22(i)

m ) = {μk+1, μk+2, . . . , μm}, and λ(T
11(i)
m ) ∩

λ(T
22(i)
m ) = ∅. Then

(2.7) ‖AU (i)
m W 1(i)

m − U (i)
m W 1(i)

m T 11(i)
m ‖ = ‖AU (i+1)

k − U
(i+1)
k H

(i+1)
k ‖

and

(2.8) ‖h(i)
m+1,mu

(i)
m+1e

T
mW 1(i)

m ‖ = ‖h(i+1)
k+1,ku

(i+1)
k+1 eTk ‖.

Proof. Let Q(i) =
[
Q1(i), Q2(i)

]
. From (2.5) and (2.6) we have Q1(i)∗H(i)

m Q1(i) =

H̃
(i)
k and W

1(i)∗
m H

(i)
m W 1(i) = T

11(i)
m . Since λ(H̃

(i)
k ) = λ(T

11(i)
m ) = {μ1, μ2, . . . , μk},

there exists a k× k unitary matrix V (i) such that V (i)∗H̃(i)
k V (i) = T

11(i)
m and W

1(i)
m =
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Q1(i)V (i). Note from (2.3) and (2.4) that U
(i)
m Q1(i) = U

(i+1)
k . Therefore

‖AU (i)
m W 1(i)

m − U (i)
m W 1(i)

m T 11(i)
m ‖(2.9)

= ‖AU (i)
m Q1(i)V (i) − U (i)

m Q1(i)V (i)T 11(i)
m V (i)∗V (i)‖

= ‖(AU (i+1)
k − U

(i+1)
k H̃

(i)
k )V (i)‖ = ‖AU (i+1)

k − U
(i+1)
k H̃

(i)
k ‖.

Since h̃
(i)
k+1,k = 0, we have h

(i+1)
k+1,ku

(i+1)
k+1 eTk = (h

(i)
m+1,mq

(i)
m,k)u

(i)
m+1e

T
k from (2.4), and

therefore

‖h(i+1)
m+1,mu

(i)
m+1e

T
mW 1(i)

m ‖ = ‖h(i+1)
m+1,mu

(i)
m+1e

T
mQ1(i)V (i)‖(2.10)

= ‖(h(i+1)
m+1,mq

(i)
m,k)u

(i)
m+1e

T
k ‖ = ‖h(i+1)

k+1,ku
(i+1)
k+1 eTk ‖.

These results are applicable to the standard (exact) IRA method as well as the
inexact version of Algorithm 1. For the exact IRA method (where the matrix-vector
products involving A are computed exactly), (2.8) can be derived from (2.7). For
inexact IRA, however, the “true eigenvalue residuals” in (2.7) and the “estimated
eigenvalue residuals” in (2.8) are different. Proposition 2.2 shows that the two types
of eigenvalue residual norms are “restart-invariant” if exact shifts are used: both
quantities at the end of the ith IRA cycle are the same as those at the beginning of
the (i+1)th IRA cycle.

3. New strategies for solving linear systems in inexact IRA. To improve
the efficiency for solving the linear systems arising in inexact eigenvalue algorithms, a
special type of preconditioner with “tuning” is studied in [14, 15, 27, 17]. An existing
preconditioner P is modified using a special low-rank update of P to produce a tuned
preconditioner P that behaves like the system matrix A on a certain set of vectors X .
It is shown in these papers that the inner iteration counts needed to solve the linear
system preconditioned by P are substantially smaller than those required to solve the
system preconditioned by P .

For example, consider inexact subspace iteration with A = A−1 used to detect
a few smallest eigenvalues of A. In each outer iteration, we approximately solve the
block linear system AY (i) = X(i), where X(i) contains the current approximate Schur
vectors (therefore X(i)∗X(i) = I). It is shown in [27] that a decreasing sequence
of tolerances for the block systems is necessary to guarantee the linear convergence
of X(i) to the desired invariant subspace. As a result, the block-GMRES iteration
counts required to solve AP−1Ỹ (i) = X(i) (with Y (i) = P−1Ỹ (i)) increase gradually
as the outer iteration progresses. To resolve this difficulty, P is replaced by the tuned
preconditioner

(3.1) P
(i) = P + (A− P )X(i)X(i)∗,

for which P(i)X(i) = AX(i), or, equivalently, A(P(i))−1(AX(i)) = AX(i). That is,
AX(i) spans an invariant subspace of the tuned preconditioned system matrix corre-
sponding to eigenvalue 1. For A(P(i))−1Ỹ (i) = X(i), the right-hand side X(i) spans an
approximate invariant subspace of A(P(i))−1, and the block-GMRES iteration counts
needed for solving this preconditioned system do not increase with the outer iteration
progress.

This idea of tuning is extended in [17] to an inexact IRA method for standard
eigenvalue problems. Let m and k be the order of the Arnoldi decomposition, i.e.,
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the number of columns in the Hessenberg matrix right before and after the implicit
restart. Assume after the jth (0 ≤ j ≤ m− k − 1) Arnoldi step in the ith IRA cycle

an Arnoldi decomposition AU (i)
k+j = U

(i)
k+jH

(i)
k+j + h

(i)
k+j+1,k+ju

(i)
k+j+1e

T
k+j is already

computed, and Ay = u
(i)
k+j+1 needs to be solved in the (j+1)th Arnoldi step. In [17],

the tuned preconditioning matrix is defined as P
(i)
k+j+1 = P + (A − P )XX∗, where

X = U
(i)
k+j+1 contains the Arnoldi vectors in the ith IRA cycle. It is shown that

the inner iteration counts required to solve A(P
(i)
k+j+1)

−1ỹ = u
(i)
k+j+1 are smaller than

those needed to solve AP−1ỹ = u
(i)
k+j+1, because A(P

(i)
k+j+1)

−1 has better eigenvalue

clustering than AP−1. This “clustering” effect of tuning is quite different from the

original motivation of this strategy studied in [14, 15, 27]. In particular, u
(i)
k+j+1 is

generally not a very good approximate eigenvector of A(P
(i)
k+j+1)

−1.
In this section, we propose and study a new tuning strategy for solving the linear

systems of equations that arise in inexact IRA for generalized non-Hermitian eigen-
value problems. To study the new strategy under ideal conditions, we assume in this
section that the linear system in each Arnoldi step is solved accurately (to machine
precision). We also show how tuning can be used in a new two-phase algorithm to
solve the linear systems in each Arnoldi step. We also discuss the use of subspace
recycling with iterative solvers in Step 2 of Algorithm 2.

3.1. The new tuning strategy. The motivation for the tuning strategy is
similar to that discussed in [14, 15, 27]: to make the right-hand side of the linear
system associated with the spectral transformation an approximate eigenvector of
the preconditioned system matrix, so that the inner iteration counts can be greatly

reduced. Suppose we are in the ith IRA cycle and already have AU (i)
k+j = U

(i)
k+jH

(i)
k+j+

h
(i)
k+j+1,k+ju

(i)
k+j+1e

T
k+j . Computing Au(i)

k+j+1 entails solving Ay = Bu
(i)
k+j+1. Recall

that for a given X with orthonormal columns, the tuned preconditioner P = P +(A−
P )XX∗ satisfies PX = AX , i.e., AP−1(AX) = AX . Tuning requires thatX be chosen

so that the right-hand side Bu
(i)
k+j+1 of the current linear system approximately lies

in the subspace spanned by AX , an invariant subspace of AP−1.
Consider the choice

(3.2) X = X(i,l)
p =

[
AU (i−l)

m ,AU (i−l+1)
k+1:m , . . . ,AU (i−1)

k+1:m,AU (i)
k+1:k+j

]
,

where U
(r)
k+1:m stands for the (k+1)th through the mth columns of U

(r)
m , and p =

m + (m − k)(l − 1) + j is the number of vectors in X
(i,l)
p . We refer to X

(i,l)
p as the

set of “solution vectors,” because its columns are solutions of the linear systems in

previous Arnoldi steps. For example, the first vector in X
(i,l)
p is Au(i−l)

1 , the solution

of Ay = Bu
(i−l)
1 in the first step of the (i − l)th IRA cycle. Note that this system

does not need to be solved for i > l due to the implicit restart.1

In the following derivation, we use a calligraphic letter to stand for a subspace
spanned by some set of column vectors denoted by the same letter in Roman fonts.

For instance, U (i)
k+j = span{U (i)

k+j}. Let U
(i,l)
p = [U

(i−l)
m , U

(i−l+1)
k+1:m , . . . , U

(i)
k+1:k+j ] and

let U (i,l)
p = span{U (i,l)

p }, X (i,l)
p = span{X(i,l)

p }, AX (i,l)
p = BU (i,l)

p = span{BU
(i−l)
m ,

BU
(i−l+1)
k+1:m , . . . , BU

(i)
k+1:k+j}. To study the relation between Bu

(i)
k+j+1 and AX (i,l)

p , we

1Implicit restart generates a new Arnoldi decomposition of size k, and thus Ay = Bu
(i−l)
j does

not need to be solved for i > l (any restarted cycle) and 1 ≤ j ≤ k.
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begin with the following lemma, which shows that the range of U
(i,l)
p is a Krylov

subspace.

Lemma 3.1. Suppose that IRA does not break down. Then U (i,l)
p = Kp(A, u(i−l)

1 ).

Proof. First, U (i−l)
m+1 = Km+1(A, u(i−l)

1 ). Since u
(i−l+1)
k+1 is a linear combination of

u
(i−l)
m+1 and ũ

(i−l)
k+1 ∈ U (i−l)

m (see (2.4)), span{U (i−l)
m , u

(i−l+1)
k+1 } = Km+1(A, u(i−l)

1 ) holds.

As we have orthogonalized Au(i−l+1)
k+1 against U (i−l+1)

k+1 ⊂ span{U (i−l)
m , u

(i−l+1)
k+1 } (note

that U (i−l+1)
k ⊂ U (i−l)

m ; see (2.4)) to get u
(i−l+1)
k+2 , span{U (i−l)

m , u
(i−l+1)
k+1 , u

(i−l+1)
k+2 } =

Km+2(A, u(i−l)
1 ) follows. Similar reasoning holds for all of the following Arnoldi vec-

tors if IRA does not break down, and the theorem is established.
The angle between a vector v and a subspace U (denoted as ∠(v,U)) is defined as

the angle between v and the orthogonal projection of v onto U . Obviously, v ∈ U if and

only if ∠(v,U) = 0. Therefore, Bu
(i)
k+j+1 approximately lies in AX (i,l)

p = BU (i,l)
p if and

only if ∠(Bu
(i)
k+j+1, BU (i,l)

p ) is small, and this condition holds if ϕ
(i)
p = ∠(u(i)

k+j+1,U (i,l)
p )

is small and if B does not significantly distort this angle. The following theorem gives

a sufficient condition for ∠(Bu
(i)
k+j+1, BU (i,l)

p ) to be small.

Theorem 3.2. Let B = UBΣBV
∗
B be the singular value decomposition of B, and

u
(i)
k+j+1 = upc

(i,l)
p + u⊥

p s
(i,l)
p , where up = VBfp ∈ U (i,l)

p and u⊥
p = VBf

⊥
p ⊥U (i,l)

p are

unit vectors, and s
(i,l)
p and c

(i,l)
p are sine and cosine of ∠(u(i)

k+j+1,U (i,l)
p ). Assume that

s
(i,l)
p is small enough such that ‖Bu⊥

p s
(i,l)
p ‖ < ‖Bupc

(i,l)
p ‖. Then

(3.3) sin∠(Bu
(i)
k+j+1, BU (i,l)

p ) ≤ ‖ΣBf
⊥
p ‖

‖ΣBfp‖ tan∠(u(i)
k+j+1,U (i,l)

p ).

Proof. Given the orthogonal decomposition of u
(i)
k+j+1, we have Bu

(i)
k+j+1 =

Bupc
(i,l)
p +Bu⊥

p s
(i,l)
p = UBΣBfpc

(i,l)
p +UBΣBf

⊥
p s

(i,l)
p . Consider a sphere centered at the

terminal point of the vector Bupc
(i,l)
p , with radius ‖Bu⊥

p s
(i,l)
p ‖. (Note that the origin is

outside of the sphere because it is assumed that ‖Bu⊥
p s

(i,l)
p ‖ < ‖Bupc

(i,l)
p ‖.) The termi-

nal point of Bu
(i)
k+j+1 must be on this sphere. It follows that sin∠(Bu

(i)
k+j+1, Bup) ≤

‖Bu⊥
p s(i,l)p ‖

‖Bupc
(i,l)
p ‖ , and the equality holds if and only if Bu⊥

p ⊥Bu
(i)
k+j+1 (i.e., Bu

(i)
k+j+1 is

tangent to this sphere). Therefore, we have

(3.4)

sin∠(Bu
(i)
k+j+1, BU (i,l)

p ) ≤ sin∠(Bu
(i)
k+j+1, Bup)

≤ ‖Bu⊥
p s

(i,l)
p ‖

‖Bupc
(i,l)
p ‖

=
‖ΣBf

⊥
p ‖

‖ΣBfp‖ tan∠(u(i)
k+j+1,U (i,l)

p ).

This completes the proof.

We see from Theorem 3.2 that if ∠(u(i)
k+j+1,U (i,l)

p ) is small, then a sufficient con-

dition for ∠(Bu
(i)
k+j+1, BU (i,l)

p ) to be small is that up (the normalized orthogonal pro-

jection of u
(i)
k+j+1 onto U (i,l)

p ) and u⊥
p (the normalized u

(i)
k+j+1 − upc

(i,l)) can each be
written as linear combinations of the right singular vectors of B with coefficients fp
and f⊥

p , respectively, and the corresponding weighted singular value ‖ΣBf
⊥
p ‖ is a

small multiple of ‖ΣBfp‖. In particular, ∠(Bu
(i)
k+j+1, BU (i,l)

p ) is small if κ(B) is small.
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Next, we establish a relation between successive angles ϕ
(i)
p and ϕ

(i)
p−1 = ∠(u(i)

k+j ,

U (i,l)
p−1 ), (p = m+ (m− k)(l − 1) + j, 1 ≤ j ≤ m− k).

Theorem 3.3. Let u
(i)
k+j = up−1 cosϕ

(i)
p−1 + u⊥

p−1 sinϕ
(i)
p−1, where up−1 ∈ U (i,l)

p−1

and u⊥
p−1⊥ U (i,l)

p−1 are unit vectors. Let the orthogonal projection of ‖Au⊥
p−1‖−1Au(i)

k+j

onto U (i,l)
p be wpηp, where wp ∈ U (i,l)

p is a unit vector, and let αp = ∠(Au⊥
p−1,U (i,l)

p )

and βp = ∠(wp,U (i)
k+j). Then

(3.5) tanϕ(i)
p = νp sinϕ

(i)
p−1, where νp =

sinαp

ηp sinβp
.

(Note that αp, βp, ηp, and νp all depend on the IRA cycle number i. To simplify
the notation, we omit the superscripts for these scalars.)

Proof. Let ρ =
‖Aup−1‖
‖Au⊥

p−1‖
. Since U (i,l)

p = Kp(A, u(i−l)
1 ), we have

Au(i)
k+j = Aup−1 cosϕ

(i)
p−1 +Au⊥

p−1 sinϕ
(i)
p−1(3.6)

= ρ‖Au⊥
p−1‖wp1 cosϕ

(i)
p−1 + ‖Au⊥

p−1‖(wp2 cosαp + w⊥
p sinαp) sinϕ

(i)
p−1

= ‖Au⊥
p−1‖(wp1ρ cosϕ

(i)
p−1 + wp2 cosαp sinϕ

(i)
p−1 + w⊥

p sinαp sinϕ
(i)
p−1)

= ‖Au⊥
p−1‖(wpηp + w⊥

p sinαp sinϕ
(i)
p−1),

where wp1,wp2,wp ∈ U (i,l)
p , and w⊥

p ⊥U (i,l)
p are all unit vectors, and wpηp = wp1ρ cos

ϕ
(i)
p−1 + wp2 cosαp sinϕ

(i)
p−1 is the orthogonal projection of

Au
(i+l)
k+j

‖Au⊥
p−1‖

onto U (i,l)
p . It

follows immediately that tan∠(Au(i)
k+j ,U (i,l)

p ) =
sinαp sinϕ

(i)
p−1

ηp
.

We then orthogonalize Au(i)
k+j against U (i)

k+j ⊂ U (i,l)
p to get u

(i)
k+j+1. Let U (i)⊥

k+j be

the orthogonal complement of U (i)
k+j in U (i,l)

p . Then wp = wp3 cosβp+wp4 sinβp, where

wp3 ∈ U (i)
k+j and wp4 ∈ U (i)⊥

k+j are unit vectors, and βp = ∠(wp,U (i)
k+j). Orthogonalizing

Au(i)
k+j against U (i)

k+j removes the wp3 component from wp, so that u
(i)
k+j+1 equals

w = wp4ηp sinβp + w⊥
p sinαp sinϕ

(i)
p−1 up to a constant scaling factor. It follows that

tan∠(u(i)
k+j+1,U (i,l)

p ) =
sinαp sinϕ

(i)
p−1

ηp sin βp
, and (3.5) is established.

Remark 3.1. In Theorem 3.3 we are interested in the nontrivial case where l > 0.
If l = 0, then p = k+ j, and U (i,0)

p = U (i)
k+j . Therefore βp = ∠(wp,U (i)

k+j) = 0 (because

wp ∈ U (i,0)
p by definition), νp is infinity, and ϕ

(i)
p = π/2. This is consistent with the

fact that Arnoldi vectors in the same IRA cycle are orthogonal. In addition, since

exact shifts are used for the implicit restart, we have u
(i)
k+1 = u

(i−1)
m+1 ; see (2.4) and

Proposition 2.1. Therefore, Theorem 3.3 also holds for j = 0, with u
(i)
k+j replaced by

u
(i−1)
m .

Given the starting vector Au(i−l)
1 of X

(i,l)
p , Theorem 3.3 shows that if νp is

bounded above by a constant smaller than 1, then ϕ
(i)
p decreases at least linearly

with p for p > m. In practice, although we have no upper bounds for νp, we have
consistently found in our experiments that νp < 1 at a majority of Arnoldi steps, and

ϕ
(i)
p decreases linearly with p on the whole. In addition, sin∠(Bu

(i)
k+j+1, BU (i,l)

p ) is in
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general a moderate multiple of sin∠(u(i)
k+j+1,U (i,l)

p ), and therefore it is also small for
large p. We will give a numerical example in section 5 to demonstrate these observa-

tions. Small ∠(Bu
(i)
k+j+1, BU (i,l)

p ) means that Bu
(i)
k+j+1 is an approximate eigenvector

of AP−1 (where the tuned preconditioner P is constructed using X
(i,l)
p ), because it ap-

proximately lies in AX (i,l)
p = BU (i,l)

p , an invariant subspace of AP−1. In the following
subsection, we show how this observation can be used in a new two-phase algorithm

for solving Ay = Bu
(i)
k+j+1.

3.2. A two-phase strategy to solve the linear systems in Arnoldi steps.
With the new tuning discussed in subsection 3.1, we now propose a new two-phase

algorithm for efficiently solving Ay = Bu
(i)
k+j+1 in step 1 of Algorithm 1.

Algorithm 2. Two-phase strategy for solving Ay = Bu
(i)
k+j+1.

1. Construct the tuned preconditioner P using (3.2) and find the minimum residual

solution y1 = P−1ỹ1 = γP−1Bu
(i)
k+j+1, where

γ = argminγ ‖Bu
(i)
k+j+1−γAP−1Bu

(i)
k+j+1‖.

2. For ε as in Algorithm 1, choose either a fixed tolerance δ = δf (ε), or
a relaxed tolerance δ = δr(ε) by some means. Solve the correction equation

Az = Bu
(i)
k+j+1 −Ay1 with any appropriate preconditioned iterative solver

to get an approximate correction zq, such that the corrected iterate

yq+1 = y1 + zq satisfies
‖Bu

(i)
k+j+1−Ayq+1‖
‖Bu

(i)
k+j+1‖

≤ δ, or, equivalently, the correction

zq satisfies
‖(Bu

(i)
k+j+1−Ay1)−Azq‖

‖Bu
(i)
k+j+1−Ay1‖

≤ δ‖Bu
(i)
k+j+1‖

‖Bu
(i)
k+j+1−Ay1‖

.

In particular, tuning is used only in phase I to obtain a good approximate solution

y1 for Ay = Bu
(i)
k+j+1. In fact, we have found that by reformulating the solution

algorithm in this way, tuning actually does not improve performance for computing
the correction, so that the extra expense of tuning can be avoided with no penalty.
Therefore, we can work with a fixed preconditioned system matrix for the correction
equation in all Arnoldi steps.

Let u
(i)
k+j+1 = upc

(i,l)
p +u⊥

p s
(i,l)
p , where up ∈ U (i,l)

p and u⊥
p ⊥U (i,l)

p are unit vectors,

and s
(i,l)
p and c

(i,l)
p are the sine and cosine of ∠(u(i)

k+j+1,U (i,l)
p ). We have shown by

Theorem 3.3 that s
(i,l)
p can be small for large p. The analysis of Algorithm 2 is given

in the following major theorem.

Theorem 3.4. Suppose Algorithm 2 is used to solve Ay = Bu
(i)
k+j+1. Then

Phase I of Algorithm 2 gives y1 = Aupc
(i,l)
p + O(s

(i,l)
p ) (up to a constant scaling

factor) and the corresponding relative residual norm
‖Bu

(i)
k+j+1−Ay1‖

‖Bu
(i)
k+j+1‖

= O(s
(i,l)
p ). Con-

sequently, the stopping criterion of Algorithm 2 is satisfied if and only if the relative

residual of the correction equation
‖(Bu

(i)
k+j+1−Ay1)−Azq‖

‖Bu
(i)
k+j+1−Ay1‖

≤ δ‖Bu
(i)
k+j+1‖

‖Bu
(i)
k+j+1−Ay1‖

= δ

O(s
(i,l)
p )

.

Proof. It is shown in section 3.1 that if the preconditioning matrix P
(i,l)
p is con-

structed using X
(i,l)
p , then A(P

(i,l)
p )−1(AX

(i,l)
p ) = AX

(i,l)
p . That is, AX (i,l)

p = BU (i,l)
p

is an invariant subspace of dimension p of A(P
(i,l)
p )−1 corresponding to eigenvalue 1.

It follows that for up ∈ U (i,l)
p , (P

(i,l)
p )−1(Bup) = A−1(Bup).
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The approximate solution to A(P
(i,l)
p )−1ỹ = Bu

(i)
k+j+1 after Phase I of Algorithm

2 is

y1 = (P(i,l)
p )−1ỹ1 = (P(i,l)

p )−1(γBu
(i)
k+j+1) = γ(P(i,l)

p )−1(Bupc
(i,l)
p +Bu⊥

p s
(i,l)
p )(3.7)

= γ
(
A−1Bupc

(i,l)
p + (P(i,l)

p )−1Bu⊥
p s

(i,l)
p

)
= γ(Aupc

(i,l)
p + δ(i,l)p ),

where ‖δ(i,l)p ‖ = s
(i,l)
p ‖(P(i,l)

p )−1Bu⊥
p ‖ = O(s

(i,l)
p ).

Now consider the residual norm after Phase I of Algorithm 2:

‖Bu
(i)
k+j+1 −Ay1‖(3.8)

= min
γ
‖Bu

(i)
k+j+1 − γA(P(i,l)

p )−1(Bu
(i)
k+j+1)‖

≤ ‖Bu
(i)
k+j+1 −A(P(i,l)

p )−1(Bu
(i)
k+j+1)‖

= ‖Bu
(i)
k+j+1 −A(P(i,l)

p )−1(Bupc
(i,l)
p +Bu⊥

p s
(i,l)
p )‖

= ‖Bupc
(i,l)
p +Bu⊥

p s
(i,l)
p −A(A−1Bup)c

(i,l)
p −A(P(i,l)

p )−1Bu⊥
p s

(i,l)
p )‖

= s(i,l)p ‖(A(P(i,l)
p )−1 − I)Bu⊥

p ‖.

Therefore the relative residual norm is s
(i,l)
p

‖(A(P(i,l)
p )−1−I)Bu⊥

p ‖
‖Bu

(i)
k+j+1‖

= O(s
(i,l)
p ).

Finally, Phase II of Algorithm 2 requires that

(3.9)
‖Bu

(i)
k+j+1 −Ayq+1‖
‖Bu

(i)
k+j+1‖

=
‖Bu

(i)
k+j+1 −Ayq+1‖

‖Bu
(i)
k+j+1 −Ay1‖

‖Bu
(i)
k+j+1 −Ay1‖
‖Bu

(i)
k+j+1‖

≤ δ,

which is satisfied if and only if the relative residual of the correction equation

‖(Bu
(i)
k+j+1 −Ay1)−Azq‖
‖Bu

(i)
k+j+1 −Ay1‖

=
‖Bu

(i)
k+j+1 −Ayq+1‖

‖Bu
(i)
k+j+1 −Ay1‖

(3.10)

≤ δ‖Bu
(i)
k+j+1‖

‖Bu
(i)
k+j+1 −Ay1‖

=
δ

O(s
(i,l)
p )

.

The proof is thus concluded.

Theorem 3.4 shows that y1 obtained in Phase I of Algorithm 2 equals Aupc
(i,l)
p

plus a small quantity proportional to s
(i,l)
p . As up ∈ U (i,l)

p , Aup ∈ AU (i,l)
p = X (i,l)

p ;

see (3.2). Recall that X
(i,l)
p consists of the “solution vectors” of the linear systems

in previous Arnoldi steps. Therefore, by constructing tuning as in section 3.1 and
using it properly, we get a good approximate solution y1 which is roughly a linear
combination of those solution vectors. The reason for the success of this approach is

that ∠(Bu
(i)
k+j+1, BU (i,l)

p ) is small, i.e., Bu
(i)
k+j+1 is roughly a linear combination of the

right-hand sides of the previously solved systems. This perspective is quite different
from the motivation of tuning in previous literature [14, 15, 17, 27].

We see that a good approximate solution y1 can be computed inexpensively in

Phase I of Algorithm 2 by tuning, so that we always have
‖Bu

(i)
k+j+1−Ay1‖

‖Bu
(i)
k+j+1‖

= O(s
(i,l)
p )�

1 in practice. In fact, a valid y1 can also be obtained in other ways, in particular, by
solving a least squares problem

(3.11) min
f
‖Bu

(i)
k+j+1 −AX(i,l)

p f‖,
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which can be easily done using the QR decomposition of AX
(i,l)
p = BU

(i,l)
p (recall the

definition of X
(i,l)
p in (3.2)). Given that u

(i)
k+j+1 = upc

(i,l)
p + u⊥

p s
(i,l)
p , where up ∈ U (i,l)

p

and u⊥
p ⊥U (i,l)

p , we have

min
f∈Cp

‖Bu
(i)
k+j+1 −AX(i,l)

p f‖(3.12)

= min
f∈Cp

‖Bu
(i)
k+j+1 −BU (i,l)

p f‖

≤ ‖B(upc
(i,l)
p + u⊥

p s
(i,l)
p )−Bupc

(i,l)
p ‖ = s(i,l)p ‖Bu⊥

p ‖.

Therefore, with y1 = X
(i,l)
p f , we have

‖Bu
(i)
k+j+1−Ay1‖

‖Bu
(i)
k+j+1

‖ = s
(i,l)
p

‖Bu⊥
p ‖

‖Bu
(i)
k+j+1

‖ = O(s
(i,l)
p ).

The Phase I computation in Algorithm 2 is somewhat cheaper for the least squares
approach than the one-step tuned preconditioned GMRES, but the former method
required slightly more iterations in Phase II for our test problems, and the total inner
iteration counts are about the same for the two approaches. In the following, for the
sake of brevity, we study only the two-phase strategy where tuning is applied in Phase
I.

Due to the large reduction of the linear residual norm in Phase I, the stopping

criterion in Algorithm 2,
‖Bu

(i)
k+j+1−Ayq+1‖
‖Bu

(i)
k+j+1‖

≤ δ, is satisfied if and only if the relative

residual of the correction equation
‖(Bu

(i)
k+j+1−Ay1)−Azq‖

‖Bu
(i)
k+j+1−Ay1‖

is bounded by the much less

stringent relative tolerance
δ‖Bu

(i)
k+j+1‖

‖Bu
(i)
k+j+1−Ay1‖

= δ

O(s
(i,l)
p )

� δ. This larger relative toler-

ance implies that the inner iterations required for solving the correction equation can
be considerably smaller than those needed to solve the original equation directly.

Remark 3.2. The two-phase algorithm has some similarities to other deflation
methods that aim to improve the convergence of linear solves; see [8, 18, 39] and the
references therein. For example, Algorithm 2 is very similar in procedure to the Init-
CG algorithm [18]. They both build a subspace, remove the components belonging
to that space from the right-hand side, and then solve a correction equation. The
difference lies in the motivation and use of the subspaces. The two-phase algorithm
here builds a subspace using the solution of the inner linear systems from previous
Arnoldi steps. This space bears no obvious connection to the spectral properties of
the coefficient matrix of the linear system. Because the angle between the right-
hand side and this subspace is small, we obtain a good approximate solution and
can solve the correction equation with considerably lower accuracy. In contrast, Init-
CG forms a subspace spanned by explicitly computed eigenvector approximations of
the coefficient matrix corresponding to extremal eigenvalues, and then deflates these
components from the right-hand side. This enables accelerated convergence of CG.

3.3. Subspace recycling for the correction equation. Phase II of Algorithm
2 can be improved using linear solvers with subspace recycling. This methodology has
proved efficient for solving a long sequence of slowly changing linear systems. When
the iterative solution of one linear system is done, a small set of vectors from the
current subspace for the candidate solutions is selected and “recycled,” i.e., used for
the solution of the next system in the sequence. Subspace recycling usually reduces the
cost of solving subsequent linear systems, because the iterative solver does not have
to build the candidate solution subspace from scratch. A popular solver of this type is
the generalized conjugate residual method with implicit inner orthogonalization and
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deflated restarting (GCRO-DR) [26] developed using ideas of special truncation [7]
and restarting [25] for solving a single linear system.

Reference [26] makes a general assumption that the preconditioned system matrix
changes from one linear system to the next, and thus the recycled subspace taken
from the previous system must be transformed by matrix-vector products involving
the current system matrix to fit into the solution of the current system. For the
sequence of correction equations in Algorithm 2, fortunately, this transformation can
be avoided, because the preconditioned system matrix without tuning is the same for
the correction equation in all Arnoldi steps.

When GMRES is applied to a system whose coefficient matrix has a small number
of eigenvalues of very small magnitude, convergence is often very slow in the initial
steps of the iteration, until the asymptotic performance of GMRES is obtained. We
refer to this initial stage of slow convergence as a period of latency; see [12] for
discussion and analyis of this phenomenon. For recyling, it is suggested in [26] that the
harmonic Ritz vectors corresponding to smallest harmonic Ritz values can be chosen
to span the recycled subspaces. These vectors are approximate eigenvectors of the
preconditioned system matrix corresponding to smallest eigenvalues. If the harmonic
Ritz vectors are good approximate eigenvectors, this strategy tends to reduce the
duration of this initial latency in convergence.

Our subspace recycling also uses dominant Ritz vectors, as suggested in [26]. In
section 5, we present experimental results to show that these vectors are effective
for subspace recycling if the use of harmonic Ritz vectors fails to reduce the inner
iteration counts.

4. A refined analysis of allowable errors in Arnoldi steps. It was observed
empirically in [4] that for the unrestarted Arnoldi method, the matrix-vector products
involving A must be computed with high accuracy in the initial Arnoldi steps, but
the accuracy can be relaxed as the iteration proceeds. A similar observation was also
given in [20] for an inexact Lanczos method. An analysis based on matrix perturba-
tion theory in [28] shows that the allowable errors of the matrix-vector products need
only be inversely proportional to the eigenvalue residual norm of the current desired
approximate invariant subspace for the quality of the approximate invariant subspace
generated by the inexact Arnoldi method to be good. This relaxation strategy is ex-
tended in [17] to the inexact IRA method, where a practical estimate of the allowable
errors of the inner solves at each Arnoldi step is proposed. Ideally, accurately esti-
mated allowable errors can help reduce the inner iteration counts to the best extent
possible without compromising the performance of the eigenvalue solvers. In this sec-
tion, we give a refined analysis and an alternative estimate of allowable errors of the
inner solves.

Suppose the matrix-vector product involving A = A−1B is applied inexactly for
m Arnoldi steps, with an error fj = y−A−1Buj (1 ≤ j ≤ m) introduced in the linear
solve of Ay = Buj. Thus we have the following inexact Arnoldi decomposition:

(4.1) AUm + Fm = (A+ FmU∗
m)Um = UmHm + hm+1,mum+1e

T
m,

where Um spans a Krylov subspace of the perturbed matrix A+FmU∗
m. Let the Schur

decomposition of Hm be
(4.2)

Hm = WmTmW ∗
m, with Wm =

[
W 11

m W 12
m

W 21
m W 22

m

]
and Tm =

[
T 11
m T 12

m

0 T 22
m

]
,

where T 11
m ∈ Ck×k, T 22

m ∈ Cp×p, and λ(T 11
m ) are the wanted Ritz values and λ(T 22

m ) are
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the unwanted ones. Then we use the Rayleigh–Ritz method (section 4.1, Chapter 4
of [36]) to extract the desired approximate invariant subspace UmW 1

m, where W 1
m =[W 11

m

W 21
m

]
contains the wanted Ritz vectors. From (4.1) and (4.2), the corresponding

eigenvalue residual is

AUmW 1
m − UmHmW 1

m = AUmW 1
m − UmW 1

mT 11
m(4.3)

= hm+1,mum+1e
T
mW 1

m − FmW 1
m,

from which follows

(4.4) ‖(AUmW 1
m − UmW 1

mT 11
m )− hm+1,mum+1e

T
mW 1

m‖ = ‖FmW 1
m‖.

Here, as introduced in section 2, AUmW 1
m−UmW 1

mT 11
m is the true eigenvalue residual,

and Rm = hm+1,mum+1e
T
mW 1

m is the estimated residual (referred to as the “computed
residual” in [28, 17]). The difference between the two residuals depends on ‖FmW 1

m‖.
For the inexact Arnoldi method, we want to keep the quality of UmW 1

m under control
in spite of the presence of the error matrix Fm. To achieve this goal, we need to control
‖FmW 1

m‖ so that the desired approximate invariant subspace UmW 1
m contained in Um

is not obviously contaminated by Fm; i.e., the true residual is still reasonably close
to the estimated residual.

To see why the allowable errors at some Arnoldi steps can be relaxed, note that

(4.5) ‖FmW 1
m‖ ≤ ‖FkW

11
m ‖+ ‖Fk+1:mW 21

m ‖ ≤ ‖Fk‖+ ‖Fk+1:m‖‖W 21
m ‖.

Therefore, for a given k-step inexact Arnoldi decomposition with a small enough ‖Fk‖,
‖Fk+1:m‖ does not have to be very small as long as ‖W 21

m ‖; i.e., the magnitude of the
last m − k entries of the wanted Ritz vectors W 1

m (see (4.2)) is small enough. The
next theorem, which extends Theorem 3.2 of [17], shows that ‖W 21

m ‖ is proportional
to the estimated residual at step k.

Theorem 4.1. Let AUk + Fk = UkHk + hk+1,kuk+1e
T
k be a k-step inexact

Arnoldi decomposition, where the Schur decomposition of Hk is Hk = WkTkW
∗
k . Let

m−k additional inexact Arnoldi steps be performed, giving AUm + Fm = UmHm +
hm+1,mum+1e

T
m. Let Rk = (AUk + Fk − UkHk)Wk = hk+1,kuk+1e

T
kWk be the es-

timated residual at Arnoldi step k. Given the Schur decomposition of Hm in (4.2),
then

(4.6)
‖Rk‖

‖Rk‖+ ‖Sm‖ ≤ ‖W
21
m ‖ ≤

‖Rk‖
sep(Tk, T 22

m )
,

where Sm is the Sylvester operator G → Sm(G) : T 22
m G − GTk, sep(Tk, T

22
m ) =

min‖G‖=1‖Sm(G)‖, and ‖Sm‖ = max‖G‖=1‖Sm(G)‖.
Proof. We need only to prove the lower bound, as the upper bound is established

in Theorem 3.2 of [17]. The estimated residual norm at step k is

(4.7) ‖Rk‖ = ‖hk+1,kuk+1e
T
kWk‖ = hk+1,k‖eTkWk‖ = hk+1,k.
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Consider the first block of the Schur decomposition of Hm (4.2):∥∥∥∥Hm

(
Wk

0

)
−
(

Wk

0

)
Tk

∥∥∥∥(4.8)

=

∥∥∥∥( Hk H12
m

hk+1,ke1e
T
k H22

m

)(
Wk

0

)
−
(

Wk

0

)
Tk

∥∥∥∥
=

∥∥∥∥( Hk

hk+1,ke1e
T
k

)
Wk −

(
Wk

0

)
Tk

∥∥∥∥ =

∥∥∥∥( HkWk −WkTk

hk+1,ke1e
T
kWk

)∥∥∥∥
=

∥∥∥( 0
hk+1,ke1e

T
kWk

)∥∥∥ = hk+1,k‖eTkWk‖ = hk+1,k,

so that the first line of (4.8) also equals the estimated residual norm. Since Wm is
unitary, it follows that with the first expression in the last line of (4.8), we have

‖Rk‖ =
∥∥∥∥W ∗

m

(
Hm

(
Wk

0

)
−
(

Wk

0

)
Tk

)∥∥∥∥(4.9)

=

∥∥∥∥( (W 11
m )∗ (W 21

m )∗

(W 12
m )∗ (W 22

m )∗

)(
0

hk+1,ke1e
T
kWk

)∥∥∥∥
=

∥∥∥∥( hk+1,k(W
21
m )∗e1eTkWk

hk+1,k(W
22
m )∗e1eTkWk

)∥∥∥∥.
On the other hand, using the Schur decomposition of Hm, we also have

‖Rk‖ =
∥∥∥∥W ∗

m

(
Hm

(
Wk

0

)
−
(

Wk

0

)
Tk

)∥∥∥∥(4.10)

=

∥∥∥∥TmW ∗
m

(
Wk

0

)
−W ∗

m

(
Wk

0

)
Tk

∥∥∥∥
=

∥∥∥∥( T 11
m T 12

m

0 T 22
m

)(
(W 11

m )∗Wk

(W 12
m )∗Wk

)
−
(

(W 11
m )∗Wk

(W 12
m )∗Wk

)
Tk

∥∥∥∥
=

∥∥∥∥( T 11
m (W 11

m )∗Wk − (W 11
m )∗WkTk + T 12

m (W 12
m )∗Wk

T 22
m (W 12

m )∗Wk − (W 12
m )∗WkTk

)∥∥∥∥.
Using the upper block from (4.9) and lower block from (4.10), we have

‖Rk‖ =
∥∥∥∥( hk+1,k(W

21
m )∗e1eTkWk

T 22
m (W 12

m )∗Wk − (W 12
m )∗WkTk

)∥∥∥∥(4.11)

≤ ‖hk+1,k(W
21
m )∗e1eTkWk‖+ ‖T 22

m (W 12
m )∗Wk − (W 12

m )∗WkTk‖
≤ hk+1,k‖eTkWk‖‖eT1 W 21

m ‖+ ‖Sm‖‖(W 12
m )∗Wk‖

= ‖Rk‖‖eT1 W 21
m ‖+ ‖Sm‖‖W 12

m ‖ ≤ ‖Rk‖‖W 21
m ‖+ ‖Sm‖‖W 21

m ‖.
Note that in the last line of (4.11), ‖(W 12

m )∗Wk‖ = ‖W 12
m ‖ = ‖W 21

m ‖ (see Theo-
rem 2.6.1 in Golub and van Loan [19]). The lower bound in (4.6) is thus estab-
lished.

As observed above, for a given k-step inexact Arnoldi decomposition with small
‖Fk‖, the error matrix ‖Fk+1:m‖ associated with the upcoming m−k inexact Arnoldi
steps must be controlled appropriately to make sure that UmW 1

m is not obviously
contaminated after these steps. In particular, ‖fk+1‖ cannot be too big. The following
theorem gives an upper bound of ‖fk+1‖.
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Theorem 4.2. Given ε1 > 0, suppose we have a k-step inexact Arnoldi decom-
position AUk +Fk = UkHk + hk+1,kuk+1e

T
k , where ‖Fk‖ ≤ ε1. Let Sk+1 be defined as

in Theorem 4.1. Then for the next Arnoldi step,

(4.12) ‖fk+1‖ ≤
(
1 +
‖Sk+1‖
‖Rk‖

)
(ε1 + ε2)

is a necessary condition to make ‖(AUk+1W
1
k+1 − Uk+1W

1
k+1T

11
k+1)−Rk+1‖ ≤ ε2.

Proof. Let m = k + 1. We have the following estimate of the difference between
the computed and true residual:

‖(AUk+1W
1
k+1 − Uk+1W

1
k+1T

11
k+1)−Rk+1‖ = ‖Fk+1W

1
k+1‖(4.13)

= ‖FkW
11
k+1 + fk+1W

21
k+1‖ ≥ ‖fk+1W

21
k+1‖ − ‖FkW

11
k+1‖

≥ ‖fk+1‖‖W 21
k+1‖ − ‖Fk‖‖W 11

k+1‖ ≥ ‖fk+1‖ ‖Rk‖
‖Rk‖+ ‖Sk+1‖ − ε1.

Note that ‖fk+1W
21
k+1‖ = ‖fk+1‖‖W 21

k+1‖ because fk+1 and W 21
k+1 are, respectively, a

column vector and row vector, and ‖W 11
k+1‖ ≤ ‖W 1

k+1‖ = 1. It follows immediately

that (4.13) is bigger than ε2 if ‖fk+1‖ > (1 + ‖Sk+1‖
‖Rk‖ )(ε1 + ε2).

A practical choice would be ε1 = ε2 ≡ ε. Using the upper bound of ‖W 21
m ‖

in Theorem 4.1, we can also show that ‖fk+1‖ ≤ sep(T 22
m ,Tk)

‖Rk‖ ε is sufficient to make

‖(AUk+1W
1
k+1 − Uk+1W

1
k+1T

11
k+1)−Rk+1‖ ≤ 2ε.

However, the bounds of ‖fk+1‖ in the necessary and sufficient conditions might
severely overestimate and underestimate, respectively, the actual allowable error in
the (k+1)th Arnoldi step. In fact, sep(T 22

k+1, Tk) and ‖Sk+1‖ are analogous to the
smallest and the largest singular values of the Sylvester operator Sk+1. The necessary
condition is generally too weak, as an obviously smaller ‖fk+1‖ may still not suffice
to keep the approximate invariant subspace from being contaminated. On the other
hand, the sufficient condition might be overly conservative, giving excessively small
tolerance for the linear system Ay = Buk+j+1 (0 ≤ j ≤ m − k − 1) and leading
to unnecessary extra inner iterations. To give a practical estimate of the allowable
‖Fk+1:m‖, [17] substitutes min |λ(Tk) − λ(T 22

m )| for sep(T 22
m , Tk), which is difficult to

estimate. Since min |λ(Tk)−λ(T 22
m )| > sep(T 22

m , Tk) for nonnormalA, this substitution
essentially gives a less conservative estimate.

A better estimate should be a trade-off between these two conditions. Theorem 3.2
of [17] uses ‖T 22

m (W 12
m )∗Wk − (W 12

m )∗WkTk‖ ≥ sep(T 22
m , Tk)‖(W 12

m )∗Wk‖, whereas
Theorem 4.1 above applies ‖T 22

m (W 12
m )∗Wk − (W 12

m )∗WkTk‖ ≤ ‖Sm‖‖(W 12
m )∗Wk‖.

Therefore, a more accurate estimate can be obtained by replacing the lower bound
sep(T 22

m , Tk) and upper bound ‖Sm‖ by

(4.14)
‖T 22

m (W 12
m )∗Wk − (W 12

m )∗WkTk‖
‖(W 12

m )∗Wk‖ =
‖T 22

m (W 12
m )∗ − (W 12

m )∗Hk‖
‖W 12

m ‖
,

which takes into account the actual effect of Sm on (W 12
m )∗Wk. Here we use the fact

that Hk = WkTkW
∗
k is a Schur decomposition.

The above strategy gives a theoretically more accurate estimate of ‖Fk+1:m‖.
However, like the estimate min |λ(Tk) − λ(T 22

m )| in [17], it depends on the Schur
decomposition of Hm, which is not available at step k. A practical (heuristic) solution
is to use the decomposition of Hm from the previous IRA cycle and Hk of the current

cycle. Specifically, suppose at the beginning of the ith IRA cycle, we have AU (i)
k +
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F
(i)
k = U

(i)
k H

(i)
k + h

(i)
k+1,ku

(i)
k+1e

T
k . Then we define

(4.15) σ
(i)
est ≡

‖T 22(i−1)
m (W

12(i−1)
m )∗ − (W

12(i−1)
m )∗H(i)

k ‖
‖W 12(i−1)

m ‖
,

which is very easy to compute. Note that H
(i)
k = H̃

(i−1)
k if the exact shift strategy is

used; see (2.4). Substituting σ
(i)
est for sep(T

22(i)
m , T

(i)
k ) in the relaxation strategy (3.13)

in [17], we have the following heuristic estimate of the allowable errors:

‖f (i)
j ‖ ≤

ε

2k
(i = 1, 1 ≤ j ≤ m)(4.16)

and

‖f (i)
k+j+1‖ ≤

ε

2(m− k)

σ
(i)
est

‖R(i)
k ‖

(i > 1, 0 ≤ j ≤ m− k − 1),

which hopefully can also lead to the generation of an approximate invariant subspace

U
(i)
m satisfying ‖AU (i)

m − U
(i)
m H

(i)
m − hm+1,mum+1e

T
m‖ ≤ ε.

Remark. To the best of our knowledge, given a k-step inexact Arnoldi decom-
position with small ‖Fk‖, none of the existing practical (computable) estimates of
allowable ‖Fk+1:m‖ can theoretically guarantee that the desired approximate invari-
ant subspace UmW 1

m will not be contaminated after (m−k) inexact Arnoldi steps. The
estimate in [28] for the unrestarted Arnoldi method involves the distance between the
desired Ritz value extracted from Hk and the rest of the spectrum of Hk, assuming
that the computed eigenvalue residual at step k is already small enough, which might
not be the case (see section 3.1 of [28] for the explicit formula); reference [17] uses

min |λ(T (i)
k ) − λ(T

22(i−1)
m )| in place of sep(T

(i)
k , T

22(i)
m ), which is replaced by σ

(i)
est in

our new estimate. We will compare the new estimate with that in [17] in section 5.
We also point out that ‖Fm‖ should be properly scaled. In fact, as AUm +Fm =

UmHm + hm+1,mum+1e
T
m, the relative quantity ‖Fm‖

‖AUm‖ should be used to measure

the magnitude of errors, especially if ‖AUm‖ is not moderate. Specifically, at the
(k + j + 1)th Arnoldi step, the linear system Ay = Buk+j+1 needs to be solved

inexactly. The relative error
‖fk+j+1‖

‖Auk+j+1‖ =
‖y−A−1Buk+j+1‖
‖A−1Buk+j+1‖ is not available as we do

not have A−1Buk+j+1. A reasonable and convenient substitute is the relative residual

norm of this linear system
‖Ay−Buk+j+1‖

‖Buk+j+1‖ . For our inexact IRA method, we require

this quantity to be bounded above by the new estimate in (4.16).
Finally, we note that inexact IRA is most suitable when a small number of eigen-

pairs are wanted. This algorithm computes all desired eigenpairs simultaneously, and
the maximum allowable inner solves errors are inversely proportional to the eigen-
residual norm of the whole desired approximate invariant subspace. Therefore, the
inner solve errors need to be kept small until the wanted eigenpairs that converge most
slowly are resolved to moderate accuracy. In scenarios where many (say, hundreds of)
eigenpairs need to be computed, it may be more practical to use eigensolvers such as
the Jacobi–Davidson method that compute one eigenpair at a time.

5. Numerical experiments. We present and discuss the results of numerical
experiments in this section, showing the effectiveness of the new tuning strategy, sub-
space recycling, and the new relaxation strategy. The following issues are addressed:

1. We show that the tuning strategy constructed using solution vectors obtained
from previous Arnoldi steps works as Theorem 3.4 describes: a proper use of
tuning in Phase I of Algorithm 2 gives a minimum residual solution y1 for
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Table 5.1

Parameters used to solve the test problems.

kw k m σ (σ1) σ2 τ ε p1 p2 l

Prob 1 8 8 12 0 – 1× 10−12 2× 10−11 10 10 5
Prob 2 3 4 9 −0.0325 0.125 1× 10−9 2× 10−10 10 10 4

Prob 3(a) 5 7 13 0 – 5× 10−11 5× 10−9 0 25 6
Prob 3(b) 5 9 15 0 −0.46 5× 10−11 5× 10−9 0 25 6
Prob 4(a) 5 7 13 0 – 5× 10−11 5× 10−9 0 40 6
Prob 4(b) 5 9 15 0 −0.24 5× 10−11 5× 10−9 0 40 6

which
‖Bu

(i)
k+j+1−Ay1‖

‖Bu
(i)
k+j+1‖

= O(s
(i,l)
p ) � 1, and therefore the correction equation

can be solved with a less stringent relative tolerance
δ‖Bu

(i)
k+j+1‖

‖Bu
(i)
k+j+1−Ay1‖

� δ, no

matter whether δ is a fixed or relaxed relative tolerance for Ay = Bu
(i)
k+j+1.

The new tuning strategy is compared with the original tuning strategy in
[17].

2. We compare inexact IRA methods with nonrelaxed (fixed) tolerances δf = ε
2k ,

where ε and k are given in Table 5.1 (this δf is used in [17] for inexact IRA
with a fixed tolerance for the inner solve) and relaxed tolerances δr given
by either the original estimate in [17] or the new estimate in (4.16). The
accuracy of the two estimates is discussed based on the numerical results.

3. We show that further reduction of inner iteration counts can be achieved at
little cost by proper subspace recycling.

We first explain the stopping criterion for the inexact IRA method. Suppose at

the beginning of the ith IRA cycle we have AU (i)
k + F

(i)
k = U

(i)
k H

(i)
k + h

(i)
k+1,ku

(i)
k+1e

T
k .

Let (θ
(i)
j , v

(i)
j ) (1 ≤ j ≤ k) be a Ritz pair, i.e., an eigenpair of H

(i)
k . Postmultiplying

the above equation by v
(i)
j , we have

(5.1) A(U (i)
k v

(i)
j )− θ

(i)
j (U

(i)
k v

(i)
j )− (h

(i)
k+1,kv

(i)
kj )u

(i)
k+1 = −F (i)

k v
(i)
j ,

where v
(i)
kj is the kth (last) entry of v

(i)
j . Here U

(i)
k v

(i)
j is an approximate eigenvector

of A, A(U (i)
k v

(i)
j )− θ

(i)
j (U

(i)
k v

(i)
j ) is the true eigenvalue residual, and (h

(i)
k+1,kv

(i)
kj )u

(i)
k+1

is the estimated residual. As the magnitude of errors has been kept under control to
guarantee that the true residual is close enough to the estimated one, we know that

(5.2)

∣∣∣∣∣h
(i)
k+1,kv

(i)
kj

θ
(i)
j

∣∣∣∣∣ ≈ ‖A(U
(i)
k v

(i)
j )− θ

(i)
j (U

(i)
k v

(i)
j )‖

|θ(i)j |
.

By checking that the computed residual (the left-hand side of (5.2)) is smaller than
a prescribed tolerance τ , we have confidence that the true residual (right-hand side
of (5.2)) is also approximately equal to or smaller than τ . Using estimated residuals

avoids the overhead of computing
‖A(U

(i)
k v

(i)
j )−θ

(i)
j B(U

(i)
k v

(i)
j )‖

|θ(i)
j | to evaluate the quality of

approximate eigenvectors during the IRA process. We use the relative residual norm
here because the dominant eigenpairs of A = A−1B are computed, and therefore θ is
generally not small.

Another issue is that k does not have to be equal to the number of desired
eigenpairs kw. One can choose a slightly bigger k for the IRA method, and only

test |(θ(i)j )−1h
(i)
k+1,kv

(i)
kj | in (5.2) for 1 ≤ j ≤ kw. Our experience is that for fixed m−k

(the number of Arnoldi steps in each restarted IRA cycle), more often than not, this
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choice of k reduces the number of IRA cycles. This idea, called “thick restarting,”
has been studied for the generalized Davidson method [35]. We speculate that thick
restarting for IRA makes the unwanted Ritz values more separated from the desired
eigenvalues; therefore it is less likely for the filter polynomial to damp the desired
eigenvector components during the restart.

Four test problems are used in our numerical experiments. The first is SHER-
MAN5 from MatrixMarket [23], a real matrix of order 3312 arising from oil reservoir
modeling. We use the shift-invert operator A = A−1 (with B = I) to detect some
eigenvalues closest to zero. The inner solve is done with ILU preconditioning with
drop tolerance 0.008 given by MATLAB’s ilu function. This example is used in [17]
to show the effectiveness of the tuning and the relaxation strategy therein.

The second problem UTM1700A/B, also from MatrixMarket, is a real matrix
pencil of order 1700 arising from a tokamak model in plasma physics. We use Cayley
transformation to detect that the leftmost eigenvalues are λ1,2 = −0.032735± 0.3347i
and λ3 = 0.032428. Here �(λ1,2) is 10 times bigger than λ3, and there are some
real eigenvalues to the right of λ3 with magnitude smaller than �(λ1,2). An ILU
preconditioner with drop tolerance 0.001 is used for the inner iteration.

Problems 3 and 4 arise from the linear stability analysis of a model of two-
dimensional incompressible fluid flow over a backward facing step, constructed using
the IFISS software package [9, 10]. The domain is [−1, L]×[−1, 1] with [−1, 0]×[−1, 0]
cut out, where L = 15 in problem 3 and L = 23 in problem 4; the Reynolds numbers
are 600 and 1200, respectively. Let u and v be the horizontal and vertical compo-
nent of the velocity, let p be the pressure, and let ν be the viscosity. The boundary
conditions are as follows:

u = 4y(1− y), v = 0 (parabolic inflow) on x = −1, y ∈ [0, 1];(5.3)

ν
∂u

∂x
− p = 0,

∂v

∂y
= 0 (natural outflow) on x = L, y ∈ [−1, 1];

u = v = 0 (no-slip) on all other boundaries.

We use a biquadratic/bilinear (Q2-Q1) finite element discretization with element
width 1

16 (grid parameter 6 in the IFISS code). The two problems are of order 72867
and 110371, respectively. We use the least squares commutator preconditioner [11] for
the inner solves. For both problems, we try shift-invert (subproblem (a)) and Cayley
transformation (subproblem (b)) to detect a small number of critical eigenvalues.

For completeness, the parameters used in the solution of each test problem are
given in Table 5.1. These parameters are chosen to deliver approximate eigenpairs of
adequate accuracies and show representative behavior of each solution strategy.

1. kw, k,m: We use the IRA method to compute kw eigenpairs; m and k are the
order of the Arnoldi decomposition before and after the implicit restart.

2. σ, σ1, σ2: The shifts of A = (A− σB)−1B and A = (A− σ1B)−1(A− σ2B).
3. τ : We stop the IRA method if the estimated residual in (5.2) is smaller than

τ for all kw desired approximate eigenpairs.
4. ε: The small quantity used in (4.16) to estimate the allowable tolerances for

the linear systems.
5. p1, p2: p1 harmonic Ritz vectors corresponding to harmonic Ritz values of

smallest magnitude and p2 dominant Ritz vectors are used for subspace re-
cycling.

6. l: Solutions vectors from l preceding IRA cycles are used for the tuning in
Phase I of Algorithm 2.
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Fig. 5.1. Linear decrease of sinϕp for problem 3(a). Left: sinϕp and sin(Bϕp). Right: νp and
its geometric average over six consecutive steps.

Fig. 5.2. Problem 1: Relative tolerances for the original systems and correction equations.

We begin by exploring the major quantities discussed in Theorems 3.2 and 3.3, us-
ing problem 3(a) as a benchmark problem; results for the other test problems discussed
in this section were similar. The inner solve is done with preconditioned GMRES to
the fixed relative tolerance 3.5× 10−10. From the first restarted IRA cycle, at every
Arnoldi step, we choose the solution vectors obtained in all previous steps for tuning

(l = inf; see (3.2)). The left part of Figure 5.1 plots sinϕp ≡ sin∠(u(i)
k+j+1,U (i,l)

p )

(�) and sin(Bϕp) ≡ sin∠(Bu
(i)
k+j+1, BU (i,l)

p ) (©) against the Arnoldi steps, and the

right part of the figure shows νp and ν̄p = (
∏5

s=0 νp−s)
1/6 (the geometric average of

νp over six steps). Here, note that m − k = 6 Arnoldi steps are performed in each
restarted IRA cycle, so that this geometric average is an estimate of the variation of

sin∠(u(i)
k+j+1,U (i,l)

p ) in one IRA cycle. It can be seen from the figure that, generally
speaking, both sinϕp and sin(Bϕp) decrease linearly with p, although sin(Bϕp) is
roughly one to two orders of magnitude larger. The scalar νp fluctuates from step
to step, and it can also be seen that cases where it is greater than one (for example,
midway between Arnoldi steps 30 and 40) coincide with increases in sin(Bϕp). But
νp is smaller than 1 at a majority of steps, as is its geometric average.

Figure 5.2 plots the relative tolerances δ for the original systems Ay = Bu
(i)
k+j+1

(solid lines) and the derived relative tolerances
δ‖Bu

(i)
k+j+1‖

‖Bu
(i)
k+j+1−Ay1‖

for the correction
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Fig. 5.3. Performance of different strategies with fixed tolerances of inner solves for problems
1, 2, 3(a), and 4(a).

equations Az = Bu
(i)
k+j+1 − Ay1 (dashed lines) for problem 1. The curves are as

follows:
• � Tol-Original Eqn-δf and � Tol-Correction Eqn-δf : The fixed relative tol-

erance δf = ε
2k ≈ 10−12 for the original system Ay = Bu

(i)
k+j+1 and the

derived relative tolerance
δf‖Bu

(i)
k+j+1‖

‖Bu
(i)
k+j+1−Ay1‖

for the correction equation Az =

Bu
(i)
k+j+1 −Ay1.

• � Tol-Original Eqn-δr and ♦ Tol-Correction Eqn-δr: The relaxed relative

tolerances δr estimated by (4.16) for Ay = Bu
(i)
k+j+1 and the derived relative

tolerance
δr‖Bu

(i)
k+j+1‖

‖Bu
(i)
k+j+1−Ay1‖

for Az = Bu
(i)
k+j+1 −Ay1.

Figure 5.2 corroborates the property of the two-phase algorithm described in
Theorem 3.4. Specifically, after Phase I of Algorithm 2, we get a good approximate

solution y1 for which the relative residual norm
‖Bu

(i)
k+j+1

−Ay1‖
‖Bu

(i)
k+j+1‖

= O(s
(i,l)
p ) � 1, and

therefore the derived relative tolerance of the correction equation
δ‖Bu

(i)
k+j+1‖

‖Bu
(i)
k+j+1−Ay1‖

� δ.

The reduction of inner iterations by the two-phase algorithm (with the new tuning
used in Phase I of Algorithm 2) can be seen from Figure 5.3, where the inner iteration

counts required by three different strategies for solving Ay = Bu
(i)
k+j+1 are plotted

against the Arnoldi steps:

• “No Tuning” (dotted line): Solve the original systems Ay = Bu
(i)
k+j+1 by

preconditioned GMRES to the fixed tolerance δf = ε
2k without any enhance-

ments.
• “Original Tuning” (�, solid line): Solve Ay = Bu

(i)
k+j+1 by GMRES with

the original version of tuning in [17] to the fixed tolerance δf (note that
the original tuning needs to be applied at each GMRES step so that the
eigenvalues of the preconditioned system matrix can be clustered and hence
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inner iteration counts can be reduced; this effect cannot be realized by trying
the two-phase approach with this tuning strategy).

• “New Tuning (five previous cycles)” (�, dashed line): Solve Ay = Bu
(i)
k+j+1

by the two-phase algorithm to the fixed tolerance δf ; in the first phase, the
new tuning is constructed using solution vectors from the current and five
previous IRA cycles.

For each test problem, we choose l (the number of previous IRA cycles) such that
the use of our tuning with a larger l does not obviously further reduce the total
inner iteration counts. Clearly, compared to the “No Tuning” strategy, the two-phase
algorithm (�, with the new tuning used in Phase I only) requires fewer inner iterations
due to the larger relative tolerances for the correction equations.

It can be seen that there are some cases where the original tuning strategy is
superior to the new one (see the plots at the top of Figure 5.3) and others where
the original tuning is ineffective (bottom plots of Figure 5.3). The distinct merits of
the two approaches can be explained as follows. Given some untuned preconditioner
P , let P be the original tuned version defined in [17]. It is shown in [17] that the
preconditioned operator AP−1 tends to have more favorable eigenvalue clustering
than AP−1, especially if P is not a strong preconditioner. For problems 1 and 2, we
have seen that the use of tuning (of the ILU preconditioner) produces preconditioned
coefficient matrices with considerably tighter clustering of eigenvalues than for the
untuned preconditioner. This improves the performance of GMRES. Moreover, it
appears that tuning forces some small eigenvalues to move away from the origin, and
as a result, the initial latency of preconditioned GMRES is significantly shortened.
On the other hand, with the new tuning strategy, used with the two-phase method
of Algorithm 2, there is still a long initial latency for solving the correction equation
by GMRES with the untuned perconditioner P , despite the larger tolerance allowed.
Moreover, as observed above, the new tuning does not improve performance for solving
the correction equation.

However, the original tuning is not always effective for this purpose. As Figure
5.3 shows, for problems 3 and 4, the use of the original tuning (�) requires even
more inner iterations than the untuned preconditioner (dotted line) does, whereas
the new tuning (�) reduces the inner iteration counts considerably. In these cases,
the linear solvers make use of the least squares commutator preconditioner [11, 12];
this is a strong preconditioner for which the preconditioned system matrix AP−1

has most eigenvalues clustered around 1 and only a small number of outliers [12].
In this case, we find that the clustering of eigenvalues is not significantly improved
by the original tuning (indeed, it may be compromised), and the performance of
preconditioned GMRES is not improved by tuning. On the other hand, as shown in
section 3.2, the improved performance of the new tuning method comes from the fact
that the right-hand side of the system being solved is nearly an eigenvector of the
preconditioned operator together with the relaxed tolerance for solving the correction
equation in Algorithm 2.

In addition to the use of the new tuning strategy, the overall performance of the
two-phase algorithm can be improved by efficient solution of the correction equation

Az = Bu
(i)
k+j+1 − Ay1. This can be performed using the GCRO-DR algorithm dis-

cussed in section 3.3. Compared to the regular GMRES solve, the use of subspace
recycling achieves improved performance because it deflates some smallest and largest
(in magnitude) eigenvalues of the coefficient matrix and thus helps reduce the initial
latencies of inner iterations. Also, as observed in section 3.3, the recycled subspaces
obtained from one correction equation can be applied directly to the solution of the
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Fig. 5.4. Performance of different strategies with relaxed tolerances of inner solves for problems
1, 2, 3(a), and 4(a).

next equation, because the preconditioned system matrix is identical for the correction
equations in all Arnoldi steps. This makes subspace recycling very cheap to use.

Moreover, further performance improvement can be achieved by the use of the

relaxation strategy: As section 4 shows, the allowable tolerances for Ay = Bu
(i)
k+j+1

are inversely proportional to the current eigenvalue residual norm. Therefore as the
IRA method proceeds and converges to the desired invariant subspace, the relaxed
tolerances keep increasing. Figure 5.4 shows the inner iteration counts required by

four strategies for solving Ay = Bu
(i)
k+j+1:

• “No Tuning-FixTol” (dotted line): Solve the original systems Ay = Bu
(i)
k+j+1

with preconditioned GMRES to the fixed tolerance δf = ε
2k . This perfor-

mance of this strategy is already given in Figure 5.3; it is shown again to
illustrate the performance improvement obtained by the following advanced
strategies.

• “Orig Tuning-Orig RelaxTol” (�, solid line): Solve Ay = Bu
(i)
k+j+1 by GM-

RES with the original tuning to the relaxed tolerances δr given by the original
estimate.
• “New Tuning(5)-New RelaxTol” (♦, dashed line): Solve Ay = Bu

(i)
k+j+1 by

the two-phase strategy to the new estimated tolerances δr in (4.16); tuning
is constructed using solution vectors from the current and five previous IRA
cycles.
• “New Tuning(5)-New RelaxTol-Recycling” (�, dashed line): Solve Ay =

Bu
(i)
k+j+1 by by the two-phase strategy to the new estimated tolerances δr; in

addition, subspace recycling is used to solve the correction equations.
One can see from Figure 5.4 that the relaxed tolerances help gradually reduce the inner
iteration counts to small numbers (curves with �, ♦, and �). The effectiveness of
subspace recycling is also clear: for problems 1 and 2, the use of this technique reduces
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Table 5.2

Inner iteration counts for different solution strategy for each problem.

No New New New New Original Original
tuning tuning tuning tuning tuning tuning tuning

new new original original
relaxation relaxation relaxation relaxation

subspace subspace
recycling recycling

Prob 1 2391 2233 1531 765 795 1628 1194
Prob 2 3856 3771 3001 1052 1096 3250 2397

Prob 3(a) 7367 6153 4450 3584 3618 8189 5737
Prob 3(b) 10661 8079 7088 5295 5481 10576 7435
Prob 4(a) 13999 12203 9693 7294 7536 15738 12260
Prob 4(b) 19436 15954 12748 9745 10500 19552 14115

Table 5.3

Largest eigenvalue residual norms of eigenvector approximations computed by different solution
strategies.

No New New New New Original Original
tuning tuning tuning tuning tuning tuning tuning

new new original original
relaxation relaxation relaxation relaxation

subspace subspace
recycling recycling

Prob 1 1.398e−12 1.400e−12 1.754e−12 1.624e−12 1.468e−12 1.231e−12 1.407e−12
Prob 2 8.021e−10 8.021e−10 1.424e−9 8.956e−10 9.723e−10 2.169e−9 2.579e−9

Prob 3(a) 1.114e−10 1.116e−10 2.003e−10 1.770e−10 1.206e−10 1.310e−10 1.726e−10
Prob 3(b) 1.583e−9 1.578e−9 2.365e−9 5.619e−9 2.445e−9 1.692e−9 1.884e−9
Prob 4(a) 4.605e−11 1.152e−10 1.152e−10 8.660e−11 7.660e−11 1.192e−10 1.522e−10
Prob 4(b) 8.523e−10 8.517e−10 2.219e−9 1.939e−9 1.025e−9 8.701e−10 9.826e−10

the inner iteration counts by 40%–50% in initial Arnoldi steps (compare curves with
♦ to those with �); for Problems 3 and 4, where the original tuning does not perform
well (see Figure 5.3), subspace recycling still decreases the inner iteration counts of
each linear solve by numbers commensurate to the dimensions of recycled subspaces.

Table 5.2 summarizes the total inner iteration counts needed for each strategy for

solving Ay = B
(i)
k+j+1 arising in inexact IRA. Here, “New Tuning + New Relaxation

+ Subspace Recycling” and “Original Tuning + Original Relaxation” are the most
efficient strategies in this paper and [17], respectively. Clearly, the most efficient
approach is to combine the two-phase algorithm (with the new tuning), relaxation

strategy, and subspace recycling. The largest eigenvalue residual norm,
‖Awj−μjBwj‖
max{1,|μj |} ,

of computed eigenpairs (μj , wj) (1 ≤ j ≤ kw) is given in Table 5.3. One can see that
inexact IRA with any of these competing inner solve strategies delivers computed
eigenpairs of approximately the same quality.

Finally, we discuss the two approaches assessing the allowable errors of inner
solves in the Arnoldi steps. For all problems, we found that solution strategies with
the new estimated allowable tolerances (4.16) require slightly smaller numbers of
inner iterations than are needed for strategies with the original estimated tolerances.
Table 5.2 shows that the new estimated tolerances help decrease the inner iteration
counts by about 2%–5% (compare the “New Tuning + New Relaxation + Subspace
Recycling” with “New Tuning + Original Relaxation + Subspace Recycling”) when
used with the two-phase strategy and subspace recycling. In fact, the new estimated
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tolerances tend to be a small multiple (say, 2 to 10) of the original estimated ones in
most IRA cycles for all test problems.

Some heuristic remarks can be made for the two estimations. First, the sub-
stitution of min |λ(Tk) − λ(T 22

m )| for sep(T 22
m , Tk) in the original estimation seems

reasonable, in the sense that the former is usually not obviously larger than the lat-
ter. In fact, in the setting of eigenvalue computation, we expect two basic properties
to hold: (1) the desired Ritz vectors generated by the Rayleigh–Ritz procedure are
not far from the “best approximation” in the subspace from which the Ritz vectors
are extracted, and (2) a small eigenvalue residual of the desired approximate invari-
ant subspace implies good eigenvector approximation. Here, the best approximation
may refer to an eigenvector approximation in a given space obtained from the refined
Rayleigh–Ritz method, an approximation in that space which minimizes the eigen-
value residual norm, or the orthogonal projection of the true eigenvector onto that
space. These approximations are expected to be close to each other if the matrices
involved are not highly nonnormal; see [36] for details. However, by analogy to the
results in [37] and Chapter 2 of [21], both properties may not be true if sep(T 22

m , Tk)
is considerably smaller than ‖T 12

m ‖ or min |λ(Tk) − λ(T 22
m )| in our context. In the

usual situations when the two properties hold, min |λ(Tk)− λ(T 22
m )| is expected to be

not much larger than sep(T 22
m , Tk). Second, numerical evidence help us understand

why the new estimate tends to be slightly larger than the original estimate. In fact,
note that min |λ(Tk)− λ(T 22

m )| and max |λ(Tk)− λ(T 22
m )| are the smallest and largest

eigenvalue of the Sylvester operator Sm (G → Sm(G) : T 22
m G − GTk); see [36, page

17]. For the test problems with spectral transformation, it was consistently found
that the largest eigenvalue of Sm is only about 10–100 times larger than the smallest
eigenvalue of Sm, as long as the shift is not too close to an eigenvalue of the matrix
pair (A,B). As the quantity in (4.14) used in the new estimation is always between
the two extreme eigenvalues of Sm in practice, it is not surprising that this quantity
tends to be a small multiple of min |λ(Tk)−λ(T 22

m )|. The original estimated allowable
tolerance seems reasonably accurate for the test problems.

6. Conclusions. We have studied an inexact implicitly restarted Arnoldi (IRA)
method for solving generalized eigenvalue problems with shift-invert and Cayley trans-
formations, with focus on a few strategies that help reduce the inner iteration counts.
We present a new tuning strategy using the solution vectors from the current and pre-
vious IRA cycles, and discuss a two-phase algorithm involving a correction equation
for which the tolerance can be considerably bigger than that for the original sys-
tem. In addition, subspace recycling can be used easily for the correction equation to
further reduce the inner iteration counts. We analyze the allowable errors of matrix-
vector products performed in Arnoldi steps and propose an alternative estimate of
relaxed tolerances for the original linear systems. Numerical experiments show that
the combined use of these strategies lead to significant speedup of inner iterations.
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