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We describe some new preconditioning strategies for handling the algebraic 
systems of equations that arise from discretization of the incompressible 
Navier-Stokes equations. We demonstrate how these methods adapt in a 
straightforward manner to decisions on implicit or explicit time discretization, 
explore their use on a collection of benchmark problems, and show how they 
relate to classical techniques such as projection methods and SIMPLE. 
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1. I N T R O D U C T I O N  

In this paper, we describe a new class of computational algorithms for 
solving the systems of algebraic equations that arise from discretization 
and linearization of the incompressible Navier-Stokes equations 

II t -- pV2U -'[- (U. grad) u + grad p = f 
-d ivu  = 0 

in S2, (1.1) 

subject to suitable boundary conditions on 0~2. Here, s is an open 
bounded domain in N2 or N3 u and p are the velocity and pressure, 
respectively, f is the body force per unit mass, and v is the kinematic vis- 
cosity. The algorithms consist of preconditioning strategies to be used in 
conjunction with Krylov subspace methods. They are applied to the prim- 
itive variable formulation of (1.1) and are designed to take advantage of 
the structure of the systems. 
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The objective in developing these solution algorithms is for them to 
be effective and adaptable to a variety of circumstances. In particular, they 
can handle both steady and evolutionary problems in a straightforward 
manner, and they offer the possibility of being extended to more gen- 
eral systems, such as those that include temperature in the model. Their 
implementation depends on having efficient solution algorithms for cer- 
tain subsidiary problems, specifically, the Poisson equation and the convec- 
tion-diffusion equation. These scalar problems are easier to solve than the 
Navier-Stokes equations; effective approaches include multigrid, domain 
decomposition, and sparse direct methods. Once such "building blocks" 
are available, they can be integrated into a solver for the coupled system 
(1.1). In this paper, we describe such solvers and demonstrate their utility. 

A summary of the paper is as follows. Section 2 gives a brief over- 
view of the original development of the algorithmic approach as designed 
for the steady Stokes equations and describes what modifications are 
needed for the Navier-Stokes equations. Section 3 shows how this gen- 
eral approach is related to other traditional strategies for solving (1.1), 
including projection methods [3,31] and SIMPLE [24]. Section 4 presents 
the main ideas for constructing solvers designed for the Navier-Stokes 
equations, which entail devising strategies for efficiently approximating the 
inverse of a component of the discrete operator. Section 5 shows the 
results of a series of numerical experiments demonstrating the utility of 
this approach for evolutionary problems. Finally, Sec. 6 summarizes the 
approach and presents some ways it can be generalized to handle more 
complex models. 

2. B A C K G R O U N D  

By way of introduction, consider the steady-state Stokes equations 

- V 2 u + g r a d p  = f 
-d ivu  = O. (2.1) 

Div-stable discretization by finite elements [14] or finite differences [22] 
leads to a linear system of equations 

where, for problems in d dimensions, A is a block diagonal matrix 
consisting of a set of d uncoupled discrete Laplace operators. The 
coefficient matrix of (2.2) is symmetric and indefinite, and therefore the 
MINRES [23] variant of the conjugate gradient method is applicable. This 
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iterative method requires a fixed amount of  computational work at each 
step, and it is the optimal Krylov subspace method with respect to the 
vector Euclidian norm for solving Ax = b where .4 is symmetric indefinite. 
That is, the residual rk = b -  Axk of the kth iterate satisfies 

Ilrkll2= min [[pk(.4)r0ll2~ min max Ipk(3.)lllr0[I, (2.3) 
pk(O)EFl k pk(O)EH k ~.Ea(,A) 

where Hk denotes the set of  all real polynomials Pk of  degree at most k 
for which pk(O)= 1, and cr (,4) is the set of eigenvalues of .4. 

If  a (.4) is contained in two equal-sized intervals 

[-a,-b]t_J[c,d], a, b, c, d >0,  

then the convergence factor minpk (0)~/7, max~eo(.4) [Pk (3.)[ is bounded by [15] 

2 (1-~/(bc)/(ad) ~ l/2. 
\ 1 + ~/(bc)/(ad) / 

The key for rapid convergence is for this quantity to be small. For (2.2), 
this is achieved by preconditioning. Consider a preconditioning operator 
of  the form [26,29,33] 

Q = ( A 0  QsO ) .  (2.4) 

This leads to the generalized eigenvalue problem 

If 3. :~ 1, then the first block of  this equation gives u = 
[1/(3.-  1)] A-1BTp, and substitution into the second block yields 

BA-IBTp=#Qsp , 1 • +4~t 
# = 3 . ( 3 . -  1), 3 . -  (2.6) 

2 

A good approximation Qs to the Schur complement BA-1B r will result 
in eigenvalues {/z} that lie in a small interval, so that the eigenvalues {3.} 
in turn lie in two small intervals. It is shown in Verffirth [32] that a good 
choice for Qs is the pressure mass matrix, Alp. In particular, all/z are con- 
tained in an interval that is independent of  the discretization mesh param- 
eter h, and, therefore, all 3. are also independent of  h. 

Use of  the preconditioner (2.4) with MINRES entails the application of  
the action of  the inverse of  Q to a vector at each iteration; this requires 
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the solution of a set of Poisson equations on the discrete velocity space 
(application of the action of A-l), and application of the action of Mp 1 
on the discrete pressure space. The pressure mass matrix is uniformly well- 
conditioned with respect to h, so the latter operation is inexpensive [34]. 
For this preconditioner to be useful, the Poisson solves must be done effi- 
ciently. A feature of this approach is that these solves can be also be 
approximated with little degradation of its effectiveness. (This contrasts 
with the alternative strategy of using iterative methods to solve the decou- 
pled system BA-1BTp = BA-l f . )  Formally, this corresponds to replacing 
A in (2.4) with some approximation QA. A good choice would be some 
QA that is spectrally equivalent to A with respect to h, obtained for exam- 
ple using a few steps of multigrid applied to the Poisson equation. See 
Refs. [8, 30] for more details on this and other aspects of solving this prob- 
lem. 

Now consider the Navier-Stokes Eqs. (1.1). Fully implicit time dis- 
cretization leads to the coupled nonlinear equations 

-1 u(m+l) -- v v Z u  (m+l) -]- (U (m) - grad) U (m+l) -+- grad p(m+l) __ f(u(m)) 

-d ivu  (re+l) = 0, 

where (u (m), p(m))T is the solution at time step m, and a and f(u (m)) 
depend on the time discretization strategy. For example, for the backward 
Euler method, o~ = At, the time step, and f(u (m)) = f - l u ( m ) .  At each time 
step, this system can then be solved using a nonlinear iteration, producing 
a sequence of iterates (u~. re+l), p~m+l))T An example is the Picard itera- j 
tion, in which the convection coefficient is lagged: 

1 u(m+l) ~X72n (re+l) 2- l, (re+l) ,,rad' U (re+l) - - - r a d  (re+l) 
j + l  - - ~ - - = j + l  - - t ' * j  "~ ? j + l  --l-g Pj+l 

.(re+l) 
- d i v u j +  1 

Div-stable spatial discretization [14,22] gives a linear 
equations of the form 

F O T (u(m+l) (f(m) 
( B  O )~p(m+l))=~g(m) ) ' (2.8) 

where F is now a block diagonal matrix consisting of a set of d uncoupled 
discrete operators arising from the time-dependent convection-diffusion 
equation. The blocks of F essentially have the form 

1 
- m  + va + N, (2.9) 
O/ 

= f (u  (m)) 

= 0  

(2.7) 

system of 
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where M, A and N are a discrete mass matrix, Laplacian, and convection 
operator, respectively. We will discuss our results below in terms of the 
Reynolds number Re = I~___A; in our examples, the length scale and velocity 
scales are L=2 ,  lul = 1, so that Re=2/v .  

The analogue of (2.4) for (2.8) is 

Preconditioning as in (2.5) leads to the eigenvalue problem 

B F-1Br  p =  izQsp, (2.11) 

for the Schur complement, and once again, we seek an operator Qs for 
which the eigenvalues are tightly clustered, and such that application of 
the inverse of Qs to a vector in the discrete pressure space is inexpensive. 

We defer a discussion of this main point, strategies for choosing 
Qs, to Sec. 4. We conclude here by identifying an improvement in the 
general design of solution algorithms available for the Navier-Stokes equa- 
tions. The eigenvalues of (2.11) may be complex, and this would place the 
eigenvalues of the preconditioned version of the Navier-Stokes equations 
in two regions in the complex plane, one on each side of the imaginary 
axis [5]. (This is analogous to the two intervals containing the eigen- 
values of the preconditioned Stokes operator.) For the Stokes equations, 
the positive-definite block diagonal form of the preconditioner makes the 
preconditioned operator symmetric, which in turn allows the use of the 
optimal MINRES method. Now, however, (2.8) is not symmetric and there 
is no Krylov subspace solver that is optimal as in (2.3) and has a fixed 
amount of computational work per iteration [12,13]. Since there is no 
symmetry to maintain, we can use a block-triangular variant of (2.10), 

0 - Q s  " (2.12) 

This choice leads to the generalized eigenvalue problem 

F B T 

for which the eigenvalues are those of (2.11) together wi th /x= 1. A good 
choice of Qs will then force all eigenvalues to be clustered on one side 
of the imaginary axis. Use of this preconditioner in combination with a 
Krylov subspace method such as GMRES [27] requires approximately half 
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the iterations as the variant based on (2.10), with minimal extra cost per 
iteration. 

So far we have restricted our attention to stable discretizations, for 
which there is a zero block in the (2,2)-entry of the coefficient matrix of 
(2.8). It is often convenient to use discretizations that require stabilization; 
for example, this enables the use of equal-order finite elements for veloc- 
ities and pressures on a common grid [17,20]. In this case, the system to 
be solved has the form 

F B r u 

where C is a stabilization operator. A second interpretation of (2.12) pro- 
vides insight into what is needed in this situation. Consider the block LU- 
factorization 

F 

This means 

B T B T 0 
0 - ( B F - I B r + C ) ) "  (2.14) 

BT BT -1  

0 _ ( O F - 1 O T ~ _ c ) ) = ( O / - 1  ~) 

is an "ideally" preconditioned system whose eigenvalues are identically 1. 
It suggests that the preconditioner should have the form 

0 - Q s  " (2.15) 

That is, just as for stable discretizations, we require a good approxima- 
tion Qs for the Schur complement with respect to F, which for (2.13) 
is BF-1BT+ C. Moreover, as discussed for the Stokes equations, in 
general, additional efficiencies can be achieved using QF ~" F, i.e. by 
using iterative methods to approximate the action of the inverse of the 
(convection-diffusion) operator F. 

3. RELATION TO OTHER METHODS 

In this section, we show some connections between the precondition- 
ing methods considered above and two established solution methods for 
the Navier-Stokes equations, projection methods and SIMPLE. This is a 
brief overview of a more detailed discussion that can be found in Elman 
et al. [10]. 
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The "classical" first-order projection method for evolutionary prob- 
lems [3,31] can be viewed as a two-step procedure for advancing from time 
step m to step m + 1. Viewed in its semi-discrete form, with only time 
discretization, it is 

Step 1: solve 

Step 2: solve 

U (*) __ U (m) 

At 

0 

VV2U (*) -1- (U (m). grad)u (m) =f for u(*), 

[l(m+l) 
(3.1) 

In step 2, p(m+l) is obtained by solving a Poisson equation, and U (m+l) is 
then the orthogonal projection of the intermediate quantity u (*) into the 
space of incompressible vector fields. Spatial discretization gives the matrix 
formulation 

sto.  1: so vo 

Step2:solve (-~MBT){u(m+I)~ (0-7 Mu(*)) \/m+l,]-- 

where A, N and M are as in (2.9). The updated discrete pressure is 
obtained by solving the discrete pressure Poisson equation 

BM-1BT p (re+l) =At Bu (*). 

Substitution of u(*) into Step 2 shows that the advancement in time 
is done by solving the algebraic system 

1 

B 0 ~p(m+l)] 

=(f -(-~TM+N)u(m) . (3.2) 

It was observed in Perot [25] that the sequence of operations performed 
for the projection method derive from a block LU-decomposition of the 



354 Elman 

coefficient matrix of this system, 

1M_k_vA 1 1 -1 T ) (-ATM+vA)(-A7 M) B 
B 0 

( o 
= B -B(1M)-IB T ( 0 

(3.3) 

Following [25], it is instructive to contrast this with what would be 
required to perform an update derived purely from linearization and dis- 
cretization of the original problem (1.1). If linearization is performed in a 
manner analogous to (3.1), i.e., by treating convection fully explicitly, then 
a time step would consist of solving the system 

( 1M-~-vAB BT ) ( p(m+l) )=(f-(-lO'q-g)u(m) ) (3.4) 

instead of (3.2). The coefficient matrix of (3.2) can be viewed as an 
approximation to the coefficient matrix of (3.4), the only difference lying 
in the block (1,2)-entry: 

BT (_~TM+vA) 1 -1 (-~TM) BT=--(At)vAM -1BT=O(At). 

Since this is of the same order of magnitude as the time discretization 
error, there is no loss of accuracy associated with the projection method 
[16]. Thus, projection methods can be viewed as a device for avoiding hav- 
ing to solve the Stokes-like system of equations of (3.2). The analogue for 
(3.4) of the block-LU decomposition (3.3) is 

B 0 = B -B(1M+vA)-IB T 

x (  0I (1M+vA)-IB ) '  

which is a factorization like that of (2.14). As we have observed, what is 
needed for efficient Processing of this system a good approximation to the 
Schur complement operator, in this case B(~M+vA)-IB r. This particu- 
lar (generalized Stokes) problem has been treated in Refs. [1,2]. 

Remark Viewing (3.2) as derived from (3.4) also provides a means 
of implicitly defining boundary conditions for projection methods. This 
is done for the pressures via the Schur complement operator BM-IB T 
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appearing in (3.3). No boundary conditions are needed for u (*) since this 
quantity is implicitly incorporated into (3.2). See Refs. [4,25] for further 
discussion of this point; Reference [4] also shows how these ideas work for 
higher order time discretization. 

To describe a connection between the widely used SIMPLE ("Semi- 
Implicit Method for Pressure-Linked Equations") method [24] and the 
preconditioning methodology of Sec. 2, we follow Wesseling [35, p. 296ff]. 
SIMPLE uses a block factorization 

where both QF and F are approximations to F. This represents an alter- 
native approximation to the block factorization (2.14). The first operator 
QF is determined in a manner analogous to the approach of Sec. 2, via 
an iteration that approximates the action of the inverse of F. The sec- 
ond approximation P is chosen so that the operator BF-1B r c a n  be used 
explicitly. The standard implementation [24] uses the diagonal of F for F. 
This means that the approximate Schur complement BF-1B r resembles a 
discrete Laplacian operator. 

The solver for (2.8) derived from (3.5) is a stationary iteration essen- 
tially of the form 

(.(m+l))uj+ 1 /u(m+l)) ( ~_IBT )-1 ( )-1 
_(m+l) = 1  }m+l~ + 1 Qe 0 Pj+l \P j  0 I B -B~ 'B  r 

X L ~g(m) /-- B 0 \pjl J(m) �9 

This can easily be adapted to produce a preconditioned iteration. The 
main difference between this approach and those of the next section 
lies in the approximation to the Schur complement. The choice deter- 
mined by P = diag(F) is a good one in the case of small time steps but 
is less effective when the spatial mesh size is small or when flows are 
convection-dominated [35]. 

4. APPROXIMATION TO THE SCHUR COMPLEMENT 

In contrast to the methods discussed in the previous section, the per- 
spective of the new approach is to treat the coupled equations directly by 
approximating the Schur complement associated with (2.8) or (2.13). In 
this section, we discuss two ways to do this. 
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For the first, assume that both m and j are fixed in (2.7), and let w =  
u(m+l) denote the lagged convection coefficient. Consider the translated 

J 
convection-diffusion operator L I -  vV 2 + w .  V. Suppose that the pressure o/ 
space also admits a convection-diffusion operator (-vV2 + w. V)p, and 
furthermore that the commutator of the translated convection-diffusion 
operators with the gradient operator, 

(11 - v V  2 + w .  V ) V  - V ( I I  - 1)V 2 + w .  V ) p  

is small in some sense. A discrete version of this assertion is that 

(Mu 1 F) (MulB T) - (Mu 1B T) (Mp 1Fp) (4.1) 

is also small, where Mu is the mass matrix associated with the velocity dis- 
cretization and Fp is a discrete approximation to the translated convec- 
tion-diffusion operator; both F and Fp have the form given in (2.9). It 
follows that 

B F -1B T ~ ApFp 1Mp, (4.2) 

where Ap =BM~IB r is a discrete Laplacian operator. The matrix on the 
right hand side here defines a preconditioning operator Qs. More gener- 
ally, any suitable discrete approximation to the Laplacian can be used for 
Ap; in particular, if stabilization is required, then BM~IB ~ will be rank- 
deficient and an alternative, stable, approximation Ap to the Laplacian 
would be needed. The resulting operator can then be used as an approx- 
imation to BF-1BT+C. See Refs. [11,19,28] for additional discussion of 
these points; in particular, [19] gives an alternative derivation of Qs using 
the fundamental solution tensor for the linearized Navier-Stokes operator. 
An important point is that although commutativity is used in the deriva- 
tion above, it is not necessary that (4.1) be small (it is not small when 
equal order finite element methods on different grids are used [6]) for the 
idea to be effective. 

An alternative approximation to the Schur complement is derived 
from a simple observation in linear algebra [7]. Suppose G and H are 
two rectangular matrices of dimensions n l x n2 with full rank n l~< n2. The 
matrix 

HT(GHT)-IGT 

maps ~n~ to range(H r) C ~,1, and it fixes range(Hr).  That is, 
HT (GHT)-IGT = I on range(HT). With the choices G = BF -1, H = B, 
this gives 
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B r ( B F - 1 B T ) - 1 B F  -1 = I 

or, equivalently, 

B T ( B F  - 1 B T )  - I  B = F 

on range(B T) 

on range(F -1BT). 

If range(B T) were contained in range(F -l  BT),  then this would imply that 

( B B  T ) ( B F  - 1 B T )  -1 ( B B  r )  = B F B  r , 

o r  

( B F  - 1 B T )  -1 = (BBT)  - l  ( B F B  T) (BBT)  -1 . (4.3) 

It is generally not the case that range(B T) C r a n g e ( F - I B r ) ,  so that the 
expression above is not a valid equality. However, if we view (4.3) as an 
approximation, we can use the expression on the right side to define a pre- 
conditioning operator Qs 1. Note that this approach is applicable only to 
div-stable discretizations; ideas to generalize it to stabilized discretizations 
are under development. 

We refer to the operator defined by (2.15) and (4.2) as the "Fp-pre- 
conditioner," and that defined by (2.15) and (4.3) as the "BFBt-precon- 
ditioner." Both strategies were originally developed with steady problems 
in mind, and in this regard they have been studied in Refs. [7,9,11, 19,21, 
28]. Some of their properties for solving the problems that arise from low- 
order finite element or finite-difference discretization of steady problems 
are as follows: 

1. With Fp-preconditioning, GMRES iteration exhibits a rate of 
convergence that is independent of the discretization mesh size h 
[11,21]. 

2. With BFBt-preconditioning, convergence of GMRES iteration is 
mildly dependent on mesh size, with iteration counts that appear 
to grow in proportion to h -1/2 [7]. 

3. Both methods lead to convergence rates that are mildly dependent 
on the Reynolds number [7,11,19,28]. 

As we will see in Sec. 5, for evolutionary problems the dependence of conver- 
gence rates on mesh size and Reynolds numbers becomes negligable; similar 
results have also been shown in Refs. [8, 9]. The results cited here are largely 
experimental. The report [21] contains rigorous bounds showing that the 
eigenvalues of the Fp-preconditioned operator A Q  - I  are contained in a 
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region that is independent of mesh size h and time step At; these can be 
used to establish bounds on the asymptotic convergence rates of 6MRES. 

Using the preconditioner (2.15) with an iterative method such as 
CMRES to solve systems (2.8) or (2.13) requires that the action of the 
inverse of Q be applied at each step. The main computational tasks 
required for this are to apply the action of the inverse of Qs to a mem- 
ber of the discrete pressure space, and to apply the action of the inverse 
of QF to a member of the discrete velocity space. For Picard itera- 
tion (2.7), the latter operation entails solution of a set of scalar discrete 
convection-diffusion equations. This can be done effectively by iterative 
methods. For evolutionary problems especially, this is a straightforward 
computation because of the presence of the mass matrix in F [9]. 

For the other main task, application of the action of the inverse of 
Qs, the principal cost is for solution of the Poisson equation. The Fp- 
preconditioner requires one Poisson solve at each step, and the BFBt-pre- 
conditioner requires two per step. Once again, this task can be handled 
by iterative methods, and moreover, approximate solutions to the Poisson 
equations are sufficient. In our experience, one or two steps of V-cycle 
multigrid are sufficient for good performance of the complete solver. 

If we compare these two preconditioning methods, it is evident that the 
Fp-approach tends to have more favorable properties. However, one advan- 
tage of the BFBt method is that it is fully automated: it is defined explicitly 
in terms of operators constructed from the discretization, and it requires no 
action on the part of a potential user in order to be specified. In contrast, 
for the Fp-preconditioner, it is necessary that the matrices Fp and Ap be 
constructed. In principal this can be done using a code similar to the one 
that produces F, but it must be done. It is also necessary to make decisions 
on how boundary conditions affect the definitions of Fp and Ap. 

5. EXPERIMENTAL RESULTS 

In this section, we show some representative experimental results on 
performance of the preconditioners described in the previous section. We 
used two benchmark problems: 

1. The two-dimensional driven cavity problem on the domain ~2 = 
[-1,  1] • [-1,  1]. Boundary conditions are u - 0  on 3~2 except 
u 1 (x, 1) = 1 at the top of ~2. 

2. Flow over a backward-facing step. ~ is the L-shaped domain 
[-1,  0] x [0, 1] U [0, 5] • [-1,  1], with parabolic inflow conditions 
u l ( - 1 , y )  = 1 -  y2, u 2 ( - 1 , y ) = 0 ,  natural boundary conditions 
v Ox - P = O, = 0 at the outflow boundary x = 5, and u - 0 
otherwise. 
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Streamlines: nonuniform 

Streamlines: non-uniform 

Pressure field 
. , ' : .  
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Fig. 1. Steady state solutions of  the driven cavity (top) and backward step (bottom) 
problems for Re = 200. 

Steady solutions of these problems for Reynolds number 200 are depicted 
in Fig. 1. 

Details concerning the experiments are as follows. Spatial discretiza- 
tion was done using the stable Q2"QI finite element discretization consist- 
ing of biquadratic elements for the velocities and bilinear elements for the 
pressures, on a uniform grid. Rather than perform a full transient itera- 
tion, we simulated time discretization as follows. For most of the tests, we 
performed a Picard iteration for the steady problem, saved the coefficient 
matrix J arising from the second Picard step, and then computed 

1 
F = - - M + J  (5.1) 

At 
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10' 10' 0 

100 ~ . . . . . . .  BFBt preconditioneroner 101 ~ _ _  . . . . .  BFBI preconditioner Fp preconditioner 

161 16 2 

-3 " ' .  16 a 1 - .  

11) 4 10 I/]U " ' ' ' ' "  

16 5 ld s "- . .  

ld.0k �9 ~t=~ 1681 ~ - - ~ - - ~ t = v l o o  
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 40 45 

Fig. 2. Iterations of  preconditioned GMRES at sample time and Picard steps, for driven 
cavity problem, R e = 2 0 0  and Q2-QI finite elements. Left: 32 x 32 grid, right: 64 x 64 grid. 

where At is to be viewed as a pseudo-time step. For backward Euler 
discretization, At is the value of the time step. For higher order time 
discretizations, there are other scaling factors involved. For example, the 
Crank-Nicolson discretization would have time step equal to zlt/2. In 
these experiments, once F is defined by (5.1), we solve Fu = f  where f 
is the right hand side that arises from the steady Picard iteration. 

To specify the operators Ap and Fp used in the Fp-preconditioner, 
it is necessary to associate boundary conditions with them. In these tests, 
for the driven cavity (enclosed flow) problem, Ap and Fp are defined as 
though derived from Neumann boundary conditions. For the steady ver- 
sion of the backward step problem, it is necessary to use a Dirichlet con- 
dition at the inflow boundary x = - 1 .  For the transient step problem, 
we found a Neumann condition for Fp at the inflow to be slightly 
more effective and this choice was used in the experiments. We note that 
although this issue is similar to what is often faced for projection meth- 
ods [18], here it is only an aspect of the solution algorithm and it has no 
effect on discretization of the pressure, for which no boundary conditions 
are specified. 

Representative results are shown in Figs. 2 and 3 for the driven cav- 
ity problem, and in Figs. 4 and 5 for the backward step. We show results 
for At = 1/100, 1/10, 1 (in one example), and ec. The last value, which 
corresponds to the steady problem, gives an idea of what the maximal 
solution costs (per time step) would be in the case of very large CFL 
numbers. 

The main points to observe concerning the transient problem are as 
follows: 
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lo '  l ' . . . . . .  1~ 
100 | - - - BFBt preconditioner 100 | - - - BFBt preconditioner 
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Fig. 3. Iterations of preconditioned OMRES at sample time and Picard steps, for driven 
cavity problem, Re-= 1000 and Q2-QI finite elements. Left: 32 • 32 grid, right: 64 x 64 grid, 
bottom: 128 x 128 grid. 
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Fig. 4. Iterations of preconditioned GMRES at sample time and Picard steps, for backward 
facing step, Re=200  and Q2 QI finite elements. Left: 32 x 96 grid, right: 64 x 192 grid. 
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Fig. 5. Iterations of preconditioned GMRES at sample time and Picard steps, for backward 
facing step, Re= 1000 and Q2-Q1 finite elements. Left: 32 x 96 grid, right: 64 x 192 grid. 

�9 For fixed At, the iteration counts required for convergence are 
essentially independent of both the Reynolds number and the dis- 
cretization mesh size. 

�9 Iteration counts are decreasing as a function of the time step size. 
This is a consequence of the fact that the term ~t M becomes more 
dominant in the definition of both the discrete operator and the 
preconditioner as At --+ 0. 

�9 The BFBt-preconditioned solvers require fewer iterations (typically 
on the order of 10 or fewer for the driven cavity problem and 
20 or fewer for the backward step) than the Fp-preconditioned 
solvers. Although the computations for the BFBt operator are more 
expensive at any step (requiring two Poisson solves at each step 
instead of one), there is typically at least a 50% savings in itera- 
tions, which makes the BFBt-preconditioner more efficient in these 
examples. 

�9 Note that the first and third assertions do not carry over to 
the steady problem, where only the Fp-preconditioner is mesh 
independent and the performance of both methods depends on Re. 

The problems arising from the backward facing step are considerably more 
difficult than those arising from driven cavity flow. Although this is not 
necessarily unexpected, there is no obvious explanation that can be seen 
purely from the properties of the algebraic systems. 

Table I gives estimates for the CFL numbers IlullAt/h for these 
tests, derived from the empirically observed values 1lull ~-17 (in the vector 
Euclidian norm) for the driven cavity problem and 1lull ~29  for the back- 
ward step. It is evident that this approach enables the use of large CFL 
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Table I. Estimated CF L  Numbers  for Test Problems 

363 

Driven cavity mesh Backward step mesh 

At 32 x 32 64 x 64 128 x 128 32 x 96 64 • 192 

1/10 27 54 109 46 93 
1/100 2.7 5.4 10.9 4.6 9.3 

10 101 | 
- .  _ ~ . . . .  BFBt preconditioner 

10 0 . . . . . . .  BFBt preconditioner 10~  - ' -  ", " ~ - -  Fp preconditi .... 
Fp preconditioner 

16 2 1 t At= 1 
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Fig. 6. Iterations of  preconditioned GMRES at sample time and Newton steps, for Re = 200 
and QE-QI finite elements Left: driven cavity problem on a 32 x 32 grid. Right: backward 
facing step on a 32 • 96 grid. 

numbers when it is feasible, i.e., when accurate representation of short 
time-scale physics is not the goal. 

Finally, Fig. 6 shows a few results for the case where the nonlin- 
ear iteration is based on Newton's method instead of the Picard iter- 
ation (2.7). As above, the experiments were done for coefficient matrix 
F = 1 M  + J, where J is now the Jacobian of the nonlinear system 
obtained after two Newton iterations. These coefficient matrices have a 
more complex structure, and in particular, F is no longer a block diago- 
nal matrix. In this case, the Fp-preconditioner is defined using the velocity 
from the previous step for the convection coefficient. These graphs should 
be compared with the first ones from Figs. 2 and 4; they show that the 
costs to solve these problems are roughly twice those incurred for Picard 
iteration. 

6. CONCLUDING REMARKS AND GENERALIZATIONS 

The goal of developing these approaches for preconditioning is to 
enable the development of flexible and easily implemented solvers for the 
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Navier-Stokes equations. This is achieved in part by building on efforts 
to develop efficient solvers for simpler subsidiary problems such as the 
convection-diffusion and Poisson equations. The resulting algorithms can 
be applied directly to both evolutionary and steady problems and enable 
the use of time discretization with large CFL numbers. 

We conclude with the observation that they also offer the potential 
to handle more general systems. Consider the case where heat transport is 
combined with the Navier-Stokes equations, giving rise to the Boussinesq 
equations 

otut - -  V" (I) u VU) + (U" grad)u + gradp = f(T) 
aTt-V.(vTVT)+(u.grad)T=g(T) on 79cR d, d = 2  or 3. (6.1) 

-div u = 0 

Linearization and discretization (implicitly in time in the case of tran- 
sient problems) leads to a sequence of linear systems of equations now 
having the form 

FT -~- �9 
0 

(6.2) 

The precise structure of the individual blocks of the coefficient matrix 
depends on the strategy used to linearize, that is, on the algorithm used to 
perform the nonlinear iteration. If a Picard iteration is used, then both 
Fu and FT are convection-diffusion operators as above, and H = 0. In this 
case, the Schur complement operator is BFulB T, which is identical to the 
operator arising from the Navier-Stokes equations. Thus, we expect these 
ideas to be directly applicable in more general settings. 
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