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LYAPUNOV INVERSE ITERATION FOR COMPUTING A FEW
RIGHTMOST EIGENVALUES OF LARGE GENERALIZED

EIGENVALUE PROBLEMS∗

HOWARD C. ELMAN† AND MINGHAO WU‡

Abstract. In linear stability analysis of a large-scale dynamical system, we need to compute
the rightmost eigenvalue(s) for a series of large generalized eigenvalue problems. Existing iterative
eigenvalue solvers are not robust when no estimate of the rightmost eigenvalue(s) is available. In this
study, we show that such an estimate can be obtained from Lyapunov inverse iteration applied to
a special eigenvalue problem of Lyapunov structure. An analysis that explains the fast convergence
of this algorithm observed in numerical experiments is provided, based on which we propose a more
efficient and robust algorithm. Furthermore, we generalize the same idea to a deflated version of this
Lyapunov eigenvalue problem and propose an algorithm that computes a few rightmost eigenvalues
for the eigenvalue problems arising from linear stability analysis.
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1. Introduction. This paper introduces an efficient algorithm for computing a
few rightmost eigenvalues of generalized eigenvalue problems. We are concerned with
problems of the form

(1.1) J (α)x = μMx

arising from linear stability analysis (see [11]) of the dynamical system

(1.2) Mut = f(u, α).

M ∈ Rn×n is called the mass matrix, and the parameter-dependent matrix J (α) ∈
Rn×n is the Jacobian matrix ∂f

∂u (u(α), α) = ∂f
∂u (α), where u(α) is the steady-state

solution to (1.2) at α, i.e., f(u, α) = 0. Let the solution path be the following
set: S = {(u, α)|f(u, α) = 0}. We seek the critical point (uc, αc) associated with
transition to instability on S. While the method developed in this study works for any
dynamical system of the form (1.2), our primary interest is the systems arising from
spatial discretization of two- or three-dimensional time-dependent partial differential
equations (PDEs). Therefore, we assume n to be large and J (α),M to be sparse
throughout this paper.

The conventional method of locating the critical parameter αc is to monitor the
rightmost eigenvalue(s) of (1.1) while marching along S using numerical continuation
(see [11]). In the stable regime of S, the eigenvalues μ of (1.1) all lie to the left of
the imaginary axis. As (u, α) approaches the critical point, the rightmost eigenvalue
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of (1.1) moves toward the imaginary axis; at (uc, αc), the rightmost eigenvalue of
(1.1) has real part zero, and finally, in the unstable regime, some eigenvalues of (1.1)
have positive real parts. The continuation usually starts from a point (u0, α0) in
the stable regime of S and the critical point is detected when the real part of the
rightmost eigenvalue of (1.1) becomes nonnegative. Consequently, robustness and
efficiency of the eigenvalue solver for the rightmost eigenvalue(s) of (1.1) are crucial
for the performance of this method. Direct eigenvalue solvers such as the QR and QZ
algorithms (see [23]) compute all the eigenvalues of (1.1), but they are too expensive
for large n. Existing iterative eigenvalue solvers [23] are able to compute a small set
(k � n) of eigenvalues of (1.1) near a given shift (or target) σ ∈ C efficiently. For
example, they work well when k eigenvalues of (1.1) with smallest modulus are sought,
in which case σ = 0. One issue with such methods is that there is no robust way to
determine a good choice of σ when we have no idea where the target eigenvalues
may be. In the computation of the rightmost eigenvalue(s), the most commonly used
heuristic choice for σ is zero, i.e., we compute k eigenvalues of (1.1) with smallest
modulus and hope that the rightmost is one of them. When the rightmost eigenvalue
is real, zero is a good choice. However, such an approach is not robust when the
rightmost eigenvalues consist of a complex conjugate pair: the rightmost pair can be
far from zero and it is not clear how big k should be to ensure that they are found.
Such examples can be found in the numerical experiments of this study.

Meerbergen and Spence [17] proposed the Lyapunov inverse iteration method,
which estimates the critical parameter αc without computing the rightmost eigenval-
ues of (1.1). Assume (u0, α0) is in the stable regime of S and is also in the neigh-
borhood of the critical point (uc, αc). Let λc = αc − α0 and A = J (α0). Then the
Jacobian matrix J (αc) at the critical point can be approximated by A+ λcB, where
B = dJ

dα (α0). It is shown in [17] that λc is the eigenvalue with smallest modulus of
the eigenvalue problem

(1.3) AZMT +MZAT + λ(BZMT +MZBT ) = 0

of Lyapunov structure and that λc can be computed by a matrix version of inverse
iteration. Estimates of the rightmost eigenvalue(s) of (1.1) at αc can be obtained
as by-products. Elman et al. [8] refined the Lyapunov inverse iteration proposed in
[17] to make it more robust and efficient and examined its performance on challeng-
ing test problems arising from fluid dynamics. Various implementation issues were
discussed, including the use of inexact inner iterations, the impact of the choice of
iterative method used to solve the Lyapunov equations, and the effect of eigenvalue
distribution on performance. Numerical experiments demonstrated the robustness of
their algorithm.

The method proposed in [8, 17], although it allows us to estimate the critical
value of the parameter without computing the rightmost eigenvalue(s) of (1.1), only
works in the neighborhood of the critical point (uc, αc). In [8], for instance, the
critical parameter value αc of all numerical examples is known a priori, so that we
can pick a point (u0, α0) close to (uc, αc) and apply Lyapunov inverse iteration with
confidence. In reality, αc is unknown and we start from a point (u0, α0) in the stable
regime of S that may be distant from the critical point. In this scenario, the method
of [8, 17] cannot be used to estimate αc, since J (αc) cannot be approximated by
A + λcB. However, quantitative information about how far (u0, α0) is from (uc, αc)
can still be obtained by estimating the distance between the rightmost eigenvalue
of (1.1) at α0 and the imaginary axis: if the rightmost eigenvalue is far from the
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imaginary axis, then it is reasonable to assume that (u0, α0) is far from the critical
point as well, and therefore we should march along S using numerical continuation
until we are close enough to (uc, αc); otherwise, we can assume that (u, α0) is already
in the neighborhood of the critical point and the method of [8, 17] can be applied to
estimate αc.

The goal of this paper is to develop a robust method to compute a few rightmost
eigenvalues of (1.1) in the stable regime of S. The plan of the paper is as follows. In
section 2, we show that the distance between the imaginary axis and the rightmost
eigenvalue of (1.1) is the eigenvalue with smallest modulus of an eigenvalue problem
similar in structure to (1.3). As a result, this eigenvalue can be computed efficiently
by Lyapunov inverse iteration. In section 3, we present numerical results for several
examples arising from fluid dynamics, which demonstrate the fast convergence of
this method. In section 4, we give an analysis that provides insight into the fast
convergence. In addition, based on this analysis, we propose a more efficient version
of Lyapunov inverse iteration and a way of validating its results. In section 5, we
show that the analysis in sections 2 and 4 can be generalized to a deflated version
of the Lyapunov eigenvalue problem, which leads to an algorithm for computing k
(1 ≤ k � n) rightmost eigenvalues of (1.1). Finally, we make some concluding
remarks in section 6.

2. Computing the distance between the rightmost eigenvalue(s) and
the imaginary axis. Let (u0, α0) be any point in the stable regime of S and as-
sume M is nonsingular in (1.1). Let (μj , xj) (‖xj‖2 = 1, j = 1, 2, . . . , n) be the
eigenpairs of (1.1) at α0, where the real parts of μj , Re(μj), are in decreasing order,
i.e., 0 >Re(μ1) ≥ Re(μ2) ≥ · · · ≥ Re(μn). Then the distance between the rightmost
eigenvalue(s) and the imaginary axis is −Re(μ1). Let A = J (α0) and S = A−1M. To
compute this distance, we first observe that −Re(μ1) is the eigenvalue with smallest
modulus of the n2 × n2 generalized eigenvalue problem

(2.1) Δ1z = λΔ0z,

where Δ1 = S ⊗ In + In ⊗ S and Δ0 = −2S ⊗ S. (In is the identity matrix of order
n.) This result has been proved in [18] and we include a proof here for completeness.
We proceed in two steps to prove this assertion. First, we show that −Re(μ1) is an
eigenvalue of (2.1).

Theorem 2.1. Assume M is nonsingular. The eigenvalues of (2.1) are λi,j =
− 1

2 (μi + μj), i, j = 1, 2, . . . , n. For any pair (i, j), there are eigenvectors associated
with λi,j given by zi,j = xi ⊗ xj and zj,i = xj ⊗ xi.

Proof. We first prove that the eigenvalues of (2.1) are {λi,j}ni,j=1. Let J be

the Jordan normal form of S−1 = M−1A and P be an invertible matrix such that
S−1 = PJP−1. Then(

Δ−1
0 Δ1

)
(P ⊗ P ) = −1

2

(
S−1 ⊗ In + In ⊗ S−1

)
(P ⊗ P )

= −1

2

(
PJP−1 ⊗ In + In ⊗ PJP−1

)
(P ⊗ P )

= −1

2
(PJ ⊗ P + P ⊗ PJ) = (P ⊗ P )

[
−1

2
(J ⊗ In + In ⊗ J)

]
.

This implies that (2.1) and − 1
2 (J ⊗ In + In ⊗ J) have the same eigenvalues. Due

to the special structure of the Jordan normal form J , J ⊗ In + In ⊗ J is an upper
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triangular matrix whose diagonal entries are {μi + μj}ni,j=1. Consequently, the eigen-

values of − 1
2 (J ⊗ In + In ⊗ J) are

{− 1
2 (μi + μj)

}n

i,j=1
= {λi,j}ni,j=1. Therefore, the

eigenvalues of (2.1) are {λi,j}ni,j=1 as well.
Second, we show that zi,j is an eigenvector associated with the eigenvalue λi,j of

(2.1). For any pair (i, j) (i, j = 1, 2, . . . , n),

(
Δ−1

0 Δ1

)
zi,j = −1

2

(
S−1 ⊗ In + In ⊗ S−1

)
(xi ⊗ xj)

= −1

2

(
S−1xi ⊗ xj + xi ⊗ S−1xj

)
= −1

2
(μixi ⊗ xj + xi ⊗ μjxj) = λi,jzi,j.

Similarly, we can show that
(
Δ−1

0 Δ1

)
zj,i = λi,jzj,i.

If μ1 is real, then −Re(μ1) = −μ1 = − 1
2 (μ1 + μ1) = λ1,1; if μ1 is not real (i.e.,

μ1 = μ2 and x1 = x2), then −Re(μ1) = − 1
2 (μ1 + μ1) = − 1

2 (μ1 + μ2) = λ1,2 = λ2,1.
In both cases, by Theorem 2.1, −Re(μ1) is an eigenvalue of (2.1).

We next show that −Re(μ1) is the eigenvalue with smallest modulus of (2.1).
Theorem 2.2. Assume all the eigenvalues of Ax = μMx lie in the left half of

the complex plane. Then the eigenvalue with smallest modulus of (2.1) is −Re(μ1).
Proof. Let μj = aj + ibj. Then 0 > a1 ≥ a2 ≥ · · · ≥ an. If the rightmost

eigenvalue of Ax = μMx is real, then −Re(μ1) = λ1,1, and since 0 > a1 ≥ a2 ≥ · · · ≥
an, it follows that

|λ1,1|2 =
1

4
(a1 + a1)

2 ≤ 1

4

[
(ai + aj)

2 + (bi + bj)
2
]
= |λi,j |2

for any pair (i, j). Alternatively, if the rightmost eigenvalues of Ax = μMx consist
of a complex conjugate pair, then a1 = a2, b1 = −b2, −Re(μ1) = λ1,2 = λ2,1, and
similarly,

|λ1,2|2 = |λ2,1|2 =
1

4

[
(a1 + a1)

2 + (b1 − b1)
2
] ≤ 1

4

[
(ai + aj)

2 + (bi + bj)
2
]
= |λi,j |2

for any pair (i, j). In both cases, −Re(μ1) is the eigenvalue with smallest modulus
of (2.1).

In order to visualize Theorems 2.1 and 2.2, consider a 4 × 4 eigenvalue problem
Ax = μMx whose eigenvalues are μ1,2 = −1 ± 5i, μ3 = −2 and μ4 = −3 (see
Figure 2.1(a)). The eigenvalues of the corresponding 16×16 eigenvalue problem (2.1)
are plotted in Figure 2.1(b), from which we can see that λ1,2 = λ2,1 = 1 is the
eigenvalue with smallest modulus of (2.1).

Assume Ax = μMx has a complete set of eigenvectors {xj}nj=1. Then (2.1)
also has a complete set of eigenvectors {zi,j}ni,j=1. By Theorem 2.2, the distance
between the imaginary axis and the rightmost eigenvalue(s), −Re(μ1), can be found
by inverse iteration applied to (2.1). Unfortunately, this approach is not suitable for
large n because it involves solving linear systems of order n2. In [8, 17], an n2 × n2

eigenvalue problem similar in structure to (2.1) is dealt with by rewriting an equation
of Kronecker sums into an equation of Lyapunov form, i.e., (1.3). Here, similarly, we
can rewrite (2.1) into

(2.2) SZ + ZST + λ(2SZST ) = 0.
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Fig. 2.1. The spectra of Ax = μMx and (2.1) for the 4× 4 example (◦: simple eigenvalues; •:
double eigenvalues).

Any eigenpair (λ, z) of (2.1) is related to a solution (λ, Z) of (2.2), which we also
refer to as an eigenpair of (2.2), by z = vec(Z). By Theorem 2.1 and the relation
between (2.1) and (2.2), (λi,j , Zi,j) (i, j = 1, 2, . . . , n) are the eigenpairs of (2.2), where
Zi,j = xjx

T
i ; in addition, by Theorem 2.2, −Re(μ1) is the eigenvalue of (2.2) with

smallest modulus. Furthermore, under certain conditions, −Re(μ1) is an eigenvalue
of (2.2) whose associated eigenvector is real, symmetric, and of low rank. Assume
the following: (a1) for any 1 < i ≤ n, if Re(μi) =Re(μ1), then μi = μ1; (a2) μ1

is a simple eigenvalue of Ax = μMx. Consequently, if μ1 is real, −Re(μ1) is a
simple eigenvalue of (2.1) with the eigenvector z1,1 = x1 ⊗ x1; otherwise, −Re(μ1) is
a double eigenvalue of (2.1) with the eigenvectors z1,2 = x1 ⊗ x1 and z2,1 = x1 ⊗ x1.
When the eigenvectors of (2.2) are restricted to the subspace of Cn×n consisting of
symmetric matrices Z, then by Theorem 2.3 from [17], −Re(μ1) has a unique (up to
a scalar multiplier), real, and symmetric eigenvector x1x

∗
1 + x1x

T
1 , where x∗

1 denotes
the conjugate transpose of x1. Therefore, we can apply Lyapunov inverse iteration
(see [8, 17]) to (2.2) to find −Re(μ1), the eigenvalue of (2.2) with smallest modulus:

Algorithm 1. Lyapunov inverse iteration for (2.2).

1. Given V0 ∈ Rn with ‖V0‖2 = 1. Let Z(0) = V0VT
0 .

2. For � = 1, 2, . . .
2.1. Solve for Y� from

(2.3) SY� + Y�S
T = −2SZ(�−1)ST

in factored form: Y� = V�D�V
T
� , where V� ∈ Rn×d� .

2.2. Rank reduction: let S̃ = V T
� SV� and solve

(2.4) S̃Z̃ + Z̃S̃T + λ̃
(
2S̃Z̃S̃T

)
= 0

for the eigenvalue with smallest modulus, λ̃1, and its eigenvector
Z̃1 = ṼD̃ṼT .

2.3. Set λ(�) = λ̃1 and Z(�) = V�D̃VT
� , where V� = V�Ṽ.

2.4. If
(
λ(�), Z(�)

)
has converged, then stop.
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Compared to standard inverse iteration, Algorithm 1 has an extra step consisting
of rank reduction. In this step, we project the eigenvalue problem (2.2) onto the
subspace spanned by the columns of V�. This step guarantees that the eigenvector
iterate Z(�) is always of rank 1 or 2, which is essential for the efficient solution of (2.3).

Our numerical experiments (see section 3) show that as long as (2.3) is solved

accurately enough, the iterate
(
λ(�), Z(�) = V�D̃VT

�

)
will converge quickly to the

target eigenpair (−Re(μ1),VDVT ) , where ‖D‖F = 1 and V = x1 (if μ1 is real)
or V ∈ Rn×2 is an orthonormal matrix whose columns span {x1, x1} (if μ1 is not
real). Besides estimates of −Re(μ1), we can also obtain from Algorithm 1 estimates
of (μ1, x1) by solving the small 1× 1 or 2× 2 eigenvalue problem

(2.5)
(VT

� SV�
)
y = θy

and taking μ(�) = 1
θ and x(�) = V�y. As V� converges to V , (μ(�), x(�)

)
will converge

to (μ1, x1).
At each iteration of Algorithm 1, a large-scale Lyapunov equation (2.3) needs to

be solved, where Z(�−1) is chosen to be of rank 1 when � = 1 and is of rank 1 or 2
when � > 1 due to the rank-reduction step. We can rewrite (2.3) as

(2.6) SY� + Y�S
T = P�C�P

T
�

(see [8] for details), where P� is orthonormal and of rank 1 or 2. The solution to (2.6),
Y�, is real and symmetric and frequently has low-rank approximation (see [1, 12, 15,
19]), i.e., d� � n. Since S is large, direct methods such as [2, 13] are not suitable. An
iterative method that solves Lyapunov equations with large coefficient matrix and low-
rank right-hand side is needed. Krylov-type methods for (2.6), such as the “standard”
Krylov subspace method [14, 20], the extended Krylov subspace method (EKSM)
[21], and the rational Krylov subspace method (RKSM) [6, 7], construct approximate
solutions of the form Y approx

� = WXWT , where W is an orthonormal matrix whose
columns span the Krylov subspace and X is the solution to the small, projected
Lyapunov equation (WTSW )X+X(WTSW )T = (WTP�)C�(W

TP�)
T , which can be

obtained using direct methods. For example, the standard Krylov subspace method
[14, 20] builds the mp-dimensional Krylov subspace

(2.7) Km(S, P�) = span
{
P�, SP�, . . . , S

m−1P�

}
,

where m is the number of block Arnoldi steps and p is the block size (i.e., rank of
P�). The main cost of solving (2.6) using Krylov-type methods is (m − 1)p linear
solves with coefficient matrix aA+ bM, where values of the scalars a, b depend on the
Krylov method used.

In step 2.1 (rank reduction) of Algorithm 1, although it may look like computing

the reduced-rank matrix S̃ = V T
� SV� requires another d� linear solves with coefficient

matrix A, in fact, if a Krylov-type method is used to solve (2.6), S̃ can be obtained
from the Arnoldi decomposition computed by the Krylov-type method for no addi-
tional cost. Assume the standard Krylov method is used to solve (2.6). It computes
the Arnoldi decomposition

(2.8) SV� = V�Hm +Wm+1Hm+1,mET
m

and the approximate solution Y approx
� = V�D�V

T
� , where the columns of [V�,Wm+1]

form an orthonormal basis for the Krylov subspace Km+1(S, P�). (In addition,
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Hm ∈ Rmr×mr is block upper Hessenberg, Hm+1,m ∈ Rr×r, and Em holds the last r

columns of the identity matrix of order mr, where r = 1 or 2.) This implies that S̃ is
simply Hm in (2.8). The Arnoldi decomposition computed by EKSM or RKSM has

a form that is more complicated than (2.8); nonetheless, it produces the matrix S̃ as
well. Moreover, since d� � n, the small eigenvalue problem (2.4) can be solved by
standard inverse iteration with a direct Lyapunov solver and no rank-reduction step.

3. Numerical experiments. In this section, we test Algorithm 1 on several
problems arising from fluid dynamics. Note that when (1.2) comes from a standard
(e.g., finite element) discretization of the imcompressible Navier–Stokes equations,
the mass matrix M is singular, leading to infinite eigenvalues of (1.1) and singular
S = A−1M. As in [8], we use the shifted, nonsingular mass matrix proposed in [4],
which maps the infinite eigenvalues of (1.1) to finite ones away from the imaginary
axis and leaves the finite eigenvalues of (1.1) unchanged. From here on, M refers to
this shifted mass matrix.

3.1. Example 1: Driven-cavity flow. Linear stability analysis of driven-
cavity flow is studied in many papers, for example, [9]. The Q2-Q1 mixed finite ele-
ment discretization (with a 64×64 mesh) of the Navier–Stokes equations gives rise to
a generalized eigenvalue problem (1.1) of order n = 9539, where the parameter α is the
Reynolds number (denoted byR) of the flow. (The Reynolds number of this flow is de-
fined to be R = 1

ν , where ν is the kinematic viscosity.) Figure 3.1(a) depicts the path
traced out by the eight rightmost eigenvalues of (1.1) for R = 2000, 4000, 6000, 7800,
at which the steady-state solution to (1.2) is stable. As the Reynolds number in-
creases, the following trend can be observed: the eight rightmost eigenvalues all move
toward the imaginary axis, and they become more clustered as they approach the
imaginary axis. In addition, although the rightmost eigenvalue starts off being real,
one conjugate pair of complex eigenvalues (whose imaginary parts are about ±3i)
move faster toward the imaginary axis than the other eigenvalues and eventually they
become the rightmost. They first cross the imaginary axis at R ≈ 7929, causing
instability in the steady-state solution of (1.2) (see [8]).

Finding the conjugate pair of rightmost eigenvalues of (1.1) at a high Reynolds
number (for example, at R = 7800) can be difficult. Suppose we are trying to find
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Fig. 3.1. (a) The eight rightmost eigenvalues for driven-cavity flow at different Reynolds num-
bers (∗: R = 2000; ◦: R = 4000; ♦: R = 6000; �: R = 7800). (b) The 300 eigenvalues with
smallest modulus at R = 7800 (×: the rightmost eigenvalues).
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the rightmost eigenvalues at R = 7800 by conventional methods, such as computing
k eigenvalues of (1.1) with smallest modulus using the implicitly restarted Arnoldi
(IRA) method [22]. If we use the MATLAB function eigs (which implements the
IRA method) with its default setting, then k has to be as large as 250, since there are
many eigenvalues that have smaller modulus than the rightmost pair. This leads to at
least 500 linear solves (with coefficient matrix A) and, in practice, many more. More
importantly, note that the decision k = 250 is made based on a priori knowledge of
where the rightmost eigenvalues lie. In general, we cannot identify a good value for k
that guarantees that the rightmost eigenvalues will be found.

For four various Reynolds numbers between 2000 and 7800, we apply Algorithm 1
(with RKSM as the Lyapunov solver) to calculate the distance between the rightmost
eigenvalue(s) of (1.1) and the imaginary axis. The results are reported in Table 3.1.
(See Table 3.2 for notation.) The initial guess V0 is chosen to be a random vector of
unit norm in Rn, the stopping criterion for the eigenvalue residual is

‖Reig
� ‖F < 10−8,

and the stopping criterion for the Lyapunov solve is

‖Rlyap
� ‖F < 10−9 · ‖P�C�P

T
� ‖F = 10−9 · ‖C�‖F .

Note that both residual norms ‖Reig
� ‖F and ‖Rlyap

� ‖F are cheap to compute (see [8]
for details). Therefore, the main cost of each iteration is about d� linear solves of
order n (see Chapter 5 of [25]). All linear systems are solved using direct methods.
As shown in Table 3.1, the distances between the rightmost eigenvalue(s) of (1.1)
and the imaginary axis at R = 2000, 4000, 6000, 7800 are 0.03264, 0.01608, 0.01084,

Table 3.1

Algorithm 1 applied to Example 1 (Lyapunov solver: RKSM).

� λ(�) μ(�) ‖Reig
� ‖F ‖Rlyap

� ‖F d�

R = 2000

1 0.03264 −0.03264 2.56263e-11 1.40794e-10 156

R = 4000

1 0.01608 −0.01608 4.25055e-10 3.52618e-10 241

R = 6000

1 0.01084 −0.01084 7.11628e-10 6.52387e-10 307

R = 7800

1 0.00514 −0.00514+2.69845i 3.62567e-11 9.02875e-10 366

Table 3.2

Notation for Algorithm 1.

Symbol Definition

λ(�) the estimate of −Re(μ1), i.e., the eigenvalue of (2.2) with smallest modulus

Z(�) the estimated eigenvector of (2.2) associated with −Re(μ1)

μ(�) the estimated rightmost eigenvalue of Ax = μMx computed from (2.5)

Y approx
� the approximate solution to the Lyapunov solution (2.6)

Reig
�

SZ(�) + Z(�)ST + λ(�)(2SZ(�)ST ), the residual of the Lyapunov eigenvalue
problem (2.2)

Rlyap
� SY approx

� + Y approx
� ST − P�C�P

T
� , the residual of the Lyapunov equation (2.6)

d� dimension of the Krylov subspace, i.e., rank of Y approx
�
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0.00514, respectively. We also obtain estimates of the rightmost eigenvalue of (1.1) at
the four Reynolds numbers: −0.03264, −0.01608, −0.01084, and −0.00514+2.69845i.

We note two trends in these results. First, surprisingly, for all the Reynolds num-
bers considered, Algorithm 1 converges to the desired tolerance (‖Reig

� ‖F < 10−8) in
only one iteration. That is, only the first Lyapunov equation (2.6) with � = 1 needs to
be solved, where P1 ∈ Rn and C1 ∈ R. Second, as the Reynolds number increases, it
becomes more expensive to solve the Lyapunov equation to the same order of accuracy
(‖Rlyap

� ‖F < 10−9 ·‖C�‖F ), since Krylov subspaces of increasing dimension are needed
(156, 241, 307, and 366 for the four Reynolds numbers). We also tested Algorithm 1
using the standard Krylov method [20] to solve the Lyapunov systems. To solve (2.6)
to the same accuracy, this method requires subspaces of dimension 525, 614, 770, and
896 for the four Reynolds numbers, which are much larger than those required by
RKSM. (See Figure 3.2 for comparison.) As a result, the standard method requires
many more linear solves.

3.2. Example 2: Flow over an obstacle. For linear stability analysis of flow
over an obstacle, see [8]. TheQ2-Q1 mixed finite element discretization (with a 32×128
mesh) of the Navier–Stokes equations gives rise to a generalized eigenvalue problem
(1.1) of order n = 9512. Figure 3.3(a) depicts the path traced out by the six rightmost
eigenvalues of (1.1) for R = 100, 200, 300, 350 in the stable regime, and Figure 3.3(b)
shows the 300 eigenvalues of (1.1) with smallest modulus at R = 350. (In this
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(a) R = 2000
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(b) R = 4000
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(c) R = 6000
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(d) R = 7800

Fig. 3.2. Comparison of the standard Krylov method and RKSM for solving (2.6) in Example 1.
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Fig. 3.3. (a) The six rightmost eigenvalues for flow over an obstacle at different Reynolds
numbers (∗: R = 100; ◦ : R = 200; ♦: R = 300; �: R = 350). (b) The 300 eigenvalues with
smallest modulus at R = 350 (×: the rightmost eigenvalues).

example, the Reynolds number R = 2
ν .) As for the previous example, as the Reynolds

number increases, the six rightmost eigenvalues all move toward the imaginary axis,
and the rightmost eigenvalue changes from being real (at R = 100) to complex (at
R = 200, 300, 350). The rightmost pair of eigenvalues of (1.1) crosses the imaginary
axis and the steady-state solution to (1.2) loses its stability at R ≈ 373.

We again apply Algorithm 1 to estimate the distance between the rightmost
eigenvalue(s) of (1.1) and the imaginary axis for the four Reynolds numbers men-
tioned above. The results are reported in Table 3.3. The stopping criteria for both
Algorithm 1 and the Lyapunov solve (2.6) remain unchanged, i.e., ‖Reig

� ‖F < 10−8

and ‖Rlyap
� ‖F < 10−9 · ‖C�‖F . For all four Reynolds numbers, Algorithm 1 converges

rapidly. In fact, we will show in section 4.2 that if the Lyapunov equation (2.6) is
solved more accurately, Algorithm 1 will converge in one iteration in all four cases as
observed in the previous example. Again we compare the performance of the standard

Table 3.3

Algorithm 1 applied to Example 2 (Lyapunov solver: RKSM).

� λ(�) μ(�) ‖Reig
� ‖F ‖Rlyap

� ‖F d�

R = 100
1 0.57285 −0.57285 1.28322e-4 2.44638e-09 45
2 0.57285 −0.57285 4.86146e-6 1.15950e-11 22
3 0.57285 −0.57285 9.49881e-7 1.64039e-09 18
4 0.57285 −0.57285 1.35238e-7 5.11488e-09 10
5 0.57285 −0.57285 2.30716e-8 5.65183e-09 4
6 0.57285 −0.57285 8.43416e-9 8.18398e-10 4

R = 200
1 0.32884 −0.32884+2.16396i 3.86737e-5 3.00582e-09 63
2 0.32884 −0.32884+2.16393i 1.30869e-8 2.20976e-10 86
3 0.32884 −0.32884+2.16393i 1.47390e-9 2.04006e-10 46

R = 300
1 0.10405 −0.10405+2.22643i 7.59831e-07 4.49864e-09 75
2 0.10405 −0.10405+2.22643i 2.18881e-10 3.60446e-10 86

R = 350
1 0.02411 −0.02411+2.24736i 2.80626e-08 3.40780e-09 85
2 0.02411 −0.02411+2.24736i 1.46747e-11 3.84715e-10 90
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(a) R = 100
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(b) R = 200
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(c) R = 300
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(d) R = 350

Fig. 3.4. Comparison of the standard Krylov method and RKSM for solving (2.6) in Example 2.

Krylov method and RKSM in solving (2.6). As for the cavity flow, the Krylov method
needs a significantly larger subspace than RKSM to compute a solution of the same
accuracy (see Figure 3.4).

3.3. Example 3: Double-diffusive convection problem. This is a model of
the effects of convection and diffusion on two solutions in a box heated at one boundary
(see Chapter 8 of [24]). The governing equations use Boussinesq approximation and
are given in [3] and [5]. Linear stability analysis of this problem is considered in
[10]. The imaginary parts of the rightmost eigenvalues of (1.1) near the critical point
(uc, αc) have fairly large magnitude, and as a result, the rightmost eigenvalues are
further from zero than many of the real eigenvalues close to the imaginary axis.
Conventional methods, such as IRA with a zero shift, tend to converge to the real
eigenvalues close to the imaginary axis instead of the rightmost pair.

We consider an artificial version Ax = μx of this problem, where A is tridiagonal
of order n = 10, 000 with eigenvalues μ1,2 = −0.05± 25i and μj = −(j− 1) ·0.1 for all
3 ≤ j ≤ n. The 300 eigenvalues of A with smallest modulus are plotted in Figure 3.5
(left). A similar problem is studied in [16]. If we use the MATLAB function eigs with
zero shift to compute its rightmost eigenvalues, at least 251 eigenvalues of A have to
be computed to ensure that μ1,2 will be found. This approach requires a minimum 502
linear solves under the default setting of eigs, and again in practice many more will
be needed. We apply Algorithm 1 to this problem (with the same stopping criteria
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Fig. 3.5. Left: the 300 eigenvalues with smallest modulus (×: the rightmost eigenvalues). Right:
Comparison of the standard Krylov method and RKSM for solving (2.6) in Example 3.

Table 3.4

Algorithm 1 applied to Example 3 (Lyapunov solver: RKSM).

� λ(�) μ(�) ‖Reig
� ‖F ‖Rlyap

� ‖F d�

1 0.05000 −0.05000+25.0000i 4.76830e-08 3.28342e-11 40
2 0.05000 −0.05000+25.0000i 1.56010e-13 3.01965e-12 50

for the inner and outer iterations as in the previous two examples) and the results
are reported in Table 3.4. It converges in just three iterations, requiring 90 linear
solves to solve the two Lyapunov equations to desired accuracy. As in the previous
examples, RKSM needs a Krylov subspace of significantly smaller dimension than the
standard Krylov method (see Figure 3.5 (right)).

4. Analysis and improvements of Algorithm 1. In section 3, our numer-
ical experiments show that Algorithm 1 converges rapidly. In particular, it con-
verges in just one iteration in several cases, i.e, the driven-cavity problem at R =
2000, 4000, 6000, 7800. In other words, only one Lyapunov solve (2.6) is needed to
obtain an eigenvalue estimate of desired accuracy in these cases. Such behavior is
usually not seen in standard inverse iteration, whose convergence rate is known to be
linear (see [23], for example). In this section, we present an analysis that provides
insight into the fast convergence of Algorithm 1. In essence, the behavior of this
algorithm depends on how well the eigenvector associated with the rightmost eigen-
value of Ax = μMx can be approximated by the Krylov subspace built to solve the
Lyapunov equation (2.6). We also propose improvements to Algorithm 1 that make
it more efficient and robust.

4.1. Analysis and modification of Algorithm 1. Recall that at each itera-
tion of Algorithm 1, we first apply an iterative method such as RKSM to compute
an approximate solution Y approx

� = V�D�V
T
� to (2.6), where V� ∈ Rn×d� is orthonor-

mal; then we project the eigenvalue problem (2.2) onto the subspace spanned by the
columns of V� and solve (2.4) for its eigenvalue with smallest modulus. Also recall
that the eigenvector of (2.2) associated with −Re(μ1) is VDVT , which is of rank 1
or 2. We first give a sufficient condition for Algorithm 1 to converge to the target
eigenpair

(−Re(μ1),VDVT
)
in just one step.

Let U ∈ Rn×d be an orthonormal matrix whose column space includes {x1, x1}.
Then V = UG for some G ∈ Rd×1 or Rd×2. It is not difficult to show that μ1 is an
eigenvalue of (UTSU)−1.
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Theorem 4.1. Let U be as described above. Then
(−Re(μ1),GDGT

)
is an

eigenpair of

(4.1) (UTSU)Z̃ + Z̃(UTSU)T + λ̃
(
2(UTSU)Z̃(UTSU)T

)
= 0,

which is of the same structure as (2.4).
Proof. Since

(−Re(μ1),VDVT
)
is an eigenpair of (2.2),

(4.2) S
(VDVT

)
+
(VDVT

)
ST−Re(μ1)

(
2S

(VDVT
)
ST

)
= 0.

Left-multiply (4.2) by UT and right-multiply by U :

UTS(VDVT )U + UT (VDVT )STU − Re(μ1)2U
TS(VDVT )STU = 0.

Since V = UG and U is orthonormal,(
UTSU

)
(GDGT ) + (GDGT ) (UTSTU

)
− Re(μ1)

(
2
(
UTSU

)
(GDGT ) (UTSTU

))
= 0.

Corollary 4.2. Assume that the rightmost eigenvalue of
(
UTSU

)−1
is μ1.

Then the eigenvalue with smallest modulus of (4.1) is −Re(μ1).

Proof. Let Δ̃1 = (UTSU)⊗ Id + Id ⊗ (UTSU) and Δ̃0 = −2(UTSU)⊗ (UTSU).

Since the rightmost eigenvalue of
(
UTSU

)−1
is μ1, by Theorem 2.2, the eigenvalue

with smallest modulus of the d2 × d2 eigenvalue problem

(4.3) Δ̃1z̃ = λ̃Δ̃0z̃

is −Re(μ1). The eigenvalue problems (4.1) and (4.3) have the same eigenvalues.
Therefore, the eigenvalue with smallest modulus of (4.1) is −Re(μ1) as well.

Theorem 4.1 together with Corollary 4.2 shows that if the column space of V1 in

Y approx
1 = V1D1V

T
1 contains {x1, x1} and the rightmost eigenvalue of

(
V T
1 SV1

)−1
is

μ1, then the estimated eigenpair we obtain after one iteration of Algorithm 1 will be(−Re(μ1), V1(GDGT )V T
1

)
=

(−Re(μ1),VDVT
)
,

which is already exact.
In the ideal case where Y approx

1 is exact (i.e., Y approx
1 = Y1), we indeed have the

desired V1. Recall that we use Z(0) = V0VT
0 as the starting guess of Algorithm 1,

where V0 ∈ Rn has unit norm. Assume V0 =
∑n

i=1 ξixi where ξi 	= 0 for any i (i.e., V0
is not deficient in any eigenvector of Ax = μMx). Since the solution to the n2 × n2

linear system Δ1y1 = Δ0(V0⊗V0) is given by y1 =
∑n

i,j=1
ξiξj
λi,j

zi,j , the solution to the

corresponding Lyapunov equation (2.6) with � = 1 is

Y1 =

n∑
i,j=1

ξiξj
λi,j

Zi,j ,

the column space of which is the invariant subspace of Ax = μMx that contains every
eigenvector. Thus, the analysis above shows that in this case Algorithm 1 converges
to the target eigenpair in just one iteration. This stands in contrast to standard
inverse iteration, which exhibits linear convergence even if the analogue of (2.6) is
solved exactly.
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This observation does not correspond to a practical computation. When (2.6) is
solved exactly, the “projected” eigenvalue problem (2.4) is of the same order as the
original one (2.2). Indeed, the two problems are equivalent: (2.4) is the Lyapunov
form of the similarity-transformed version of (2.1) given by

Δ̃1z̃ = λΔ̃0z̃, Δ̃i =
(
V T
1 ⊗ V T

1

)
Δi(V1 ⊗ V1), z̃ =

(
V T
1 ⊗ V T

1

)
z.

(Note in particular that V1 and V1 ⊗ V1 are square and orthogonal.) Thus, in this
discussion, we have simply replaced one large Lyapunov eigenvalue problem, (2.2),
with another one, (2.4).

Algorithm 1 is practical because we compute an approximate solution Y approx
1 =

V1D1V
T
1 to (2.6) using an iterative method, where V1 and Y approx

1 are of low rank.
This makes the projected problem (2.4) inexpensive to solve. Although there is no
guarantee that the column space of V1 includes {x1, x1} or that μ1 is the rightmost
eigenvalue of (V T

1 SV1)
−1, in our experience, when a good Lyapunov solver such as

RKSM is used, we can always compute a low-rank Y approx
1 that is accurate enough

for Algorithm 1 to converge in one iteration. For instance, consider again Examples 2
and 3, for which Algorithm 1 with τlyap = 10−9 converges in more than one iteration
(see Tables 3.3 and 3.4). If we solve (2.6) more accurately, as seen in Tables 4.1 and
4.2, Algorithm 1 converges in one iteration as well. (The stopping criterion for the

eigenvalue computation is unchanged, i.e., ‖Reig
� ‖F < 10−8.) Moreover, comparison

of the two sets of tables shows that this new strategy, where we force Algorithm 1 to
converge in one iteration by solving (2.6) more accurately, significantly increases the
efficiency of Algorithm 1.

The results in Tables 4.1 and 4.2 were obtained by augmenting the stopping cri-
terion for the Lyapunov problem (2.6) with a condition associated with the eigenvalue
problem (2.2). That is, we require the approximate solution Y approx

1 to satisfy both

‖Rlyap
1 ‖F < τlyap · ‖C1‖F and ‖Reig

1 ‖F < τeig, where τlyap = 10−9 and τeig = 10−8.
An algorithmic form of this strategy is given by Algorithm 2. In this algorithm, if
‖Reig

1 ‖ < τeig is not met, then we keep improving the accuracy of Y approx
1 until it is

satisfied. This can be done by augmenting the solution we have in hand. Assume that
at step 2.1 of Algorithm 2, we compute an approximate solution Y approx

1 = V1D1V
T
1

where the column space of V1 is the Krylov subspace Km(S, P1). (See (2.7) for a

Table 4.1

Modified Algorithm 1 applied to Example 2 (Lyapunov solver: RKSM).

� λ(�) μ(�) ‖Reig
� ‖F ‖Rlyap

� ‖F d�

R = 100
1 0.57285 −0.57285 7.98509e-9 4.45806e-12 65

R = 200
1 0.32884 −0.32884+2.16393i 7.67144e-9 2.79438e-12 83

R = 300
1 0.10405 −0.10405+2.22643i 6.10287e-9 1.35045e-10 86

R = 350
1 0.02411 −0.02411+2.24736i 7.16343e-9 1.07068e-09 88

Table 4.2

Modified Algorithm 1 applied to Example 3 (Lyapunov solver: RKSM).

� λ(�) μ(�) ‖Reig
� ‖F ‖Rlyap

� ‖F d�

1 0.05000 −0.05000+25.0000i 6.88230e-9 4.71359e-12 43
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Algorithm 2. Modified Algorithm 1.

1. Given V0 ∈ Rn with ‖V0‖2 = 1. Let Z(0) = V0VT
0 , ‖Reig

1 ‖F =∞ and
lyap-cvg = False.
2. While ‖Reig

1 ‖F ≥ τeig
2.1. If lyap-cvg = False

Compute an approximate solution Y approx
1 = V1D1V

T
1 to (2.6)

with � = 1 that satisfies ‖Rlyap
1 ‖F < τlyap · ‖C1‖F , and set

lyap-cvg = True.
2.2. Else

Compute a more accurate Y approx
1 = V1D1V

T
1 .

2.3. Rank reduction: let S̃ = V T
1 SV1 and solve for the eigenvalue

λ̃1 of (2.4) with smallest modulus and its eigenvector Z̃1 = ṼD̃ṼT ,

where ‖D̃‖F=1.

2.4. Set λ(1) = λ̃1 and Z(1) = V1D̃VT
1 , where V1 = V1Ṽ .

definition.) If ‖Reig
1 ‖F ≥ τeig, then we perform one more Arnoldi step to extend

the existing Krylov subspace to Km+1(S, P1), obtain a new approximate solution
Y approx
1 = V1D1V

T
1 where the column space of V1 is now the augmented Krylov sub-

space Km+1(S, P1), and check convergence again.

4.2. Restarting Algorithm 2: A validation step. In section 4.1, we have
shown that if the column space of V1 contains {x1, x1} and the rightmost eigenvalue
of (V T

1 SV1)
−1 is μ1, then Algorithm 1 will converge to

(−Re(μ1),VDVT
)
in just

one step. In particular, this is true if Y approx
1 is the exact solution. By a similar

analysis, we can show that regardless of how accurate Y approx
1 might be, if the column

space of V1 contains {xj , xj} (xj 	= x1 or x1) but no {x1, x1} and the rightmost
eigenvalue of (V T

1 SV1)
−1 is μj , Algorithm 1 converges to a wrong eigenpair, also in

one step.
In Algorithm 1, we solve (2.6) using a Krylov-type method until ‖Rlyap

� ‖F <
τlyap · ‖C�‖F is satisfied. The columns of V� therefore span a Krylov subspace. For
any given τlyap > 0, there is no guarantee that this Krylov subspace contains {x1, x1}.
In Algorithm 2, we keep extending the Krylov subspace until both ‖Rlyap

1 ‖F < τlyap ·
‖C1‖F and ‖Reig

1 ‖F < τeig are satisfied. This ensures that some {xj , xj} is found,
but there is no guarantee that these are the ones we want, corresponding to j = 1.
Thus, although Algorithm 2 works well in the experiments described above, which
include some challenging problems, it is possible that this algorithm will produce an
eigenvalue that is not the rightmost one. In this section, we study how the performance
of Algorithm 2 depends on the choice of τlyap and propose a method of validating its
computational result.

We first study the robustness of Algorithm 2 by testing it with τeig = 10−8

fixed and three different choices of τlyap: 10−3, 10−6, and 10−9. In addition to the
three examples considered in section 3, we also consider a much more difficult ver-
sion of the double-diffusive convection problem where the rightmost eigenvalues are
μ1,2 = −0.05 ± 2500i instead of −0.05 ± 25i and the other eigenvalues remain un-
changed. This problem will be referred to as Example 4.

For all cases of Examples 1, 2, and 3, Algorithm 2 converges to the correct right-
most eigenvalue for all three choices of τlyap. However, for Example 4, when τlyap =
10−3 or 10−6, Algorithm 2 converges to the third rightmost eigenvalue μ3 = −0.1.
The computational results for this example are reported in Table 4.3.
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Table 4.3

Algorithm 2 with different choices of τlyap applied to Example 4 (Lyapunov solver: RKSM).

� λ(�) μ(�) ‖Reig
� ‖F ‖Rlyap

� ‖F d�

τlyap = 10−3

1 0.10000 −0.10000 9.77100e-9 3.58087e-9 33
τlyap = 10−6

1 0.10000 −0.10000 9.77100e-9 3.58087e-9 33
τlyap = 10−9

1 0.05000 −0.05000+2500.00i 9.54205e-9 6.90965e-12 67

These results show that Algorithm 2 can be sensitive to the choice of τlyap. We
need some way to determine whether the computed eigenvalue μ(1) is truly the right-
most. Recall that we use a random vector V0 ∈ Rn with unit norm as the starting
guess of Algorithm 2. Let σ = 1

μ(1) and p be a natural number. To enhance the

robustness of Algorithm 2, we can run it again with the same τlyap, τeig and a starting
guess in which the previously computed eigenvector is filtered out:

(4.4) Vfilter
0 = (S − σIn)

p V0
if μ(1) is real or

(4.5) Vfilter
0 = [(S − σIn) (S − σIn)]

p V0
if μ(1) is not real. (In the actual computation, a normalized Vfilter

0 , with Euclidean
norm 1, is used.) The filtration damps the eigenvectors corresponding to eigenvalues
of S close to 1

μ(1) and emphasizes those associated with eigenvalues of S far from 1
μ(1) .

As a result, the latter ones are more likely to be found when we restart Algorithm 2
with Vfilter

0 . For example, consider the case where μ1,2 = −ε1 ± βi, μ3 = −ε2, and
μ4 = −ε3 with 0 < ε1 < ε2 < ε3 � 1 < β. That is, the rightmost eigenvalue has
large imaginary part but there are also real eigenvalues close to zero. Suppose we
apply Algorithm 2 with a bad choice of τlyap and get μ(1) = μ3 as the estimate for the
rightmost eigenvalue, as observed for Example 4 when τlyap = 10−3 or 10−6. Then
there will be no component of x3 in Vfilter

0 . In addition, it can be shown that for any
β > ε3,∣∣∣∣ 1μ2

− 1

μ3

∣∣∣∣ =
∣∣∣∣ 1μ1
− 1

μ3

∣∣∣∣ =
∣∣∣∣ 1

−ε1 + βi
− 1

−ε2

∣∣∣∣>
∣∣∣∣ 1

−ε3 −
1

−ε2

∣∣∣∣ =
∣∣∣∣ 1μ4
− 1

μ3

∣∣∣∣ .
It follows that the components of x1 and x2 will typically be larger in Vfilter

0 than that
of an eigenvector associated with real eigenvalues close to zero. That is, when μ1 is
one of a complex conjugate pair of eigenvalues that are further away from zero than
many real eigenvalues (as seen in Examples 1 and 3), the filtering strategy makes it
much easier to find μ1 when Algorithm 2 is restarted.1

We now summarize our strategy for computing the rightmost eigenvalue of Ax =
μMx as follows. It requires applying Algorithm 2 to (2.2) twice using fixed τlyap,
τeig and different starting guesses. First, we apply Algorithm 2 with a random initial
guess V0 to (2.1), which requires one approximate Lyapunov solve for (2.6). Then as
a validation step, we restart Algorithm 2 with the the filtered starting vector (4.4) or

1We also remark that we found this variant of Algorithm 2 with filtering to be more robust for
locating critical eigenvalues than the deflation strategy discussed in the next section.
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Table 4.4

Restarted Algorithm 2 with different choices of τlyap applied to Example 4 (Lyapunov solver:
RKSM).

� λ(�) μ(�) ‖Reig
� ‖F ‖Rlyap

� ‖F d�
τlyap = 10−3

1 0.05000 −0.05000+2500.00i 9.90794e-9 7.20542e-12 66

τlyap = 10−6

1 0.05000 −0.05000+2500.00i 9.90794e-9 7.20542e-12 66

τlyap = 10−9

1 0.10000 −0.10000 9.35439e-9 1.39151e-11 8

(4.5), where σ is chosen to be the estimated rightmost eigenvalue previously found.
This step requires another approximate solve of (2.6) with a different right-hand side.
It is our experience that a greater p in (4.4) or (4.5) enhances the robustness of this
approach, yet it also makes computing Vfilter

0 more expensive. To compromise on
these points, we choose p = 3, a small value greater than one, in all our experiments
presented below.

Consider again Example 4. The results of Algorithm 2 using a random initial
guess and three different choices of τlyap have been presented in Table 4.3. We present
the results of the restarted Algorithm 2 in Table 4.4. The shift σ in the filtration is
chosen based on the results reported in Table 4.3: when τlyap = 10−3 or 10−6, the
filtered vector (4.4) with σ = 1

−0.1 is used; and when τlyap = 10−9, the filtered vector

(4.5) with σ = 1
−0.05+2500i is used. The results show that the restarted Algorithm 2

with either 10−3 or 10−6 is able to find the correct rightmost eigenvalue, which was
missed the first time we applied Algorithm 2. When τlyap = 10−9, μ3 = −0.1 is found.
Since this is to the left of −0.05± 2500i found by applying Algorithm 2 the first time,
the restart provides additional evidence that −0.05± 2500i are indeed the rightmost
eigenvalues.

It can be seen from this example that the restart serves two purposes: on one
hand, if Algorithm 2 does find the rightmost eigenvalue, restarting it increases our
confidence that we have found the correct one; on the other hand, if Algorithm 2 first
finds a wrong eigenvalue due to a bad choice of τlyap, the restarted algorithm produces
the correct rightmost eigenvalue and thus increases the robustness of our approach.

To further examine the performance of this method, we carry out two addi-
tional tests. In the first test, we apply both Algorithm 2 and restarted Algorithm
2 with τlyap = 10−2 and τeig = 10−8 to Example 1 at R = 7800. This value of
τlyap is deliberately chosen so that Algorithm 2 fails to find the rightmost eigenvalues
−0.00514± 2.69845i and finds the third rightmost eigenvalue μ3 = −0.00845 instead
(see Table 4.5). If we then restart Algorithm 2 with the same choice of τlyap and
the filtered vector (4.4), where σ = 1

−0.00845 , the rightmost eigenvalue is found. In
the second test, we consider yet another version of the double-diffusive convection
problem with −0.05 ± 25000i being the rightmost eigenvalue and other eigenvalues
unchanged (Example 5). For this example, Algorithm 2 fails to find the rightmost
eigenvalue even when τlyap is as small as 10−9 (see Table 4.6). Again, restarting it
with the same choice of τlyap and the filtered vector (4.4) with σ = 1

−0.1 produces the
correct rightmost eigenvalue.

The strategy proposed in this section (i.e., applying Algorithm 2 and then restart-
ing it) is shown to be robust and efficient in our numerical experiments, in which we
have explored quite extreme choices of τlyap and μ1.
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Table 4.5

Algorithm 2 and restarted Algorithm 2 applied to Example 1 at R = 7800 (τlyap = 10−2;
Lyapunov solver: RKSM).

� λ(�) μ(�) ‖Reig
� ‖F ‖Rlyap

� ‖F d�

Algorithm 2

1 0.00845 −0.00845 1.91350e-9 7.95474e-3 89

Restarted Algorithm 2

1 0.00514 −0.00514+2.69845i 9.49871e-9 9.92614e-8 289

Table 4.6

Algorithm 2 and restarted Algorithm 2 applied to Example 5 (τlyap = 10−9; Lyapunov solver:
RKSM).

� λ(�) μ(�) ‖Reig
� ‖F ‖Rlyap

� ‖F d�

Algorithm 2

1 0.10000 −0.10000 5.57759e-9 2.80401e-11 33

Restarted Algorithm 2

1 0.05000 −0.05000+25000.0i 1.95395e-9 1.42125e-12 91

5. Computing k rightmost eigenvalues. In section 2, we showed that when
all the eigenvalues of (1.1) lie in the left half of the complex plane, the distance between
the rightmost eigenvalue(s) and the imaginary axis, −Re(μ1), is the eigenvalue with
smallest modulus of (2.2). As a result, this eigenvalue can be computed by Lyapunov
inverse iteration, which also gives us estimates of the rightmost eigenvalue(s) of (1.1).
As seen in sections 3.1 and 3.2, when we march along the solution path S, it may
be the case that an eigenvalue that is not the rightmost moves toward the imaginary
rapidly, becomes the rightmost eigenvalue at some point, and eventually crosses the
imaginary axis first, causing instability in the steady-state solution. Therefore, besides
the rightmost eigenvalue(s), it is helpful to monitor a few other eigenvalues in the
rightmost part of the spectrum as well. In this section, we show how Lyapunov
inverse iteration can be applied repeatedly in combination with deflation to compute
k rightmost eigenvalues of (1.1), where 1 < k � n.

We continue to assume that we are at a point (u0, α0) in the stable regime of the
solution path S and that the eigenvalue problem Ax = μMx with A = J (α0) has
a complete set of eigenvectors {xi}ni=1. For any i ≤ k, we also assume the following
(as in assumptions (a1) and (a2) in section 2): (a1′) if Re(μj) = Re(μi) and j 	= i,
then μj = μi; (a2

′) μi is a simple eigenvalue. Let Et = {μ1, μ2, . . . , μt} be the set
containing t rightmost eigenvalues of Ax = μMx and let Xt = [x1, x2, . . . , xt] ∈ Cn×t

be the matrix that holds the t corresponding eigenvectors. Here t is chosen such that
t < k and if μi ∈ Et, then μi ∈ Et as well. We will show that given Xt, we can use
the methodology described in section 2 to find −Re(μt+1), that is, that −Re(μt+1) is
the eigenvalue with smallest modulus of a certain n2 × n2 eigenvalue problem with a
Kronecker structure like that of (2.1), and it can be computed using Lyapunov inverse
iteration.

Lemma 5.1. Assume all the eigenvalues of Ax = μMx lie in the left half of the
complex plane. Then in the subset {λi,j}i,j>t of all the eigenvalues of (2.1), the one
with smallest modulus is −Re(μt+1).

Proof. If μt+1 is real, then −Re(μt+1) = λt+1,t+1. If μt+1 is not real, by assump-
tions (a1′), (a2′) and the choice of t, μt+2 = μt+1, which implies that −Re(μt+1) =
λt+1,t+2 = λt+2,t+1. The rest of the proof is very similar to that of Theorem 2.2.
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Consider again the 4 × 4 example discussed in section 2. The set {λi,j}i,j>2 is
{λ3,3 = 2, λ3,4 = λ4,3 = 2.5, λ4,4 = 3}, in which λ3,3 = −Re(μ3) is the one with
smallest modulus.

Consequently, if we can formulate a problem with a Kronecker structure like
that of (2.1) whose eigenvalues are {λi,j}i,j>t, then −Re(μt+1) can be computed by
Lyapunov inverse iteration applied to this problem. We will show how such a problem
can be concocted and establish some of its properties that are similar to those of (2.1).

Let Θt be the diagonal matrix whose diagonal elements are μ−1
1 , μ−1

2 , . . . , μ−1
t ,

so that SXt = XtΘt. Since Ax = μMx has a complete set of eigenvectors, there
exists an orthonormal matrix Qt ∈ Rn×t such that Xt = QtGt, where Gt ∈ Ct×t is
nonsingular. Let

Ŝ =
(
I −QtQ

T
t

)
S, Δ̂1 = Ŝ ⊗ I + I ⊗ Ŝ, and Δ̂0 = −2Ŝ ⊗ Ŝ.

We claim that the distance between μt+1 and the imaginary axis, −Re(μt+1), is the
eigenvalue with smallest modulus of

(5.1) Δ̂1z = λΔ̂0z, z ∈ Range
(
Δ̂0

)
.

To prove this claim, we first study the eigenpairs of Ŝ.
Lemma 5.2. The matrix I −QtQ

T
t , where Qt is defined above and I ∈ Rn×n is

the identity matrix, has the following properties:
1.

(
I −QtQ

T
t

)
Qt = 0;

2.
(
I −QtQ

T
t

)i
=

(
I −QtQ

T
t

)
for any integer i ≥ 1;

3.
(
I −QtQ

T
t

)i
S
(
I −QtQ

T
t

)j
=

(
I −QtQ

T
t

)
S for any integers i, j ≥ 1.

Proof. The first two properties hold for any orthonormal matrix and the proof is
omitted here. To prove the third property, we first show that

(
I −QtQ

T
t

)
S
(
I −QtQ

T
t

)
=

(
I −QtQ

T
t

)
S. Since SXt = XtΘt and Xt = QtGt, SQtQ

T
t =

QtGtΘtG
−1
t QT

t (Gt is invertible). Thus,(
I −QtQ

T
t

)
S
(
I −QtQ

T
t

)
=

(
I −QtQ

T
t

)
S − (

I −QtQ
T
t

)
SQtQ

T
t

=
(
I −QtQ

T
t

)
S − (

I −QtQ
T
t

)
QtGtΘtG

−1
t QT

t

=
(
I −QtQ

T
t

)
S

by the first property. This together with the second property establishes the third
property.

Lemma 5.3. Let θ̂i = 0 for i ≤ t and θ̂i =
1
μi

for i > t. Let x̂i = xi for i ≤ t and

x̂i =
(
I −QtQ

T
t

)
xi for i > t. Then

(
θ̂i, x̂i

)
(i = 1, 2, . . . , n) are the eigenpairs of Ŝ.

Proof. Let gi be the ith column of Gt. If i ≤ t, xi = Qtgi, thus

Ŝxi =
(
I −QtQ

T
t

)
SQtgi =

(
I −QtQ

T
t

)
QtGtΘtG

−1
t gi = 0

by the first property in Lemma 5.2. If i > t,

Ŝ
(
I −QtQ

T
t

)
xi =

(
I −QtQ

T
t

)
S
(
I −QtQ

T
t

)
xi

=
(
I −QtQ

T
t

)
Sxi =

1

μi

(
I −QtQ

T
t

)
xi

by the third property in Lemma 5.2.
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Knowing the eigenpairs of Ŝ, we can find the eigenpairs of Δ̂0 and Δ̂1 with no
difficulty.

Lemma 5.4. The eigenvalues of Δ̂1 are
1. 0 if i, j ≤ t;
2. 1

μi
if i > t and j ≤ t;

3. 1
μj

if i ≤ t and j > t;

4. 1
μi

+ 1
μj

if i, j > t.

The eigenvalues of Δ̂0 are
1. 0 if i ≤ t or j ≤ t;
2. − 2

μiμj
if i, j > t.

Moreover, for each eigenvalue of Δ̂0 or Δ̂1, there are eigenvectors associated with it
given by ẑi,j = x̂i ⊗ x̂j and ẑj,i = x̂j ⊗ x̂i.

Proof. See the proof of Theorem 2.1.
Under the assumption that Ax = μMx has a complete set of eigenvectors, Δ̂0

also has a complete set of eigenvectors {ẑi,j}ni,j=1. By Lemma 5.4, Range
(
Δ̂0

)
=

span {ẑi,j}i,j>t.

Theorem 5.5. The eigenvalues of (5.1) are {λi,j}i,j>t. For any λi,j with i, j > t,
there are eigenvectors ẑi,j and ẑj,i associated with it.

Proof. The proof follows immediately from Lemma 5.4 and the proof of
Theorem 2.1.

Theorem 5.6. Assume all the eigenvalues of Ax = μMx lie in the left half of the
complex plane. Then the eigenvalue with smallest modulus of (5.1) is −Re(μt+1).

Proof. By Theorem 5.5, it suffices to show that |Re(μt+1)| ≤ |λi,j | for any i, j > t,
which is true by Lemma 5.1.

If we can restrict the search space of eigenvectors to Range
(
Δ̂0

)
, we can apply

inverse iteration to Δ̂1z = λ
(− Δ̂0

)
z to compute −Re(μt+1). Let

Pt = {Z ∈ C
n×n|Z =

(
I −QtQ

T
t

)
X
(
I −QtQ

T
t

)
, where X ∈ C

n×n}.
Since

Range
(
Δ̂0

)
= span {x̂i ⊗ x̂j}i,j>t = span

{(
I −QtQ

T
t

)
xi ⊗

(
I −QtQ

T
t

)
xj

}
i,j>t

,

if Z ∈ Pt, then z = vec(Z) ∈ Range
(
Δ̂0

)
and vice versa. Therefore, (5.1) can be

rewritten in the form of a matrix equation,

(5.2) ŜZ + ZŜT + λ
(
2ŜZŜT

)
= 0, Z ∈ Pt.

By Theorem 5.6,−Re(μt+1) is the eigenvalue with smallest modulus of (5.2). As in sec-
tion 2, under certain conditions, we can show that −Re(μt+1) is an eigenvalue of (5.2)
with a unique, real, symmetric, and low-rank eigenvector. Let Ps

t =
{
Z ∈ Pt|Z =

ZT
}
be the subspace of Pt consisting of symmetric matrices. As a result of assump-

tions (a1′) and (a2′), when the eigenspace of (5.2) is restricted to Ps
t , −Re(μt+1) is an

eigenvalue of (5.2) that has the unique (up to a scalar multiplier), real, and symmetric
eigenvector

(
I −QtQ

T
t

) (
xt+1x

∗
t+1 + xt+1x

T
t+1

) (
I −QtQ

T
t

)
. Therefore, if we restrict

the search space for the target eigenvector of (5.2) to Ps
t , Lyapunov inverse iteration

can be applied to (5.2) to compute −Re(μt+1).
The analysis above leads to a method for computing k rightmost eigenvalues of

Ax = μMx , which is outlined in Algorithm 3. At each iteration of Algorithm 3, we
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Algorithm 3. Compute k rightmost eigenvalues of Ax = μMx.

1. Initialization: t = 0, Et = ∅, X̂t = ∅, and Ŝ = S.
2. While t < k:

2.1. Solve (5.2) for the eigenvalue with smallest modulus,
−Re(μt+1), and its corresponding eigenvector in Ps

t ;
compute (μt+1, x̂t+1).

2.2. Update:
if μt+1 is real:

Et+1 ← {Et, μt+1}, X̂t+1 ←
[
X̂t, x̂t+1

]
, t← t+ 1;

else:
Et+2 ← {Et, μt+1, conj (μt+1)},
X̂t+2 ←

[
X̂t, x̂t+1, conj (x̂t+1)

]
, t← t+ 2.

2.3. Compute Qt ∈ Rn×t whose columns form an orthonormal
basis of X̂t; let Ŝ =

(
I −QtQ

T
t

)
S.

Table 5.1

Algorithm 3 applied to Examples 1, 2, 3 and 4.

t Estimated μt+1 t Estimated μt+1

Example 1 (R = 6000), k = 8 Example 1 (R = 7800), k = 8
0 -0.01084 0 -0.00514+2.69845i
1 -0.02006+0.91945i 2 -0.00845
3 -0.03033+1.79660i 3 -0.01531+0.91937i
5 -0.03794 5 -0.02163+1.78863i
6 -0.04418+2.69609i 7 -0.02996
Example 2 (R = 300), k = 6 Example 2 (R = 350), k = 6
0 -0.10405+2.22643i 0 -0.02411+2.24736i
2 -0.32397 2 -0.28408
3 -0.39197 3 -0.33571
4 -0.60628 4 -0.56485
5 -0.87203 5 -0.79196

Example 3, k = 6 Example 4, k = 6
0 -0.05000+25.0000i 0 -0.05 000+2500.00i
2 -0.10000 2 -0.10000
3 -0.20000 3 -0.20000
4 -0.30000 4 -0.30000
5 -0.40000 5 -0.40000

compute the (t+1)st rightmost eigenvalue μt+1 or the (t+1)st and (t+2)nd rightmost
eigenvalues (μt+1, μt+1). The iteration terminates when k rightmost eigenvalues have
been found. In this algorithm, we need to compute the eigenvalue with smallest
modulus for several Lyapunov eigenvalue problems (5.2) corresponding to different
values of t, and each of them can be solved using Algorithm 2. (A more efficient way
of solving them is proposed in Chapter 4 of [25].) Note that the orthonormal matrix

Qt is computed from X̂t instead of Xt, which is unavailable to us. It can be shown
easily that X̂t and Xt actually have the same column space.

We apply this algorithm to compute a few rightmost eigenvalues for some cases of
the examples considered in section 3. At each iteration of Algorithem 1, the eigenvalue
problem (5.2) is solved using Algorithm 2 with τlyap = 10−9 and τeig = 10−8. The
computed k rightmost eigenvalues for each case are reported in Table 5.1. For example,
consider the driven-cavity flow at R = 7800. From Table 5.1, we can find the eight
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rightmost eigenvalues of Ax = μMx: μ1,2 = −0.00514 ± 2.69845i, μ3 = −0.00845,
μ4,5 = −0.01531 ± 0.91937i, μ6,7 = −0.02163 ± 1.78863i, and μ8 = −0.02996 (see
Figure 3.1(a)).

6. Conclusion. In this paper, we have developed a robust and efficient method
for computing a few rightmost eigenvalues of (1.1) at any point (u0, α0) in the stable
regime. We have shown that the distance between the rightmost eigenvalue of (1.1)
and the imaginary axis is the eigenvalue with smallest modulus of an n2×n2 eigenvalue
problem (2.1). Since (2.1) has the same Kronecker structure as the one considered
in previous work [8, 17], this distance can be computed by the Lyapunov inverse
iteration developed and studied in these references, which also produces estimates of
the rightmost eigenvalue(s) as by-products. An analysis of the fast convergence of
Lyapunov inverse iteration is given, which leads to a validation step that increases its
robustness. Furthermore, assuming t rightmost eigenpairs are known, we show that
all the main theoretical results proven for (2.1) can be generalized to the deflated
problem (5.1), whose eigenvalue with smallest modulus is the distance between the
(t + 1)st rightmost eigenvalue and the imaginary axis. Finally, an algorithm that
computes a few rightmost eigenvalues of (1.1) is proposed. The method developed
in this study together with the method proposed in [8, 17] constitutes a robust way
of detecting the transition to instability in the steady-state solution of a large-scale
dynamical system.
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presented here.
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