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FAST INEXACT SUBSPACE ITERATION FOR GENERALIZED
EIGENVALUE PROBLEMS WITH SPECTRAL TRANSFORMATION*

FEI XUET AND HOWARD C. ELMAN*

Abstract. We study inexact subspace iteration for solving generalized non-Hermitian eigenvalue
problems with spectral transformation, with focus on a few strategies that help accelerate precondi-
tioned iterative solution of the linear systems of equations arising in this context. We provide new
insights into a special type of preconditioner with “tuning” that has been studied for this algorithm
applied to standard eigenvalue problems. Specifically, we propose an alternative way to use the tuned
preconditioner to achieve similar performance for generalized problems, and we show that these per-
formance improvements can also be obtained by solving an inexpensive least squares problem. In
addition, we show that the cost of iterative solution of the linear systems can be further reduced
by using deflation of converged Schur vectors, special starting vectors constructed from previously
solved linear systems, and iterative linear solvers with subspace recycling. The effectiveness of these
techniques is demonstrated by numerical experiments.

Key words. inexact subspace iteration, tuned preconditioner, deflation, subspace recycling,
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Dedicated to G. W. Stewart on the occasion of his 70th birthday.

1. Introduction. In many scientific applications, one needs to solve the gener-
alized non-Hermitian eigenvalue problem Av = ABwv for a small group of eigenvalues
clustered around a given shift or with largest real parts. The most commonly used
approach is to employ a spectral transformation to map these eigenvalues to extremal
ones so that they can be easily captured by eigenvalue algorithms. The major difficulty
of the spectral transformation is that a linear system of equations involving a shifted
matrix A — o B must be solved in each (outer) iteration of the eigenvalue algorithm. If
the matrices are so large (for example, those from discretization of three-dimensional
partial differential equations) that direct linear solvers based on factorization are too
expensive to apply, we have to use iterative methods (inner iteration) to solve these
linear systems to some prescribed tolerances. Obviously, the effectiveness of the whole
algorithm with “inner-outer” structure depends st rongly on that of the inner iter-
ation. In this paper, we study a few techniques that help accelerate the iterative
solution of the linear systems that arise when inexact subspace iteration is used to
solve the generalized non-Hermitian eigenvalue problem with spectral transformation.

In recent years, great progress has been made in analyzing inexact algorithms,
especially inexact inverse iteration, to compute a simple eigenvalue closest to some
shift. References [18, 21] establish the linear convergence of the outer iteration for non-
Hermitian problems, assuming that the algorithm uses a fixed shift and a sequence of
decreasing tolerances for the solution of the linear systems. Inexact Rayleigh quotient
iteration for symmetric matrices is studied in [33] and [27], where the authors explore
how the inexactness of the solution to the linear systems affects the convergence of
the outer iteration. Systematic analysis of this algorithm is given by Spence and his
collaborators (see [2, 3, 4, 13, 14]) on the relation between the inner and the outer
iterations, with different formulations of the linear systems, and variable shifts and
tolerances for solving the linear systems. To make the inner iteration converge more
quickly, [32] provides new perspectives on preconditioning by modifying the right hand
side of the preconditioned system. This idea is elaborated on in [2, 3, 4] and further
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refined in [13, 14] where a special type of preconditioner with “tuning” is defined and
shown to greatly reduce the inner iteration counts.

Inexact subspace iteration is a straightforward block extension of inexact inverse
iteration with a fixed shift. Robbé et al. [29] establish linear convergence of the
outer iteration of this algorithm for standard eigenvalue problems and show by the
block-GMRES [31] convergence theory that tuning keeps the block-GMRES iteration
counts roughly constant for solving the block linear systems, though the inner solve is
required to be done with increasing accuracy as the outer iteration proceeds. In this
paper, this idea is extended to generalized problems and is improved by a new two-
phase algorithm. Specifically, we show that tuning can be limited to just one step of
preconditioned block-GMRES to get an approximate solution, after which a correction
equation can be solved to a fized relative tolerance with proper preconditioned block
linear solvers where tuning is not needed. We show that the effect of tuning is to
reduce the residual in a special way, and that this effect can be also achieved by other
means, in particular by solving a small least squares problem. Moreover, we show that
the two-phase strategy is closely related to an inverse correction scheme presented in
[30, 18] and the residual inverse power method in [35].

The second phase of this algorithm, in addition to using a simplified precondi-
tioning strategy, can also be simplified in other ways to achieve additional reduction
of inner iteration cost. We explore three techniques to attain the extra speedup:

1. Deflation of converged Schur vectors (see [34]) — Once some Schur vectors
have converged, they are deflated from the block linear systems in subsequent
outer iterations, so that the block size becomes smaller. This approach is
independent of the way the block linear systems are solved.

2. Special starting vector — We find that the right hand sides of a few successive
correction equations are often close to being linearly dependent; therefore an
appropriate linear combination of the solutions to previously solved correction
equations can be used as a good starting vector for solving the current one.

3. Subspace Recycling — Linear solvers with recycled subspaces (see [28]) can be
used to solve the sequence of correction equations, so that the search space
for each solve does not need to be built from scratch. In addition, if the same
preconditioner is used for all correction equations, the recycled subspaces
available from solving one equation can be used directly for the next without
being transformed by additional preconditioned matrix-vector products.

We discuss the effectiveness of these ideas and show by numerical experiments that
they generally result in significant savings in the number of preconditioned matrix-
vector products performed in inner iterations.

An outline of the paper is as follows. In Section 2, we describe the inexact
subspace iteration for generalized non-Hermitian eigenvalue problems, restate some
preliminary results taken from [29] about block decomposition of matrices, and discuss
a new tool for measuring closeness of two subspaces. In Section 3, we briefly discuss
the behavior of unpreconditioned and preconditioned block-GMRES without tuning
for solving the block linear systems arising in inexact subspace iteration, and present
new insights into tuning that lead to our two-phase strategy to solve the block linear
systems. In Section 4, we discuss deflation of converged Schur vectors, special starting
vector and linear solvers with recycled subspaces and the effectiveness of the combined
use of these techniques for solving the block systems. Section 5 includes a series of
numerical experiments to show the performance of our algorithm for problems from
Matrix Market [23] and those arising from linear stability analysis of models of two-
dimensional incompressible flows. We finally draw conclusions in Section 6.

2. Inexact Subspace Iteration and Preliminary Results. In this section,
we review inexact subspace iteration for the generalized non-Hermitian eigenvalue



problem Av = ABv (A, B € C™"*") with spectral transformation, block Schur and
eigen-decomposition of matrices, and metrics that measure the error of the current
approximate invariant subspace.

2.1. Spectral Transformation and Inexact Subspace Iteration. To better
understand the algorithm, we start with the definition of the shift-invert and the
generalized Cayley transformation (see [24]) as follows:

v (shift-invert)

1
(2.1) Av = ABv & (A—0B)'Bv= 3

A\ —
2, (generalized Cayley)

Av=ABv < (A—0,B) (A —0yB)v =
A — g1

The shift-invert transformation maps eigenvalues closest to o to dominant eigenvalues
of A= (A — 0B)~!B; the generalized Cayley transformation maps eigenvalues to the
right of the line R(\) = 422 to eigenvalues of A = (A — 01 B) "' (A — 02 B) outside
the unit circle, and those to the left of this line to ones inside the unit circle (assuming
that o1 > o02). The eigenvalues of A with largest magnitude can be easily found by
iterative eigenvalue algorithms. Once the eigenvalues of the transformed problem are
found, they are transformed back to those of the original problem. Note that the
eigenvectors do not change with the transformation.

Without loss of generality, we consider using A = A~!B for inexact subspace
iteration to compute k eigenvalues of Av = ABv with smallest magnitude (i.e., k
dominant eigenvalues of A = A~1B). This notation covers both types of operators in
(2.1) with arbitrary shifts. For example, one can let A=A- 01 B and B=A- 09 B,
so that the generalized Cayley operator is A = A~1B. The algorithm is as follows:

Algorithm 1: Inexact Subspace Iteration with A = A~!B
Given § > 0 and X € C"*? with X©O*XO =T (k < p)
For ¢« = 0,1,..., until k£ Schur vectors converge
1. Compute the error () = sin /(AX @ BX )
2. Solve AY() = BX () inexactly such that the relative residual norm
IBXW-AY D) s (i)
[BX -
3. Perform the Schur-Rayleigh-Ritz procedure to get X 1) with
orthonormal columns from Y (9 and test for convergence
End For

In Step 1, X® is the space spanned by the current outer iterate X (9. The error
of X is defined as the sine of the largest principal angle between AX®) and BX®),
It decreases to zero as X () converges to an invariant subspace of the matrix pencil
(A, B). This error can be computed by MATLAB’s function subspace based on
singular value decomposition (see Algorithm 12.4.3 of [17]), and will be discussed in
detail in Proposition 2.2.

The Schur-Rayleigh-Ritz (SRR) procedure (see Chapter 6.1 of [34]) in Step 3 will
be applied to deflate converged Schur vectors. The procedure and its use for deflation
will be explained in detail in Section 4. The most computationally expensive part of
the algorithm is Step 2, which requires an inexact solve of the block linear system
AY® = BX @ The major concern of this paper is to reduce the cost of this solve.

2.2. Block eigen-decomposition. To briefly review the basic notations and
description of the generalized eigenvalue problem, we restate some results from [29]
on block eigen-decomposition of matrices and and study a new tool to measure the
error of X for generalized problems. To simplify our exposition, we assume that B is
nonsingular. This assumption is valid for problems arising in a variety of applications.
In addition, though B is only positive semi-definite in linear stability analysis of
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incompressible flows, one can instead solve some related eigenvalue problems with
nonsingular B that share the same finite eigenvalues as the original problem; see [5]
for details.

As B is nonsingular, we assume that the eigenvalues of B~'A4 are ordered so that

0 <[] < 2] < oo <A < Apt1] < o < Al
The Schur decomposition of B~'A can be written in block form as

_ T T *
(2.2) pa= v | vy

where [Vl, Vf‘} is a unitary matrix with V; € C"*? and V- € Cnx(n=p) Ty, € CP*P
and Thy € C=P)X("=P) are upper triangular, \(T11) = {0 At and A(The) =
{Ap+1s s An}. Since Ty; and Thy have disjoint spectra, there is a unique solution
Q € CP*(n=p) ¢ the Sylvester equation QTay — T11Q = T2 (see Section 1.5, Chapter
1 of [34]). Then B~!A can be transformed to block-diagonal form as follows:

e iy 1% 4157w

=V, (hQ+ Vi) %1£JK%WQW%ﬂ*

= [Vl, (V1Q+V1J‘)Q51] [ TOH QDTSQQBI } [(V1 - V@), V#QD]*
Ol IR R Ol I A [ O

where Qp = (I+Q*Q)"/?, V, = (VlQ—i—VlJ-)QBl with orthonormal columns, K = Tiy,
M = QDT22Q51 with the same spectrum as Too, Wy = Vi — Vf‘Q* and Wy = Vf-QD
such that [Wl, Wg]* = [Vl, Vg]fl. From the last expression of (2.3), we have

(2.4) AVi = BVUK, and AVy = BVaM.

Recall that we want to compute V; and corresponding eigenvalues (the spectrum of
K) by inexact subspace iteration.

2.3. Tools to measure the error. The basic tool to measure the deviation
of X = span{X®} from V; = span{V;} is the sine of the largest principal angle
between X () and V; defined as (see [29] and references therein)

(2.5) sin(X, V1) = (Vi) XD = [ XxOX @) — vy
= min X% -ViZ|= min |V} —X®Z|.
ZeCpxp ZeCpxp

This definition depends on the fact that both X9 and V; have orthonormal columns.
We assume that X has the following decomposition

(2.6) X0 =y,00 4 1,80

where C) = W X® ¢ cp*r, S0 = Wi X () ¢ C=P)*P_ Intuitively, ||S@|| — 0 as
X — V. Properties of C?) and the equivalence of several metrics are given in the
following proposition.

PROPOSITION 2.1. (PROPOSITION 2.1 in [29]) Suppose X is decomposed as in
(2.6). Let s = [|SO(CO)=Y| and t) = sD||CD||. Then
1) C9 s nonsingular and thus t) is well-defined. The singular values of C) satisfy

(2.7) 0<1— 89 <op(CD)y <1418V, k=1,2,...,p



and CD =U® 11O where UD is unitary and || Y] < ||S@] < 1.

: i i i 5@ i
20) sin(x D, 1) < 50 < 5@ < ($I55H) 159
1S9

2b) sin(X®, V1) <19 < Ty

2¢) ISV < V1+]Q?sin(x®,1y).

The proposition states that as X — V;, C) gradually approximates a unitary
matrix, and sin(X @, V), |S@||, s¢) and ) are essentially equivalent measures of
the error. These quantities are not computable since V; is not available. However,
the computable quantity sin(AX®, BX®) in Step 1 of Algorithm 1 is equivalent to
S|, as the following proposition shows.

PROPOSITION 2.2. Let X9 be decomposed as in (2.6). Then

(2.8) 1]l SD | < sin(AXD, BXD) < ¢, SO,

where ¢1 and co are constants independent of the progress of subspace iteration.
Proof. We first show that as X — V;, AX® ~ BX(. In fact, from (2.4) and
(2.6) we have

(2.9) BXW = BViCD 4+ BV,SW = AViK—'C® + AV,M 1S
= AXD — 80 ()T KL 4 AV, M S
— AXD(CO "1 g=100 _ Ay, (S(i)(c(i))*lelc(i) _ Mflg(i)) ,
Roughly speaking, AX® and BX() can be transformed to each other by postmulti-
plying (C)~"'K~=1C® or its inverse, with a small error proportional to [|S].
Let DY) = (XW*A4*AX®)=1/2. D) — (X()*prBpX©))~1/2 ¢ CP*P_ 5o that
both AX(i)DX) and BX(i)Dg) have orthonormal columns. Then by (2.5)

(2.10) sin Z(AX®, BXW) = min |AX® DY — px®pW 7

< [lax®Dy - Bx DE (D)~ (V) KCY DY) |

= |(Ax®D - BX® ()~ kcD)DY||

= ||BVa(MSD — sO(CO)TKCO)DP || (see (2.9) and (2.4))
< | BV DS 1S 115,

where S; is the Sylvester operator G — S;(G) : MG — G(CW)~'KC®. Note that as
i increases, ||S;|| — ||S|| where S : G — S(G) = MG — GK. In fact,

MG - GCO)TTKCY|

(2.11) 1S:ll = Sup il (G e Cn=P)xpy
| (a1 (@c®)) - (ce®) K)o

and therefore

MG - GK MG — GK||x(C®
(2.12) supw < ||32H < sup ” G G~ H"f(c )
¢ [Gls(C®) ¢ Tel
or |IS|I/w(C) < |ISi|| < [IS][r(CD).

(G e Cn=P)xp)

As 1 < s(C0) < DL (Proposition 2.1, 2a)) and |SO] — 0, IS — |5]
i)

follows. Also, note that the extremal singular values of qu are bounded by those of
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(A*A)~1/2 (equivalently, those of A~1), so that in particular ||DX) || is bounded above
by a constant independent of . The upper bound in (2.8) is thus established.
To study the lower bound, we have

(2.13) sinZ(AX®, BXW) = min [AXODY ~ BXY D) 7]
cCpxp
= Zn%in ||B(B_1AX(i) _X(i)Dg)Z(DS))—l)D(Ai)H
cCrxp
> min [|BAX = XOZ] o (B)omin(D):
cCpxp

Let o = amm(B)amm(DS)) = Opmin(B)||XD*A*AX®||~1/2,  Again using the
boundedness of the singular values of DX), it follows that o is bounded below

by a constant independent of ¢. Since the minimizer Z in the inequality (2.13) is
K® = Xx®*B=1AX ) (see Chapter 4, Theorem 2.6 of [34]), we have

(2.14) sinZ(AxXD, Bx®) > ¢ B7tAX® - xO KO
> oD (Vi) (BTAX® — XxOKO)| (vt =1)
= oD Ty (Vi) XD — (Vi) XOKO | (Vi) B A = Typ(Vih)*; see (2.2))
> o Wsep(Tho, KO (VH)* XD || = 6Wsep(Tha, KW ) sin £(Vy, X@)
> a(i)sep(ng,K(i))(l + ||Q||2)_1/2H5(i)||. (Proposition 2.1, 2¢))

Moreover, as X — v, K0 = X(0*B=1AX() — K up to a unitary transformation,
and hence sep(Taz, K(*) — sep(Th2, K) (see Chapter 4, Theorem 2.11 in [34]). This
concludes the proof. O

Remark 2.1. In [29] the authors use [[AX® — X@ (X@*AX®) || to estimate
the error of X() for standard eigenvalue problems, and show that this quantity is
essentially equivalent to [|S®|. The p x p matrix X@*AX® is called the (block)
Rayleigh quotient of A (see Chapter 4, Definition 2.7 of [34]). For the generalized
eigenvalue problem, we have not seen an analogous quantity in the literature. How-
ever, Proposition 2.2 shows that sin Z(AX®, BX(®)) is a convenient error estimate.

3. Convergence Analysis of Inexact Subspace Iteration. We first demon-
strate the linear convergence of the outer iteration of Algorithm 1, which follows from
Theorem 3.1 in [29]. In fact, replacing A=! by A7!B in the proof therein, we have

O+ [W5 B [(CO) IRV
L= [WyB=HI(CO)=HHIRO ]

(3.1) 0D < KM

where [|(CO)71| = 1/0min(CH) — 1, and

(3.2) |IRD| = ||BX® — AY V| < §||BXD || sin £(AXD, Bx®)
< 6Cy|BXD|\/1+ Q™.  (see Proposition 2.1)

Thus X® — V; linearly for ||K||||M || < 1 and small enough 6.

In this section, we investigate the convergence of unpreconditioned and precon-
ditioned block-GMRES without tuning for solving AY ) = BX () to the prescribed
tolerance, and provide new perspectives on tuning that lead to a new two-phase strat-
egy for solving this block system.

3.1. Unpreconditioned and preconditioned block-GMRES with no tun-
ing. The block linear systems AY () = X arising in inexact subspace iteration for
standard eigenvalue problems are solved to increasing accuracy as the outer iteration
progresses. It is shown in [29] that when unpreconditioned block-GMRES is used
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for these systems, iteration counts remain roughly constant during the course of this
computation, but for preconditioned block-GMRES without tuning, the number of
iterations increases with the outer iteration. The reason is that the right hand side
X is an approximate invariant subspace of the system matrix A, whereas with pre-
conditioning, there is no reason for X to bear such a relation to the preconditioned
system matrix AP~! (assuming right preconditioning is used).

For generalized eigenvalue problems, however, both the unpreconditioned and pre-
conditioned block-GMRES iteration counts increase progressively. To see this point,
we study the block spectral decomposition of the system matrix and right hand side
and review the block-GMRES convergence theory. We present the analysis of the
unpreconditioned solve; the results apply verbatim to the preconditioned solve.

We first review a generic convergence result of block-GMRES given in [29]. Let G
be a matrix of order n where the p smallest eigenvalues are separated from its other
n — p eigenvalues. As in (2.3), we can block diagonalize G as

Ko 0 -
(3.3) G = [Ve, Ve { OG Me } [Var, Vas] ™,

where Vg1 € C"*? and Vgy € C**(®~P) have orthonormal columns, A\(K¢) are the
p smallest eigenvalues of G, and A(M) are the other eigenvalues of G. Recall the
definitions of the numerical range W (Mg) = {% 12 € CP 2 #£ O} and the e-
pseudospectrum A\ (Mg) = {\ € C: 04nin (A — Mg) < €}. The role of the right hand
side in the convergence of block-GMRES is described in the following lemma, which
follows immediately from Theorem 3.7 of [29)].

LEMMA 3.1.  Assume the numerical range W(Mg) or the e-pseudospectrum
Ae(Mg) is contained in a convex closed bounded set E in the complex plane with 0 ¢ E.
Suppose block-GMRES is used to solve GY = Z where Z € C"*P can be decomposed
as Z = Vg1Ca + VgaSa with Va1 and Vo given in (3.8). Here Sg € C=P)XP | gnd
we assume Cg € CP*P is nonsingular. Let Yy be the approximate solution of GY = Z
obtained in the k-th block-GMRES iteration with Yo = 0. If

||CG||SGCG1”>

(3.4) E>14+C, (C’b + log
121l

then ”Zﬁig‘ly’”” < 7. Here C, and Cy are constants that depend on the spectrum of G.

Remark 3.1. For details about C, and Cj, see [29], [19] and [12]. These details
have minimal impact on our subsequent analysis.

Remark 3.2. This generic convergence result can be applied to any specific block
linear systems with or without preconditioning. For example, to study the behavior
of unpreconditioned block-GMRES for solving AY (") = BX() let G = A in (3.3) and
Lemma 3.1, and decompose relevant sets of column vectors in terms of V41 and Viys.

In the following, we will assume that for nontrivial B (B # I), there is no patho-
logical or trivial connection between the decomposition of (3.3) for the case G = A and
that of B™1A in (2.3). Specifically, we assume there exist a nonsingular C; € CP*P
and a full rank Sy € C("~P)*P such that

(3.5) Vi = Va1C1 + VaaSs.

This assumption is generally far from stringent in practice. Similarly, let the decom-

position of Vi be Vo = V41Cs + Vi Sy with Cy € CP*("=P) and S, € C(n—P)x(n=p)
Lemma 3.1 and the assumptions above lead to the following theorem, which gives

qualitative insight into the behavior of block-GMRES for solving AY () = BX(®),



THEOREM 3.2. Assume that unpreconditioned block-GMRES is used to solve
the linear system AY ") = BX() to the prescribed tolerance in Step 2 of Algorithm
1. If the assumption (3.5) holds, and X — Yy linearly, then the lower bound on
block-GMRES iterations from Lemma 3.1 increases as the outer iteration proceeds.

Proof. With (2.4), (2.6), (3.3) and (3.5), we have

(3.6)  BX®Y =BViCY + BV,SW = AViK~'CD + AV,M 15D
= A(Va1Cy 4 VarS1)K1CW 4 A(Va1Cy + VagSa) M1
= (Va1 KaCh + VaeMaS1) K 1CY + (Vay KaCo + VazMaSo) M 1S
=V KA(CLK1CW 4 CoM18W) 4 Vo M4 (S1K1CW + SoM—150)
=V CY + VanSY.

Since [|S@|| — 0 and 04 (C®) — 1(k = 1,2, ...,p) (see Proposition 2.1, 1)), we have
ICV| — | KaCi K~ and ||S$(CY) Y| — |MaS1CT KLY, both of which are
nonzero under our assumption (3.5).

From Step 2 of Algorithm 1 and (2.10), the relative tolerance for AY ®) = BX () is
7 = 6sin(AX®, BXD) < 6| BV, ||| DD[]|Si]]|S@]| — 0. Then from (3.4) and (3.6),
the lower bound of the unpreconditioned block-GMRES iteration counts needed for
solving AY () = BX () to the prescribed tolerance is

) CD1s@ (o@y-1
67 K9 s140, (cb+1og ICLNSYC )
I BXOBV: DL NS5O

Note that [BX®| — BV, DY — [(ViA*AVi)~V2|| and [S;]| — [IS]| (see
the proof of Proposition 2.2). Therefore all terms in the argument of the logarithm
operator approach some nonzero limit except [S*)| — 0, and hence the expression
on the right in (3.7) increases as the outer iteration proceeds. O

Remark 3.3. This result only shows that a lower bound on k() increases; it does
not establish that there will be growth in actual iteration counts. However, numerical
experiments described in [29] and Section 5 (see Figures 5.1-5.2) show that this result
is indicative of performance. The fact that the bound progressively increases depends
on the assumption of (3.5) that V; has “regular” components of V41 and Vyo. This
assumption guarantees that BX' () does not approximate the invariant subspace Va;
of A. The proof also applies word for word to the preconditioned solve without tuning;:
one only needs to replace (3.3) by the decomposition of the preconditioned system
matrix AP~! and write BX® in terms of the invariant subspace of AP~!.

3.2. Preconditioned block-GMRES with tuning. To accelerate the iter-
ative solution of the block linear system arising in inexact subspace iteration, [29]
proposes and analyzes a new type of preconditioner with tuning. Tuning constructs a
special low-rank update of the existing preconditioner, so that the right hand side of
the preconditioned system is an approximate eigenvector or invariant subspace of the
preconditioned system matrix with tuning. Specifically, the tuned preconditioner is

(3.8) PO =P+ (AXD — px ) x @O

from which follow P® X # = AX® and A(P®)~1(AX®) = AX®. In other words,
AX® is an invariant subspace of A(P(®))~! with eigenvalue 1. Intuitively, as X —
V1, we have X ~ AX® for the standard eigenvalue problem, or BX() ~ AX(®)
for the generalized problem. Therefore, the right hand side of A(P®)~1y () = X
or A(PO)=1y () = BX® (with YD = (P())~1¥ () spans an approximate invariant
subspace of A(P())~1. The difficulty of block-GMRES without tuning discussed in
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subsection 3.1 is thus resolved, and the block-GMRES iteration counts with tuning
do not increase with the progress of the outer iteration (see Theorem 4.5 of [29]).

The matrix-vector product involving (P(?))~! is built from that for P~! using the
Sherman-Morrison-Woodbury formula as follows:

(3.9) (PO)~1 = (1 _(PrAX ) X“’))(X<i>*P—1AX(“)‘1X“>*) Pt

Note that P~1AX® — X and X@*P~1AX® can be computed before the block-
GMRES iteration. In each block-GMRES step, (P(Y))~! requires an additional p?
inner products of vectors of length n, a dense matrix-matrix division of size p X p, and
a multiplication of a dense matrix of size n X p with a p X p matrix. This extra cost
is relatively small in general, but it is not free.

We now provide a new two-phase algorithm for solving AY () = BX (@ which
essentially eliminates the overhead of tuning but keeps the block-GMRES iteration
counts from progressively increasing. The strategy provides some new perspectives
on the use of tuning. In addition, we will discuss some connections between this
algorithm and the methods in [30, 18] and [35].

Algorithm 2: Two-phase strategy for solving AY ) = BX(®
1. Apply a single step of preconditioned block-GMRES with tuning to get

an approximate solution Yl(i)
2. Solve the correction equation AdY ) = BX(i)—AYl(l) with proper
preconditioned iterative solver to get an approximate solution dYk(z)7 SO

) : . @) _ Ay, . )
that Yk(i)l = 1(1) + dYk(Z) satisfies 12— AYiil < §sin(AX, BX®).

[|BX ()]

Note in particular that tuning need not be used to solve the correction equation,
and thus we can work with a fixed preconditioned system matrix for the correction
equation in all outer iterations.

Obviously, Phase II can be equivalently stated as follows: solve AY () = BX ()
with proper preconditioned iterative solver and starting vector Yl(l) from Phase I.
The phrasing in Algorithm 2 is intended to illuminate the connection between this
strategy and the methods in [30, 18] and [35].

The analysis of Algorithm 2 is given in the following main theorem. For this,
we make some assumptions concerning the right hand side of the correction equation
analogous to the assumption made for (3.5): with

(3.10) BX® — Ay = V100 4+ V4,80)

ceq ceq’

where V47 and V4o have orthonormal columns, we assume that ||S§?q(C’;cé)(i)|| =

O(1), and that [|Ceeq| is proportional to | BX® — AY,")||. This implies that the term
ICEy 1S, (Cee)

IBX @ —Ay,|
of these assumptions, but they are consistent with all our numerical experience. In
the subsequent derivation, let e; € R? be a standard unit basis vector with 1 in entry

7 and zero in other entries.

, which appears in (3.4), does not depend on i. We have no proof

THEOREM 3.3. Suppose the two-phase strateqy (Algorithm 2) is used to solve
AY® = BXD, Then YV = XO(CO)1K-1COF + A where F = [f1,..., f,]
with f; = argminfeCpHBX(i)ej — AP)TIBXOf|| and |AD|| = O(|SD). In
addition, the residual norm ||[BX® — AV || = O(||SD|)). Thus, if block-GMRES is
used to solve the correction equation, the inner iteration counts will not increase with
the progress of the outer iteration.
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Proof. The approximate solution to A(P®)~'Y = BX® in the k-th block-
GMRES iteration starting with zero starting vector is

k

(3.11) Vi € span{ BX® APD)1BXD . (APD)") T BX O},

It follows from (2.9) and (P())~1AX® = X® that

(3.12) v\ = (@D)1y) = (PO)"1BXO R
= (PO (AXu)(C(i))—lK—lC(i) — AV (SO () Lo - M—ls(i)))p
= X(i)(C(i))’lK’lC’(i)F + (P(i))’lAVQ (Mfls(i) — S(i)(C(i))’lK’lC(i))F
- X(i)(c(i))*lelc(i)F +A®)

where the jth column of F' € CP*P minimizes ||BXVe; — A(P@)~1BX ) f||, i.e., the
residual norm of the jth individual system (property of block-GMRES), and

(3.13) [AD] < [|(BD)* AVR[|| F(|[1S: 11151,

where the Sylvester operator S; : G — S;(G) = M~'G — G(CW)~"'K~1C®. Using
the same derivation as in the proof of Proposition 2.2, we can show ||S;|| — ||S]|,
where S : G — S(G) = M~'G — GK~'. In addition, since X) — V; in (3.8), it
follows that P() — P = P+ (AV; — PV;)Vy*. Thus [|A® || = O([|S™]) is established.

We now investigate the residual norm ||[BX () — AYl(i) || of the linear system after
Phase I of Algorithm 2. Recall the property of tuning that (I — A(P(i))_l)AX(i) =0,

and the property of block-GMRES that the approximate solution 171(i) € span{BX "},
As block-GMRES minimizes the residual norm of each individual linear system of the
block system, the j-th column of the block residual is

B10)  [[(BXY = A®D) T )e | = min [BXOe; — AR BXO )]
< 7= AE) ) BX Ve | < [[(1 - @) BXD|
= (I — APD) 1) AV (SO (C)T KR TICW — MTISW)|| (see (2.9))
< [|(1 = A@D) ) AVR|ISill[ S| = O(ISD)),

from which follows
p
(3.15) IBX® — Ay <37 H (BX® — A(ﬂ»“))*lyf”)eju = O(|SD)).
j=1

Finally in Phase II of Algorithm 2, Y]fj_)l =Y D4 dYk(i), where dYk(i) is an ap-
proximate solution of the correction equation AdY () = BX () — AYl(i). The stopping
criterion requires that

IBX® — av | BXD — A +dy?)|

3.16 , = .
(316 [BX0] [BX0]
BX® — Ay — Aqay,?| | BX® — Ay, . ,
|BX () — Ayl(l)H |BX@]
) _ gy ®y_ (i)
Note that BX =AYy )=AdY, | 3416 relative residual norm of the correction equa-

[BX ) —Ay, D)

. j BX®W—ay"
tion for dYk(Z), and | Ll

ExXOT is the relative residual norm of the original equation
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for Yl(i). It follows that the prescribed stopping criterion of the inner iteration is
satisfied if IBXD—avD)-Adv, D)

is bounded above by

IBX®—Ay"|
(317 0| BX O] sin(AX D, Bx®) 3] BX W o Dsep(T, KD) = ()
|BX@ — AV, (1 = APD)=1) AV, ||| v/1 + Q]2 ’

where we apply the lower bound of sin(AX(, BX®) in (2.14) and the upper bound
of [ BX® — AV in (3.15).

To study p®, recall from the end of the proof of Proposition 2.2 that ¢(?) =
Omin(B)|XO* A* AX D72 — g, (B) ||V A* AV || 7Y% > 0, and sep(Tho, K) —
sep(Ta2, K) > 0. In addition, ||(I — A(PW)~1)AV,|| — ||(I — AP~!)AV,|| and
ISi]l — [|S]. This means p(), a lower bound of the relative tolerance for the cor-
rection equation, can be fixed independent of i. It then follows from Lemma 3.1 and
our assumption concerning the decomposition (3.10) of BX ) — AYl(i) that if block-
GMRES is used to solve the correction equation, the inner iteration counts do not
increase with the progress of the outer iteration. O

3.3. A general strategy for the phase I computation. It can be seen from

Theorem 3.3 that the key to the success of the two-phase strategy is that in the first

phase, an approximate solution Yl(i) is obtained whose block residual norm || BX @) —

AYl(i)H = O(||S™]|). Tt is shown in Section 3.2 that such a Yl(i) can be constructed
inexpensively from a single step of block-GMRES with tuning applied to AY®) =
BX® . In fact, a valid Yl(i) can also be constructed in other ways, in particular, by
solving a set of least squares problems

(3.18) min [BXWe; —AXO L) 1<j<p.
ECp

This is easily done using the QR factorization of AX ). The solution f; satisfies
(3.19) |BXWe; — AXO f;|| = min |BXWe; — AX O f]

< ||BXWe; — AXD(C@)~ 1K 1oWe||

- HAV2 (sO(C)KICW - Ms©) ejH (see (2.9))

< | AVllISiIllS“1 = OIS ).

Thus, with Y( O[f1, ..., fpl, it follows immediately that
(3.20) IBX® — Ay <3 |BXWe; — AXD g5 < O(SD)),
j=1

so that the conclusion of Theorem 3.3 is also valid for this choice of Yl(z).

This discussion reveals a connection between the two-phase strategy and the in-
verse correction method [30, 18] and the residual inverse power method [35], where
the authors independently present essentially the same key idea for inexact inverse
iteration. For example, [35] constructs 2+ by adding a small correction 2 to z(%).
Here, 2(¥ is the solution of Az = pa® — Az where p = z(9* Az is the Rayleigh
quotient, and pz(® — Az is the current eigenvalue residual vector that satisfies
|z — Az = mingec ||az® — Az@]. In Algorithm 2, we compute Y,C by adding

dYk( ) to Yl( , where dYk( ) is an approximate solution of AdY () = BX( - AYl( ),
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Here Y|'") satisfies span{Y,"} ~ span{X @} (see (3.12)), and | BX® — A" is min-
imized by a single block-GMRES iteration. For both methods, the relative tolerance
of the correction equation can be fixed independent of the outer iteration. The least
squares formulation derived from (3.18) can be viewed as a generalization to subspace
iteration of the residual inverse power method of [35].

Remark 3.4. In fact, all these approaches are also similar to what is done by the
Jacobi-Davidson method. To be specific, the methods in [30, 18, 35] essentially com-
pute a parameter /3 explicitly or implicitly such that || B(8z())—Az®|| is minimized or
close to being minimized, then solve the correction equation Az(Y) = B(Bz()) — Az®
and get z(*Y by normalizing 2 + 2. The right hand side B(Bz®) — Az®
is identical or similar to that of the Jacobi-Davidson correction equation, i.e., the
current eigenvalue residual vector. The difference is that the system solve required
by the Jacobi-Davidson method forces the correction direction to be orthogonal to
the current approximate eigenvector z(¥. In addition, [15] shows that for inexact
Rayleigh quotient iteration, solving the equation (A — oW I)y® = 2 (¢() is the
Rayleigh quotient) with preconditioned full orthogonalization method (FOM) with
tuning is equivalent to solving the simplified Jacobi-Davidson correcti on equation
(I =Dz (A—aOT)(T—2@2®*)2() = —(A— o)z with preconditioned FOM,
as both approaches give the same inner iterate up to a constant.

4. Additional strategies to reduce inner iteration cost. In this section,
we propose and study the use of deflation of converged Schur vectors, special starting
vector for the correction equation, and iterative linear solvers with recycled subspaces
to further reduce the cost of inner iteration.

4.1. Deflation of converged Schur vectors. With proper deflation of con-
verged Schur vectors, we only need to apply matrix-vector products involving A to
the unconverged Schur vectors. This reduces the inner iteration cost because the right
hand side of the block linear system contains fewer columns. To successfully achieve
this goal, two issues must be addressed: (1) how to simplify the procedure to detect
converged Schur vectors and distinguish them from unconverged ones, and (2) how
to apply tuning correctly to the block linear systems with reduced size, so that the
relative tolerance of the correction equation can be fixed as in Theorem 3.3.

The first issue is handled by the Schur-Rayleigh-Ritz (SRR) procedure in Step
3 of Algorithm 1. The SRR step recombines and reorders the columns of X (1),
so that its leading (leftmost) columns are approximate Schur vectors corresponding
to the most dominant eigenvectors. Specifically, it forms the approximate Rayleigh
quotient O = X®*y () ~ X®O* AX®)  computes the Schur decomposition ©() =
WOTOW O* where the eigenvalues are arranged in descending order of magnitude
in T and orthogonalizes Y W) into X(+1 (see Chapter 6 of [34]). As a result,
the columns of X (+1 will converge in order from left to right as the outer iteration
proceeds. Then we only need to detect how many leading columns of X+ have
converged; the other columns are the unconverged Schur vectors.

To study the second issue, assume that X@ = [Xc(f),Xéi)] where X(gi) has con-

verged. Then we deflate X((f) and solve the smaller block system AYb(i) = BXlEi).

When a single step of preconditioned block-GMRES with tuning is applied to this
system (Phase T of Algorithm 2), it is important to not deflate X in the tuned
preconditioner (3.8). In particular, the effect of tuning (significant reduction of the
linear residual norm in the first block-GMRES step) depends on the fact that BX®)
is an approximate invariant subspace of A(]P’(i))_l. This nice property is valid only if

we use the whole X to define tuning.
To see this point, recall the partial Schur decomposition B~1AV; = ViT}; in
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(2.2). We can further decompose this equality as
T T

(41)  BAV = B A[Via, Vig] = [Via, vu,}[ fit
11

} =WiT.

It follows that AVyy, = BVlaTlﬁ1 + BVy, Ty, or equivalently
(4.2) (~AV(TE) T + AV ) (T7) ! = BV,

In short, span{ BV} C span{AVj,} Uspan{AVi,} = span{AV;}, but span{BV;,} ¢
span{AV1;}, because of the triangular structure of the partial Schur form in (4.1). If
X,gi) = Vi, is the set of converged dominant Schur vectors, and X [Ei) ~ V1 is the set of
unconverged Schur vectors, then these observations show that BXbm has considerable
components in both AXCEi) and AXb(i’). Therefore, when solving AY;)(i) = BX,Ei)7 if we
use only Xéi) to define tuning in (3.8), so that A.)c'éi) is not an invariant subspace of

A(P(i))’l, then the right hand side BXéi) does not span an approximate invariant
subspace of A(P(i))_l. Thus the large one-step reduction of the linear residual norm
(see (3.15)) will not occur, and many more block-GMRES iterations would be needed
for the correction equation.

4.2. Special starting vector for the correction equation. The second ad-
ditional means to reduce the inner iteration cost is to choose a good starting vector for
the correction equation, so that the initial residual norm of the correction equation can
be greatly reduced. We find that a good starting vector for the current equation can
be constructed from a proper linear combination of the solutions of previously solved
equations, because the right hand sides of several consecutive correction equations
are close to being linearly dependent. Note that the feasibility of this construction of
starting vector stems from the specific structure of the two-phase strategy: as tuning
defined in (3.8) need not be applied in Phase I of Algorithm 2, the preconditioner
does not depend on X and thus we can work with preconditioned system matrices
that are the same for the correction equation in all outer iterations.

To understand the effectiveness of this special starting vector, we need to see why
the right hand sides of a few successive correction equations are close to being linearly
dependent. Some insight can be obtained by analyzing the simple case with block size
p = 1. To begin the analysis, consider using Algorithm 2 to solve Ay = Bz()  where
2@ = v + 1,80) is the normalized current approximate eigenvector (see (2.6)).
Here ¢ is a scalar and S € C(»=D*1 is a column vector.

In Phase I of Algorithm 2, we apply a single step of preconditioned GMRES to
solve A(PM)~15() = Bz and get yii) = (P(i))’lgjgi). We know from the property
of GMRES that ygl) = a(PM)~1B2(® where
(Bz@)* A(PD)~1B2®)  y,

[A®O) L Bz® |2 pa”
To evaluate «, noting that K = Ay in (2.3), we have from (2.9) that

(4.3) o= argmin,||Bz® — aA(PW) 1Bz =

(4.4) Bz = \71 Az — AVy(A\THT - M S,
From the tuning condition (3.8), A(P®)~!(Az®) = Az and therefore
(4.5) APNTIBz) = X\TT Az — APO)YLAV(ATT — M) SO,

To simplify the notation, let J; = AVo(A['T—M~1)in (4.4) and Jo, = A(P®)~1.J;
in (4.5). Substituting (4.4) and (4.5) into (4.3), we get the numerator and denominator
of a as follows:

(4.6) Vo = A 2| Az@ |2 = X7 (AzO)* () + J5) 8D 4 SO Jr 1,80
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and
(4.7) fro = AT Az D2 — 2271 (AzD)* T8 + S 1 7, 5.

Both v, and p, are quadratic functions of S®). As ||S®|| — 0, we use the first order
approximation of o = v, /1o (neglecting higher order terms in S®) to get
A . _
4.8 ~14 ——— (AxD)* (Jy — J;) S,
( ) o + HAm(Z)”g( € ) ( 2 1)

Assume that M = UMAMU;{l where Ay, = diag(Ag, As, ..., A,) and M has nor-
malized columns. It follows that VoUy = [vg, V3, eeny vn} are the normalized eigenvec-
tors of (A, B) and AVoUy; = BVoUpr Ay Suppose (9 = ¢yo; + Y po CrUg. If the
system Ay = Bz is solved exactly for all i, then () = cyv; + > 1, (A1 /g ) v
up to some constant scaling factor. On the other hand, we know from (2.6) that
2@ =01 +1580) =y + ‘/QUM(UI&ls(i)). Therefore,

ws) 080 = ((3) o () e (32) )

up to some constant. If {|Aa],|As], ..., |\i|} are tightly clustered and well-separated
from {|Az41], .- [An|}, the magnitudes of the first [ — 1 entries of U;;' S are signifi-
cantly bigger than those of the other entries.

With (4.4), (4.5), (4.8) and (4.9), using the first order approximation again, we
can write the right hand side of the correction equation as

(4.10) Bz — Ay = Bz — qA(PD)~1 Bz

Az® Az®
< Az (HAWII

)*> (A(]P’(i))’l - I)A(V2UM)(>\;1] — AX/Il)(U];;S(i))7

where the vector (VoUpr) (AT — Ay ) (U S™) is dominated by a linear combination
of {va,...,u;}. In addition, as 2 — vq, the first matrix factor in the second line of
(4.10) filters out the component of Av;. As a result, for big enough i, the right hand
side of the current correction equation is roughly a linear combination of those of [ —1
previous consecutive equations.

Using the above observation, a starting vector dYO(l) for the correction equation
can be constructed from [ previous approximate solutions as follows:

(4.11) dv" =dY,_,y, wheredY,_; = [dy (=H+D gy G=1+2) gy (=] and
(4.12) y= argmin, cci—1 ||RHSZ_1y _ (BX(i)—AYl(i)) ||’
where RHS;_; = [BX(i—H‘l)_Ayl(i—H‘l)7 ...,BX(i_l)—AYl(i_l)],

In practice, we find that [ = 3 or 4 is enough to generate a good starting vector. The
cost of solving this small least squares problem (4.12) is negligible.

4.3. Linear solvers with recycled subspaces. In Phase II of Algorithm 2,
we need to solve the correction equation AdY " = BX () — AYl(i). The third strategy
to speed up the inner iteration is to use linear solvers with subspace recycling to solve
the sequence of correction equations. This methodology is specifically designed to
efficiently solve a long sequence of slowly-changing linear systems. After the iterative
solution of one linear system, a small set of vectors from the current subspace for
the candidate solutions is carefully selected and the space spanned by these vectors
is “recycled”, i.e., used for the iterative solution of the next linear system. The cost
of solving subsequent linear systems can usually be reduced by subspace recycling,
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because the iterative solver does not have to build the subspace for the candidate
solution from scratch. A typical solver of this type is the Generalized Conjugate
Residual with implicit inner Orthogonalization and Deflated Restarting (GCRO-DR)
in [28], which was developed using ideas for the solvers with special truncation [7] and
restarting [25] for a single linear system. See [26] for related work.

In [28], the preconditioned system matrix changes from one linear system to the
next, and the recycled subspace taken from the previous system must be transformed
by matrix-vector products involving the current system matrix to fit into the solution
of the current system (see the Appendix of [28]). In the setting of solving the sequence
of correction equations, fortunately, this transformation cost can be avoided with
Algorithm 2, because the preconditioned system matrix is the same for the correction
equation in all outer iterations.

We implement a block version of GCRO-DR to solve the correction equation. The
block generalization is very similar to the extension of GMRES to block-GMRES. The
residual norm of the block linear system is minimized in each block iteration over all
candidate solutions in the union of the recycled subspace and a block Krylov sub-
space (see [28] for details). The dimension of the recycled subspace can be chosen
independent of the block size. The authors of [28] suggest choosing the harmonic Ritz
vectors corresponding to smallest harmonic Ritz values for the recycled subspaces.
The harmonic Ritz vectors are approximate “smallest” eigenvectors of the precon-
ditioned system matrix. If they do approximate these eigenvectors reasonably well,
this choice tends to reduce the duration of the initial latency of GMRES convergence,
which is typically observed when the system matrix has a few eigenvalues of very
small magnitude; see [10]. We also include dominant Ritz vec tors in the recycled
subspace, as suggested in [28]. As our numerical experiments show (see Section 5),
when the use of harmonic Ritz vectors fails to reduce the inner iteration cost, the set
of dominant Ritz vectors is still a reasonable choice for subspace recycling.

5. Numerical experiments. In this section, we test the effectiveness of the
strategies described in Sections 3 and 4 for solving the block linear systems arising
in inexact subspace iteration. We show that the two-phase strategy (Algorithm 2)
achieves performance similar to that achieved when tuning is used at every block-
GMRES step (the approach given in [28]): both methods keep the inner iteration cost
from increasing, though the required tolerance for the solve decreases progressively.
The numerical experiments also corroborate the analysis that a single block-GMRES
iteration with tuning reduces the linear residual norm to a small quantity proportional
to [|S™]|, so that the relative tolerance of the correction equation remains a moder-
ately small constant independent of ||S®)||. We have also seen experimentally that
the least squares strategy of Section 3.3 achieves the same effect. The Phase I step is
somewhat more expensive using tuned preconditioned GMRES than the least squares
approach, but for the problems we studied, the former approach required slightly
fewer iterations in Phase II, and the total of inner iterations is about the same for
the two methods. For the sake of brevity, we only present the results obtained by the
two-phase strategy where tuning is applied in Phase I.

We also show that deflation gradually decreases the inner iteration cost as more
converged Schur vectors are deflated. In addition, the use of subspace recycling and
special starting vector lead to further reduction of inner iteration counts.

We first briefly explain the criterion to detect the convergence of Schur vectors in
Step 3 of Algorithm 1. Let I, ; = (I; 0)T € RP*7 so that X VI, ; contains the first
j columns of X . Right after the SRR step, we find the largest integer j for which
the following criterion is satisfied:

(5.1) IBXO1,; — AXDL, ;T < | BXD1L,]le,
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where Tj(z) is the j x j leading block of T coming from the SRR step (see Section
4.1 for details). If (5.1) holds for j but not for j 4+ 1, we conclude that exactly
7 Schur vectors have converged and should be deflated. This stopping criterion is
analogous to that of the EB12 function (subspace iteration) of HSL (formerly the
Harwell Subroutine Library) [20, 22].

We use four test problems. The first one is MHD4800A /B from Matrix Market
[23], a real matrix pencil of order 4800 which describes the Alfvén spectra in magne-
tohydrodynamics (MHD). We use the shift-invert operator A = (A — 0 B)~ !B with
o close to the left end of the spectrum. Since it is very hard to find a preconditioner
for A, we use the ILU preconditioner for A — o B with drop tolerance 1.5 x 10~7 given
by MATLAB’s ilu. Using MATLAB’s nnz to count the number of nonzero entries,
we have nnz(A — 0B) = 120195, and nnz(L) 4+ nnz(U) = 224084. In fact, a slightly
bigger tolerance, say 1.75 x 1077, leads to failure of ilu due to a zero pivot.

The second problem is UTM1700A/B from Matrix Market, a real matrix pen-
cil of size 1700 arising from a tokamak model in plasma physics. We use Cayley
transformation to compute the leftmost eigenvalues A\ 2 = —0.032735 £ 0.3347¢ and
Az = 0.032428. Note that J(Aq,2) is 10 times bigger than A3, and there are some real
eigenvalues to the right of A3 with magnitude smaller than J(A;2). We choose the
ILU preconditioner with drop tolerance 0.001 for A — 01 B.

Problems 3 and 4 come from the linear stability analysis of a model of two-
dimensional incompressible fluid flow over a backward facing step, constructed using
the IFISS software package [8, 9]. The domain is [-1, L] x [-1,1], where L = 15
in Problem 3 and L = 22 in Problem 4; the Reynolds numbers are 600 and 1200
respectively. Let v and v be the horizontal and vertical components of the velocity, p
be the pressure, and v the viscosity. The boundary conditions are as follows:

(5.2) u=4y(l —y), v =0 (parabolic inflow) onx=—1,y€l0,1];
13 0
Va—z —p=0, a—z =0 (natural outflow) onax =L,y € [-1,1];
u=v =0 (no-slip) on all other boundaries.

We use a biquadratic/bilinear (Q2-Q1) finite element discretization with element
width 1—16 (grid parameter 6 in the IFISS code). The sizes of the two problems are
72867 and 105683 respectively. Block linear solves are done using the least squares
commutator preconditioner [11]. For Problems 3 and 4, we try both shift-invert (sub-
problem (a)) and Cayley transformation (subproblem (b)) to detect a small number
of critical eigenvalues.

plk| of(o) o9 0 € |l

Prob1l [9 |7 —370 — 2x107° [ 5x 10~ [ 5 [ 10
Prob2 [3[3]-0.0325] 0125 [ 1x107° [5x 10~ [ 5 | 10
Prob3(a) [ 7|7 0 — Ix1073 [ 5x1071 [ 0 [ 20
Prob 3(b) [ 5 | 3 0 —0.46 [ 1x107* [ 5x1071° [ 0 | 20
Prob4(a) [ 5| 4 0 — Ix1073 [ 5x1071 [ 0 [ 30
Prob 4(b) [ 4 | 4 0 —024 [5x107* [ 5x 10710 [ 0 | 30

TABLE 5.1

Parameters used to solve the test problems

For completeness, we summarize all parameters used in the solution of each test
problem in Table 5.1. These parameters are chosen to deliver approximate eigenpairs
of adequate accuracies, show representative behavior of each solution strategy, and
keep the total computational cost moderate.

1. p,k — we use X with p columns to compute k eigenpairs of (A, B)
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2. 0,01,02 — the shifts of A= (A —0oB)"'Band A= (A—01B) (A - 02B)
3. § — the relative tolerance for solving AY ") = BX®) is §sin Z(AX®), BxX®)
4. € — the error in the convergence test (5.1)
5. 11,1 — we use [; “smallest” harmonic Ritz vectors and [y dominant Ritz
vectors for subspace recycling
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160 & TN1+DF+RC ~ VTNA+DF g 1
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Fic. 5.1. Performance of different solution strategies for Problem 1 (a): preconditioned
matriz-vector product counts of the inner iteration against the outer iteration  (b): behavior of the
two-phase strategy and starting vector.

120, 10° A
o TN1 +==NO-TN
o TN1+DF ATNA -

100r & TN1+DF+RC v TNA+DF ... gummest ]
* TN1+DF+RC+SV  ___==== 7"

O Tol-OrigEqn
¢ Res-OneStep

O Tol-CrEqgn

A Res-CrtEqn-SV
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Fi1G. 5.2. Performance of different solution strategies for Problem 2  (a): preconditioned
matriz-vector product counts of the inner iteration against the outer iteration  (b): behavior of the
two-phase strategy and starting vector.

The performance of different strategies to solve AY () = BX® for each problem
is shown in Figures 5.1-5.4. We use Problem 1 as an example to explain the results. In
Figure 5.1(a), the preconditioned matrix-vector product counts of the inner iteration
are plotted against the progress of the outer iteration. The curves with different
markers correspond to solution strategies as follows:

1. “NO-TN” (no marker with dotted line) — Solve AY®) = BX® by precondi-
tioned block-GMRES without tuning.

2. “TNA” (A marker with solid line) — Solve AY () = BX () by preconditioned
block-GMRES with tuning.

3. “TNA+DF” (v marker with solid line) — Apply “TNA” and deflation of
converged Schur vectors.

4. “TN1” (O marker with dashed line) — Solve AY®) = BX() by Algorithm 2,
without any additional enhancements.

5. “IN14+DF” (O marker with dashed line) — Apply “TN1” and deflation of
converged Schur vectors.

6. “IN1+DF+RC” ({ marker with dashed line) — Apply “TN1+DF” and use
GCRO-DR to solve the correction equation in Phase II of Algorithm 2.
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7. “IN14+DF+RC+SV” (% marker wish dashed line) — Apply “TN1+DF+RC”
and use the special starting vector for the correction equation.

From Figure 5.1(a), we see that if no tuning is used, the matrix-vector product
counts in each outer iteration increase gradually to over 160, whereas they are fixed
at 110 if the two-phase strategy (without any additional enhancements) is applied.
If converged Schur vectors are deflated, the matrix-vector product counts decrease
gradually from 100 to 80, 70, and finally to about 50. The use of recycled subspace
of dimension 15 further reduces the counts by approximately 15. The special starting
vector makes an additional significant improvement: the counts are reduced to less
than 20 after the 23rd outer iteration, and even to less than 10 after the 35th outer
iteration.

Figure 5.1(b) plots four quantities against the outer iteration as follows:
1. “Tol-OrigEqn” (O marker) — The relative tolerance ¢sin(AX), BX(®) for
the original linear system AY () = BX (),
« ” . . HBX(i)_Ay(i)H
2. “Res-OneStep” (¢ marker) — The relative residual norm ExeT
one step block-GMRES iteration with tuning (Phase I of Algorithm 2).

O || sin(AX® B D
3. “Tol-CrtEqn” (O marker) — The relative tolerance o BX || sin(AX (,;SBX ) for
[BX D —AY||

after

the correction equation AdY () = BX(®) — AYl(i).

4. “Res-CrtEqn-SV” (A marker) — Given the starting vector dYO(Z), the initial
I(BXD —AY(Y)—Ady{"|
|BX @) — Ay,

It is clear from Figure 5.1(b) that one step of block-GMRES with tuning re-
duces the residual norm of AY®) = BX() to a small quantity proportional to ||S®||
(“Res-OneStep”), so that the relative tolerance of the correction equation (“Tol-

relative residual norm of the correction equation.

CrtEqn”) is approximately a constant. In addition, the special starting vector dYO(l)
considerably reduces the initial residual norm of the correction equation. For ex-
ample, in the 45th outer iteration, the relative tolerance for AY*%) = BX 5 g
§sin(AX ™5 BX9)) ~ 10710; a single block-GMRES iteration with tuning decreases

BX“5) _ Ay (45) B 15
W ~ 107°, so that dYk( ) for the

(45) (45)y _ (45)
e <1074 see (3.16)
X(45)7AY1<45))7A dyo(45) I
[ BX (49 —Ay,*7|
most as small as 1074, so that little additional effort is needed to solve the correction
equation.

the relative linear residual norm to

correction equation only needs to satisfy

al-

for details. Moreover, the starting vector dYo(45) makes 15

2005

O TN1 A TNA 160

180 o TN1+DF VINAWDF |

160 ¢ TN1+DF+RC Al
b # TN1+DF+RC+SV | 420

120+
100

80

60
40 © TN1 ATNA

a0- o TN1+DF v TNA+DF
201 200 ¢ TN1+DF+RC
* TN1+DF+RC+SV ‘
K 10 20 30 40 50 60 70 80 9 100 110 o 20 40 60 80 100 120 140

F1G. 5.3. Performance of different solution strategies for Problem 3(a) and 3(b): preconditioned
matriz-vector product counts of the inner iteration against the outer iteration.

Table 5.2 shows the number of preconditioned matrix-vector products when dif-
ferent strategies are used to solve the block linear systems AY () = BX® for each
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O TN1 ATNA

e 2. )
o TN ATN I
5o O TN1+DF v TNA+DF | 50" o TN1+DF v TNA+DF
0 TN1+DF+RC i TN1+DF+RC
* TN1+DF+RC4+SV L JLTNsDRWRCWSY
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 920 100

Fic. 5.4. Performance of different solution strategies for Problems 4(a) and 4(b): precondi-
tioned matriz-vector product counts of the inner iteration against the outer iteration.

NO-TN | TNA TN1 TNA TN1 TN1+DF | TN1+DF

+DF +DF +RC +RC+IG
Prob 1 6435 3942 4761 2606 3254 2498 1175
Prob 2 19110 12183 | 15357 | 10854 | 13886 7220 2744
Prob S(a) — 11704 | 13097 8270 9370 7863 5785
Prob 3(b) — 17475 | 18600 | 12613 | 13792 11806 8521
Prob 4(a) — 15785 | 19350 | 11978 | 14578 12183 10100
Prob 4(b) — 17238 | 17468 | 12624 | 12892 10197 9428

TABLE 5.2

Number of preconditioned matriz-vector products for different solution strategy for each problem

problem. For Problems 1 and 2, we achieve a speed up ratio of 3.4 and 4.4 respec-
tively by the combined use of all strategies, compared to the original use of tuning
(“TNA”) proposed in [29]; for Problems 3(a) and 3(b), we reduce the inner itera-
tion cost by over 50%; for Problem 4(a) and 4(b), the savings are 36% and 45%
respectively. Recall from (3.9) that tuning requires an application of the Sherman-
Morrison-Woodbury formula in each inner iteration. The two-phase strategy uses
tuning only in one block-GMRES iteration and hence avoids the overhead of tuning.
The additional strategies of Section 4 only entail computation of the recycled sub-
spaces and the starting vector (both costs are small) for the block system in each
outer iteration.

One can see from Figures 5.1-5.4 that the two-phase strategy without subspace
recycling and special starting vector generally requires slightly more inner iterations
than the original tuned version of the solves (compare “TN1” with “TNA” and
“TN1+DF” with “ITNA+DF”). The reason is that the tuned version of a precon-
ditioner P has two possible advantages over its untuned version P:

1. With a tuned preconditioner, the right hand side of A(P(®)~1Y(® = BX ) ig

an approximate invariant subspace of the preconditioned operator A(]I”(i))’l.

2. In addition, A(]I”(i))*1 typically has more favorable properties, such as better
eigenvalue clustering, for Krylov subspace methods than AP~!.

The first advantage is the original motivation for the use of tuning, as studied in

[14, 15, 29] and this paper. The second one is studied in [16] for solving linear

systems that arise when inexact Arnoldi method is applied to compute a few smallest

eigenvalues of a matrix from Matrix Market. We attribute the slight increase in inner

iteration counts associated with Algorithm 2 to its use of untuned preconditioners in

the second phase. However, with Algorithm 2, the overhead of tuning is avoided, and

further reduction of inner iteration counts can be achieved by using subspace recycling

(no transformation of subspaces needed) and special starting vectors.
Moreover, our experience suggests that the second advantage of tuning tends to
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be less of a factor if the untuned preconditioner P is very strong (most eigenvalues of
AP~ are clustered around 1). For instance, for Problem 1, compared to the strategy
“TNA” where tuning is used in every inner iteration, the two-phase strategy “TN1”
requires about 18 more preconditioned matrix-vector products (or a 20% relative in-
crease) for each block linear system after the 20th outer iteration; see Figure 5.1(a).
Similarly for Problem 2, “I'N1” needs about 15 more matrix-vector multiplications
(or a 25% relative increase) than “TNA” for each system after the 75th outer itera-
tion. However, for Problems 3(a), 3(b) and 4(b), the relative increase is only about
10% in the last tens of outer iterations; for Problem 4(a), though “TNA” obviously
outperforms “TN1” in the first 67 outer iterations, the relative difference between the
two approaches still falls far below 20% in t he last 22 outer iterations. The reason
is that the “clustering” effect of tuning is more pronounced when the relatively weak
ILU preconditioners are used in Problems 1 and 2, and is less influential for Problems
3 and 4 where the strong least square commutator preconditioner [10] is used.

In all numerical experiments, deflation of converged Schur vectors always reduces
the preconditioned matriz-vector product counts, but the inner iteration counts tends
to increase slightly. This agrees with our experience with the behavior of block linear
solvers. For instance, if it takes 10 block iterations to solve a block system with 8
right hand sides to some tolerance, then it usually takes more than 10 but less than
20 block iterations to solve the system with block size 4 to the some tolerance.

We successfully reduce some inner iteration cost by using block GCRO-DR (sub-
space recycling). However, a conclusive evaluation of the effectiveness of this approach
is beyond the scope of this paper. To the best of our knowledge, block GCRO-DR has
not been mentioned in the literature. The dimensions of the recycled subspaces we use
in block GCRO-DR are commensurate with those used in single-vector GCRO-DR
[28]. Since block GCRO-DR generally needs much bigger subspaces to extract candi-
date solutions than its single-vector counterpart, it might be beneficial to use recycled
subspaces of bigger dimensions. In addition, the harmonic Ritz vectors corresponding
to smallest harmonic Ritz values are not necessarily a good choice for recycling if,
for example, the smallest eigenvalues of the preconditioned system matrix are not
well-separated from other eigenvalues [6]. We speculate this is the case in Problems
3 and 4, where there are several very small eigenvalues and some small ones when
the least squares commutator preconditioner is used (see [10]). In this case, it is the
dominant Ritz vectors that are useful.

6. Conclusion. We have studied inexact subspace iteration for solving general-
ized non-Hermitian eigenvalue problems with shift-invert and Cayley transformations.
We provide new perspectives on tuning and discuss the connection of the two-phase
strategy to the inverse correction method, the residual inverse power method and
the Jacobi-Davidson method. The two-phase strategy applies tuning only in the first
block-GMRES iteration and solves the correction equation with a fixed relative tol-
erance. It prevents the inner iteration counts from increasing as the outer iteration
proceeds, as the original approach in [29] does. Three additional strategies are studied
to further reduce the inner iteration cost, including deflation, subspace recycling and
special intial guess. Numerical experiments show clearly that the combined use of all
these techniques leads to significant reduction of inner iteration counts.
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