N Introduction to RL

- Reference: FML chapter 14 Sutton and Barto "Renfuccenar leavniry"

Outline:

1. Into
2. Model -based and Model-free RL
3. Temporal difference (TD) methods
4. Function appoximeten for value function
5. Ador-critic methods
6. $(T B D)$
(1) Different learning tramarovs

Supervised: learning tho a traing set of labelled example
unsupersed: find hidden strutive in date, estimate density function
Reinforcenat: learns from interaction, not from examples goal is to max reward, not to find hidden structure
(2) Learning from interaction
(1) learn what to do
learn actions to max a numerical venard
(2) The agent is not told what to do, but it must discover the best behavior
(3) The actions that it takes affect future out come
(3) Exploration and exploitation dilemma In RL a goal-seeking agent must simuctanendy - exploit current knowledge explore new actions
(4) Abstraction :

RL offers an abstraction to the problem of goal-directed learning from interaction.

Learning from interaction

- Reinforcement learning involve learning what to do
- It maps solutions to actions as to maximize a numerical reward
- The agent is not told what to do but it must discover the best behaviour
- The actions that it takes affect future outcomes

Learning from interaction in practise

- Reinforcement learning in practise gives only an approximation to a true solution
- Real problem might be continuous and high dimensional

Exploration and exploitation dilemma

In reinforcement learning we have a goal-seeking agent that must simultaneously:

- exploit current knowledge
- explore new actions

The agent must try a variety of actions and progressively favour those that appear to be best.

It proposes that the sensory, memory and control apparatus and the objective can be reduced to states, actions and rewords passing back and forth between the agent and the environment.

The agent-environment interface

Reward hypothesis:
maximise the expected value of the cumulative remand

RL: abstraction
state space $S=\left\{s^{\prime}, \ldots, s^{|s|}\right\}$ action space $A=\left\{a^{\prime}, \cdots, a^{|A|}\right\}$ state S_{t}

Evivimuat $\xrightarrow{\text { reward } r_{t}} \xrightarrow{V}$ Agent action a_{E} remand space \mathbb{R}.
history $h_{t}=\left\{s_{0}, a_{0}, r_{1}, s_{1}, a_{1}, r_{2}, \ldots, s_{t-1}, a_{t-1}, r_{t}, s_{t}, a_{t}\right\}$ state contains all information about the environment to the agent.
transition model : $\operatorname{Pr}\left(S_{t+1}=s^{\prime}, r_{t+1}=r \mid h_{t}\right) \frac{\text { Markov }}{\stackrel{\text { priory }}{ }} \operatorname{Pr}_{r}\left(s_{t+1}=s^{\prime}, \gamma_{t-1}=r\right.$
policy: $\operatorname{Pr}\left(a_{t+1} \mid h_{t}, S_{t+1}\right)$
Markov Property: S_{t+1} only depends on S_{t} and a_{t}

$$
p\left(s^{\prime}, r \mid s, a\right)
$$

$$
\begin{aligned}
& \left(s^{\prime}, r \mid s, a\right) \\
& =P_{r}\left(s_{t+1}=s^{\prime}, r_{t+1}=r \mid h_{t}\right)=P_{r}\left(s_{t+1}=s^{\prime}, r_{t+1}=r \mid s_{t}, a_{t}\right)
\end{aligned}
$$

$$
\begin{equation*}
=\mathbb{E}\left[r_{t+1} \mid s_{t}=s, a, a\right]=\sum_{r, s^{\prime}} r p\left(s^{\prime}, r \mid s, a\right) \tag{s,a}
\end{equation*}
$$

(1)state-transition probability $P\left(s^{\prime} \mid s, a\right)=\sum_{r} P\left(s^{\prime}, r \mid s, a\right)$
(2) expected reward $r\left(s, a, s^{\prime}\right)=\mathbb{E}\left[r_{t+1} \mid s_{t}=s, a+=a, s_{t+1}=s^{\prime}\right]$

$$
\begin{aligned}
& r\left(s, a, s^{\prime}\right)=\sum_{r} r p\left(r \mid s, a, s^{\prime}\right)=\sum_{r} r \frac{p\left(s^{\prime}, r \mid s, a\right)}{p\left(s^{\prime} \mid s, a\right)} \\
& \text { portray: } R\left(a_{a+1} \mid s_{t+1}\right)=p_{r}\left(a_{t} \mid s_{4}\right)=\pi(a \mid s)
\end{aligned}
$$

stade-value function for policy π

$$
v^{\pi}(s)=\mathbb{E}_{\pi}\left[R_{t} \mid S_{t}=s\right]
$$

action-value function for policy π

$$
Q^{\pi}(s, a)=\mathbb{E}_{\pi}\left[R_{t} \mid s_{t}=s, a_{t}=a\right]
$$

Return (accumulated futwe reward) $R_{f}=\sum_{k=0}^{T-t-1} \gamma^{k_{t+k+1}}$

Bellman Equation (under Markov Property)

$$
\begin{aligned}
v^{\pi}(s) & =\mathbb{E}_{\pi}\left[R_{t} \mid s_{t}=s\right]=\mathbb{E}_{\pi}\left[r_{t+1}+r R_{t+1} \mid s_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[r_{t+1} \mid s_{t}=s\right]+r \mathbb{E}_{\pi}\left[R_{t+1} \mid s_{t}=s\right]
\end{aligned}
$$

(A)

$$
\begin{align*}
(A) & =\sum_{r} r p(r \mid s)=\sum_{r} r \sum_{s, a} p\left(r, a, s^{\prime} \mid s\right) \tag{B}\\
& =\sum_{r} r \sum_{s^{\prime}, a} p\left(s^{\prime}, r \mid s, a\right) \pi(a \mid s) \\
& =\sum_{r} r \sum_{a} \pi(a \mid s) \sum_{s^{\prime}} p\left(s^{\prime}, r \mid s, a\right)
\end{align*}
$$

$$
\begin{aligned}
(B) & =\mathbb{E}_{\pi}\left[R_{t+1} \mid s_{t}=s\right] \\
& =\sum_{s^{\prime}} \mathbb{E}_{\pi}\left[R_{t+1} \mid s_{t+1}=s^{\prime}\right] P_{r}\left(s_{t+1}=s^{\prime} \mid s_{t}=s\right) \\
& =\sum_{s^{\prime}} \sum_{r} V^{\pi}\left(s^{\prime}\right) p_{r}\left(s_{t+1}=s^{\prime}, r_{t+1}=r \mid s_{t}=s\right) \\
& =\sum_{s^{\prime}} \sum_{r} V^{\pi}\left(s^{\prime}\right) \sum_{a} p_{r}\left(s_{t+1}=s^{\prime}, r_{t+1}=r \mid s_{r}=s, a_{t}=a\right) \pi(a \mid s) \\
& =\sum_{r} \sum_{a} \pi(a \mid s) \sum_{s^{\prime}} p\left(s^{\prime}, r \mid s, a\right) \\
\Rightarrow & V^{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{r} \sum_{s^{\prime}} p(s: r \mid s, a)\left[r+r V^{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Optimal value function:

$$
\begin{aligned}
& V^{*}(s)=\max _{\pi} V^{\pi}(s) \quad Q^{*}(s, a)=\mathbb{E}\left[r_{t+1} \mid S_{t}=s,\right. \\
& \left.a_{t}=a\right] \\
& Q^{*}(s, a)=\max _{\pi} Q^{\pi}(s, a) \\
& =\max \mathbb{E}\left[R_{t} \mid s_{t}=s, a_{t}=a\right] \\
& +r \sum_{s^{\prime}, r} V^{*}\left(s^{\prime}\right) p\left(s^{\prime}, r \mid\right. \\
& \text { =Wm }\left[r_{t+1}+r R_{t+1} \mid s_{t}=s, a_{t}=a\right] \\
& \max _{\pi}=\mathbb{E}\left[r_{t+1} \mid s_{t}=s, a_{t}=a\right]+r \mathbb{E}\left[R_{t+1} \mid s_{t}=s, a_{t}=a\right] \\
& \max _{\sim}=\mathbb{E}\left[r_{t+1}+r R_{t+1} \int_{t}=s, a_{t}=a\right] \\
& \max _{\sim}=\mathbb{E}\left[r_{t+1} \mid S_{t}=s, a_{t}=a\right]+r \sum_{s^{\prime}} \mathbb{H}_{2}\left[R_{t+1} \mid S_{t+t}=s^{\prime}, s_{t}=s, a_{t}=a\right] P\left(s^{\prime} \mid s, a\right) \\
& \max _{\pi} \underset{\sim}{x}=\mathbb{E}\left[r_{t+1} \mid s_{t}=s, a=a\right)+r \sum_{s^{\prime}} \mathbb{E}\left[R_{t+1} \mid s_{t+1}=s^{\prime}\right] p\left(s^{\prime} \mid s, a\right) \\
& =\mathbb{E}\left[r_{t+1} \mid s_{t}=s, a_{t}=a\right]+r \sum_{s^{\prime}, r} V^{*}\left(s^{\prime}\right) p\left(s^{\prime}, r \mid s, a\right)
\end{aligned}
$$

Bellman Optimality Equation

$$
\begin{aligned}
& V^{*}(s)=\max _{a} \sum_{r, s^{\prime}} P\left(s^{\prime}, r \mid s, a\right)\left(r+r V^{*}\left(s^{\prime}\right)\right) \\
& Q^{*}(s, a)=\max _{a} \sum_{r, s^{\prime}} P\left(s^{\prime}, r \mid s, a\right)\left(r+r \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)\right)
\end{aligned}
$$

If we know $P\left(s^{\prime}, r \mid s, a\right)$
A system of $|s||A|$ equations with $|s||A|$ unknowns. $V^{\pi}\left(s^{\prime}\right)=\sum_{a} \pi(a \mid s) Q^{\pi}\left(s^{\prime}, a\right)$

$$
V^{*}\left(s^{\prime}\right)=\max _{a} Q^{*}(s, a)
$$

Optimal value function

The optimal value function for each state gives highest the expected return that can be obtained from that state.

2	3	4	3	
3	4	5	7	
5	5	6	7	8
6	7	8	9	10
		7		9

Optimal Q-function

The optimal Q-function for each state and action gives the highest expected return that can be obtained from that state when that action is taken.

Optimal policy

The optimal policy is the policy associated with the optimal value function or the optimal Q-function.

RL diagram:
(1) know $P\left(r_{t+1}=r^{\prime}, s_{t+1}=s^{\prime} \mid s_{t}=s, a_{t}=a\right)$

Dynamic Programming:

ii, value iteration $\{$ no policy involved

(2) unknown $P\left(r_{t+1}=r^{\prime}, s_{t+1}=s^{\prime} \mid s_{t}=s, a_{t}=a\right)$ i. Monte Car to predidion
simulate $V_{\pi}(s), \forall S$
let's say n trajectories for each s. now $\operatorname{Pr}\left[\frac{1}{n} \sum_{i=1}^{n} \hat{V}_{\pi}(s)-V_{\pi}(s)>\epsilon\right] \leqslant e^{-\frac{2 \epsilon^{2}}{n T^{2}}}$ if $V_{\pi}(s) \in[0, T]$ Hoeffding's Inequality
ii. now to do planning, we need to estimate Q (s, a)

