
TAXI Introduction  to RL
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FML chapter 14
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Model - based and Model - free RL

3. Temporal difference l Tp ) methods

4. Function approx .net 'm for Value function

5. Actor - critic methods

6. ( TBD )



"

different
 learning frameworks

Supervised :  learning them
"

tracing set of labelled
exag.ie

Unsurpassed : find hidden structure in data
,

estimate density

function

Reinforcement :  learns from interaction
,

not from  examples

goal is  to  max  reward
,  not  to find hidden

- structure

(2) Learning from interaction

① learn what  to do

learn actins to  max  a  numerical reward

@ The agent  is  not  told what  to  do
,

but  it

must  discover  the  best  behavior

③ The actions Hot  it  takes affect future

outcome

(3) Exploration and  exploitation dilemma

In RL a goal - seeking agent  must  simultaneously

¥ exploit  current knowledge

explore  new  actions

(4) Abstraction :

RL  offers an  abstraction  to  the problem of

goal - directed learning from interaction
.



Learning from interaction

I Reinforcement learning
involve learning what to do

I It maps solutions to actions
as to maximize a numerical
reward

I The agent is not told what
to do but it must discover
the best behaviour

I The actions that it takes
a↵ect future outcomes
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Learning from interaction in practise

I Reinforcement learning in
practise gives only an
approximation to a true
solution

I Real problem might be
continuous and high
dimensional
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Exploration and exploitation dilemma

In reinforcement learning we have a goal-seeking agent that must
simultaneously:

I exploit current knowledge

I explore new actions

The agent must try a variety of actions and progressively favour
those that appear to be best.
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It proposes
 that  the sensory , memory and

control apparatus and the objective  can be

reduced to  States
,

actions and rewards

passing back and forth between  the agentand

the  environment
.

The agent - environment  interface

tIEnvimmatT AgentT -

Einar

Reward  hypothesis :

maximise  the  expected value  of
the cumulative  reward



RL :  abstraction
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Bellman Equation ( under Markov Property )
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Optimal  Value function :
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Reminder: Optimal value function

The optimal value function for each state gives highest the
expected return that can be obtained from that state.
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Reminder: Optimal Q-function

The optimal Q-function for each state and action gives the highest
expected return that can be obtained from that state when that
action is taken.
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Reminder: Optimal policy

The optimal policy is the policy associated with the optimal value
function or the optimal Q-function.
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RL diagram :

① know P ( rt  it  =  r
'

, Sta  =  s
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I St  =  s
,

At  =  a)

Dynamic Programming :

i . policyiteration g
policy evaluation
V* , 1st  =  Ea That  s )  PCs's  Hs .

 a)  Crtrlkcs's)

policy improve  not
.
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,  rls ,  a)  ( r  +  r  Vals ' ))

ii. kalue iteration
g

no policy involved

optimal value for .  only
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② Unknown P ( rt # =  t
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i. Monte Carlo prediction

simulate Va C s )
,
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now Pr E a'¥
,

tats) - Vals ) >  e) EETFif Vacs ) C-  Eo
, T ) Hoeft ding 's Inequality

ii. now to do planning ,
we need to  estimate

Q¥s, a )


