
Dynamic programming

Dynamic programming (DP) algorithms can solve an MDP
reinforcement learning task given the model of the
environment (the state-transition probabilities and
the reward function).

Finite-state MDP A common way of obtaining approximate
solutions for tasks with continuous states and actions
is to quantize the state and action spaces and then
apply finite-state DP methods.

Key idea the use of value functions to organize and structure
the search for good policies.

6 / 26

⇐

Policy evaluation

How to compute the state-value function for a given policy?

I Choose initial approximation arbitrary, eg 8s,V0(s) = 0

I Successive approximations are based on the Bellman equation

Vk+1(s) =
X

a

⇡(a, s)
X

s0,r

p(s 0, r |s, a)
�
r + �Vk(s

0)
�

(1)

I Stop when the value function stops changing
maxs |Vk+1(s)� Vk(s)| < ✓

7 / 26

Iteration :

Policy improvement

The reason for computing the value function for a given policy is
to be able to find better policies.
Policy improvement theorem Let ⇡ and ⇡0 be any pair of
deterministic policies such that, 8s 2 S , Q⇡(s, ⇡0(s)) � V⇡(s).
Then the policy ⇡0 must be as good as, or better than, ⇡.
Policy improvement: constructing a greedy policy ⇡0 which
actions are better than the original policy ⇡ in short term

⇡0(s) = argmax
a

X

s,r

p(s 0, r |s, a)
�
r + V⇡(s

0)
�

(2)

If the new policy is not better than the old policy then they are
optimal.

8 / 26

.

r

Policy iteration

Once a policy ⇡ has been improved using V⇡ to yield a better
policy ⇡0 we can then compute V⇡0 and improve it again to yield
an even better ⇡00.

Algorithm 1 Policy iteration
1: Initialise V and ⇡ arbitrarily
2: repeat

3: Evaluate V using ⇡ (Eq 1)
4: Improve ⇡ using V (Eq 2)
5: until convergence

9 / 26

→
evaluation

] Iteration until convergence↳onetime optimization .

arjmaxa ,

t a

VI!f57 = Ea Tilak) pls :p ,
a) I rt r V'Ll s 's)

Tv

Value iteration

One drawback of policy iteration is that it involves evaluating a
policy at every step. Instead we can perform value iteration:

I Initialise values arbitrarily, eg V0(s) = 0 for every s

I Successive approximations/improvements are based on

Vk+1(s) = max
a

X

s0,r

p(s 0, r |s, a)
�
r + �Vk(s

0)
�

(3)

I Stop when the value function stops changing
maxs |Vk+1(s)� Vk(s)| < ✓

10 / 26

forget about policy ,
but just use
value f n

.

policy evaluation Vktils) = ITua
,

s }pls 's rts ,
a) Crt Hk's

'

,

Value iteration

Value iteration e↵ectively combines, in each of its sweeps, one
sweep of policy evaluation and one sweep of policy improvement.

Algorithm 2 Value iteration
1: Initialise V0 arbitrarily
2: repeat

3: Improve Vk+1 using the estimate of Vk (Eq 3)
4: until convergence

11 / 26

Vw
,

I s) = Max ¥
,

Ms : Hs . a) Cr !r Vms 'D

Asynchronous dynamic programming

Drawback of DP methods they involve operations over the entire
state set of the MDP. If the state space is very large,
this becomes computationally prohibitive.

Asynchronous algorithms back up the values of states in any order
whatsoever, using whatever values of other states
happen to be available. The values of some states
may be backed up several times before the values of
others are backed up once.

12 / 26

Generalised policy iteration

Policy evaluation and policy improvement processes interact,
independent of the granularity of the two processes. The
evaluation and improvement processes in GPI can be viewed

competing They compete in the sense that they pull in opposing
directions. Making the policy greedy with respect to
the value function typically makes the value function
incorrect for the changed policy, and making the
value function consistent with the policy typically
causes that policy no longer to be greedy.

cooperating In the long run, however, these two processes interact
to find a single joint solution

13 / 26

Generalised policy iteration
94 CHAPTER 4. DYNAMIC PROGRAMMING

v�, ⇡�

V0, ⇡0

V = v�

⇡ = greed
y(V)

One might also think of the inter-
action between the evaluation and im-
provement processes in GPI in terms of
two constraints or goals—for example,
as two lines in two-dimensional space as
suggested by the diagram to the right.
Although the real geometry is much
more complicated than this, the diagram
suggests what happens in the real case.
Each process drives the value function
or policy toward one of the lines representing a solution to one of the two goals. The
goals interact because the two lines are not orthogonal. Driving directly toward one
goal causes some movement away from the other goal. Inevitably, however, the joint
process is brought closer to the overall goal of optimality. The arrows in this diagram
correspond to the behavior of policy iteration in that each takes the system all the
way to achieving one of the two goals completely. In GPI one could also take smaller,
incomplete steps toward each goal. In either case, the two processes together achieve
the overall goal of optimality even though neither is attempting to achieve it directly.

4.7 E�ciency of Dynamic Programming

DP may not be practical for very large problems, but compared with other methods
for solving MDPs, DP methods are actually quite e�cient. If we ignore a few tech-
nical details, then the (worst case) time DP methods take to find an optimal policy
is polynomial in the number of states and actions. If n and k denote the number of
states and actions, this means that a DP method takes a number of computational
operations that is less than some polynomial function of n and k. A DP method
is guaranteed to find an optimal policy in polynomial time even though the total
number of (deterministic) policies is kn. In this sense, DP is exponentially faster
than any direct search in policy space could be, because direct search would have to
exhaustively examine each policy to provide the same guarantee. Linear program-
ming methods can also be used to solve MDPs, and in some cases their worst-case
convergence guarantees are better than those of DP methods. But linear program-
ming methods become impractical at a much smaller number of states than do DP
methods (by a factor of about 100). For the largest problems, only DP methods are
feasible.

DP is sometimes thought to be of limited applicability because of the curse of
dimensionality, the fact that the number of states often grows exponentially with
the number of state variables. Large state sets do create di�culties, but these are
inherent di�culties of the problem, not of DP as a solution method. In fact, DP is
comparatively better suited to handling large state spaces than competing methods
such as direct search and linear programming.

In practice, DP methods can be used with today’s computers to solve MDPs with
millions of states. Both policy iteration and value iteration are widely used, and it

14 / 26

E�ciency of dynamic programming

I If n and k denote the number of states and actions, the total
number of (deterministic) policies is kn.

I A DP method takes a number of computational operations
that is less than some polynomial function of n and k.

I DP has limited applicability because of the curse of
dimensionality, the fact that the number of states often grows
exponentially with the number of state variables.

I This is the inherent di�culty of the problem, not of DP as a
solution method.

15 / 26

pdglnk)

51 is , ,

. . .

, Snm) Jello .

Bm14=2'm

Summary

I Policy evaluation refers to the iterative computation of the
value functions for a given policy.

I Policy improvement refers to the computation of an improved
policy given the value function for that policy.

I Putting these two computations together, we obtain policy
iteration and value iteration, the two most popular DP
methods.

I Generalized policy iteration is the general idea of two
interacting processes revolving around an approximate policy
and an approximate value function.

16 / 26

Model-free reinforcement learning

I The complete model of the environment is not always
available.

I In that case, the agent learns from experience.

I The experience can be obtained from interaction with
simulated or real environment.

I Even-though the agent doesn’t have the model of the
environment, it can still find the optimal behaviour.

17 / 26

Monte Carlo methods

5.3. MONTE CARLO CONTROL 105

one of the actions from each state. With no returns to average, the Monte Carlo
estimates of the other actions will not improve with experience. This is a serious
problem because the purpose of learning action values is to help in choosing among
the actions available in each state. To compare alternatives we need to estimate the
value of all the actions from each state, not just the one we currently favor.

This is the general problem of maintaining exploration, as discussed in the context
of the k-armed bandit problem in Chapter 2. For policy evaluation to work for action
values, we must assure continual exploration. One way to do this is by specifying
that the episodes start in a state–action pair, and that every pair has a nonzero
probability of being selected as the start. This guarantees that all state–action pairs
will be visited an infinite number of times in the limit of an infinite number of
episodes. We call this the assumption of exploring starts.

The assumption of exploring starts is sometimes useful, but of course it cannot
be relied upon in general, particularly when learning directly from actual interaction
with an environment. In that case the starting conditions are unlikely to be so
helpful. The most common alternative approach to assuring that all state–action
pairs are encountered is to consider only policies that are stochastic with a nonzero
probability of selecting all actions in each state. We discuss two important variants
of this approach in later sections. For now, we retain the assumption of exploring
starts and complete the presentation of a full Monte Carlo control method.

Exercise 5.2 What is the backup diagram for Monte Carlo estimation of q⇡?

5.3 Monte Carlo Control

evaluation

improvement

⇡ Q
⇡ � greedy(Q)

Q � q�

We are now ready to consider how Monte Carlo estimation
can be used in control, that is, to approximate optimal poli-
cies. The overall idea is to proceed according to the same
pattern as in the DP chapter, that is, according to the idea
of generalized policy iteration (GPI). In GPI one maintains
both an approximate policy and an approximate value func-
tion. The value function is repeatedly altered to more closely
approximate the value function for the current policy, and the
policy is repeatedly improved with respect to the current value
function, as suggested by the diagram to the right. These two
kinds of changes work against each other to some extent, as each creates a mov-
ing target for the other, but together they cause both policy and value function to
approach optimality.

To begin, let us consider a Monte Carlo version of classical policy iteration. In
this method, we perform alternating complete steps of policy evaluation and policy
improvement, beginning with an arbitrary policy ⇡0 and ending with the optimal
policy and optimal action-value function:

⇡0
E�� q⇡0

I�� ⇡1
E�� q⇡1

I�� ⇡2
E�� · · · I�� ⇡�

E�� q�,

I Monte Carlo methods are
ways of solving the
reinforcement learning
problem based on averaging
sample returns.

I Monte Carlo methods
sample and average returns
for each state-action pair
and average rewards for
each action.

I They are typically applied to
episodic tasks.

I The policy is updated only
at the end of an episode.

18 / 26

Monte Carlo prediction

Estimates value function for a given policy.

Algorithm 3 Monte Carlo prediction
1: Initialise V arbitrarily
2: Returns(s) empty list 8s 2 S
3: repeat

4: Generate an episode using ⇡
5: for s in the episode do

6: Returns(s) append return following s
7: end for

8: V (s) = average(Returns(s))
9: until convergence

Each average is an unbiased estimate, and the standard deviation
of its error falls as 1

2pn
, where n is the number of returns averaged.

19 / 26

Monte Carlo estimation of the Q-function

state-action pairs are followed instead of states

maintains exploration all state-action pairs must be visited

20 / 26

On-policy and o↵-policy methods

In reinforcement learning we distinguish between

On-policy methods which attempt to evaluate or improve the
policy that is used to make decisions

O↵-policy methods which evaluate or improve a policy di↵erent
from that used to generate the data.

21 / 26

On-policy Monte Carlo control

Algorithm 4 On-policy Monte Carlo control
1: Initialise Q and ⇡ arbitrarily
2: Returns(s, a) empty list 8s 2 S, a 2 A
3: repeat

4: for s 2 S and a 2 A do

5: Generate an episode using ✏-greedy ⇡ starting with s, a
6: for s, a in the episode do

7: Returns(s, a) append return following s, a
8: Q(s, a) = average(Returns(s, a))
9: end for

10: for s in the episode do

11: ⇡(s) = argmaxa Q(s, a)
12: end for

13: end for

14: until convergence

22 / 26

evaluating Qais . a)

evaluate & improve policy
QTS, a) Tls)

Monte Carlo o↵-policy methods

In o↵-policy methods we have two policies

target policy the policy being learned
I The target policy is the greedy policy with

respect to Q.

behaviour policy the policy that generates behaviour

I The behaviour policy must have a non-zero probability of
selecting all actions that might be selected by the target
policy (coverage).

I To insure this we require the behaviour policy to be soft (i.e.,
that it select all actions in all states with non-zero probability)

I The behaviour policy µ can be anything, but in order to assure
convergence of ⇡ to the optimal policy, an infinite number of
returns must be obtained for each pair of state and action.

23 / 26

V

O↵-policy Monte Carlo control

Algorithm 5 O↵-policy Monte Carlo control

1: Initialise Q arbitrarily, C (s, a) = 0 8s 2 S, a 2 A ⇡ greedy
with respect to Q

2: repeat

3: Generate an episode [s0, a0, . . . , aT�1, sT] using soft policy µ
4: R 0,W 1
5: for t = T down-to 0 do

6: R �R + rt+1

7: C (st , at) C (st , at) +W
8: Q(st , at) Q(st , at) +

w
C(st ,at)

(R � Q(st , at))

9: ⇡(s) = argmaxa Q(s, a)
10: if at 6= ⇡(st) then
11: Exit for loop
12: end if

13: W W 1
µ(at ,st)

14: end for

15: until convergence
24 / 26

1

Recon Bellman Equation .

.

Ques
,

at = I [rt-nfst-s.at = a) t I UYS'

) pcssrfsa)

= E Eat St -

- s
. at -

- a)

trjpcssrfs

!

anvils
'

) Qais's a
.

)

Now I is greedy w
.

 ht Q
, therefore

QTs.at-E-rttilst-s.at -
. a] t

¥
Pls '

.ir/s.a)maa.xeaQc5.a)
r

front → T

line 9 of the code ensures that action the same

fr the behaviour policy µ and the greedy policy TL
.

Therefore , we know thatA-

QYSES
,

at
-

- afatwa) # Etta 1St -

-
s

, at =Dp
-tr§Pls'M sa) Mcat ,

= a' 1st + is)Q4IaJ
A

- -
(SES ,

at-afatiy-oil-E-rt-nfst-s.at-a.ae#--

a')

Pls 's Isa) of essay

Thus
,

- c-

Note that R is the current estimation of return

Under policy

M.
, which Should be rescaled by

UC at . St) for an estimation of value function

Under TL
,

Summary

I Model-based vs model-free methods

I The Monte Carlo methods learn value functions and optimal
policies from experience in the form of sample episodes.

I They do not require the model of the environment and can be
learned directly in the interaction with the environment of in
simulation.

I They simply average many returns for each state-action pair.

I On-policy vs o↵-policy methods.

.

25 / 26

