
On-policy Monte Carlo control

Algorithm 4 On-policy Monte Carlo control
1: Initialise Q and ⇡ arbitrarily
2: Returns(s, a) empty list 8s 2 S, a 2 A
3: repeat

4: for s 2 S and a 2 A do

5: Generate an episode using ✏-greedy ⇡ starting with s, a
6: for s, a in the episode do

7: Returns(s, a) append return following s, a
8: Q(s, a) = average(Returns(s, a))
9: end for

10: for s in the episode do

11: ⇡(s) = argmaxa Q(s, a)
12: end for

13: end for

14: until convergence

22 / 26

c-  -

greedy TL

evaluating Qais .a ) Tues ) =

gargmaaxQls.al.y.pe

random
E

I
- =

.

O

-

evaluate & improve policy
QTS, a ) Tls )



Monte Carlo o↵-policy methods

In o↵-policy methods we have two policies

target policy the policy being learned
I The target policy is the greedy policy with

respect to Q.

behaviour policy the policy that generates behaviour

I The behaviour policy must have a non-zero probability of
selecting all actions that might be selected by the target
policy (coverage).

I To insure this we require the behaviour policy to be soft (i.e.,
that it select all actions in all states with non-zero probability)

I The behaviour policy µ can be anything, but in order to assure
convergence of ⇡ to the optimal policy, an infinite number of
returns must be obtained for each pair of state and action.

23 / 26

V



O↵-policy Monte Carlo control

Algorithm 5 O↵-policy Monte Carlo control

1: Initialise Q arbitrarily, C (s, a) = 0 8s 2 S, a 2 A ⇡  greedy
with respect to Q

2: repeat

3: Generate an episode [s0, a0, . . . , aT�1, sT ] using soft policy µ
4: R  0,W  1
5: for t = T down-to 0 do

6: R  �R + rt+1

7: C (st , at) C (st , at) +W
8: Q(st , at) Q(st , at) +

w
C(st ,at)

(R � Q(st , at))

9: ⇡(s) = argmaxa Q(s, a)
10: if at 6= ⇡(st) then
11: Exit for loop
12: end if

13: W  W 1
µ(at ,st)

14: end for

15: until convergence
24 / 26

1



Recon Bellman  Equation .

.

Ques
,

at = I [ rt-nfst-s.at  =  a) t I UYS'

) pcssrfsa)

=  E  Eat St -

- s
.  at -

- a)

trjpcssrfs

!

anvils
'

)  Qais's  a
.

)

Now  I  is greedy w
.

 ht  Q
, therefore

QTs.at-E-rttilst-s.at -
. a] t

¥
Pls '

.ir/s.a)maa.xeaQc5.a)
r

front  →  T

line 9 of  the  code  ensures that action the same

fr the behaviour policy µ and the greedy policy TL
.

Therefore ,  we know  thatA-

QYSES
,

at
-

- afatwa) # Etta 1St -

-
s

, at  =Dp
-tr§Pls'M sa ) Mcat ,

=  a' 1st + is )Q4IaJ
A

- -
(SES ,

 

at-afatiy-oil-E-rt-nfst-s.at-a.ae#--

a' )

Pls 's Isa ) of essay

Thus
,

- c-

Note  that R  is  the  current  estimation  of  return

Under policy

M.
, which Should be  rescaled by

UC at .  St ) for  an  estimation of value function

Under TL
,



Summary

I Model-based vs model-free methods

I The Monte Carlo methods learn value functions and optimal
policies from experience in the form of sample episodes.

I They do not require the model of the environment and can be
learned directly in the interaction with the environment of in
simulation.

I They simply average many returns for each state-action pair.

I On-policy vs o↵-policy methods.

.

25 / 26



Temporal - Difference Methods



In this lecture...

Introduction to temporal-di↵erence learning

SARSA: On-policy TD control

Q-learning: O↵-policy TD control

Planning and learning with tabular methods

2 / 27



Temporal-di↵erence (TD) learning

Temporal-di↵erence methods are similar to

Dynammic programming update estimates based in part on other

learned estimates, without waiting for the final

outcome (they bootstrap)

Monte Carlo methods learn directly from raw experience without a

model of the environment’s dynamics

3 / 27

-



TD prediction

I TD methods only wait until the next time step to update the

value estimates.

I At time t + 1 they immediately form a target and make an

update using the observed reward rt+1 and the current

estimate V (st+1).

V (st) V (st) + ↵ (rt+1 + �V (st+1)� V (st)) ,

where ↵ > 0 is a step-size parameter.

I Note that this is similar to the MC update except that it takes

place at every step.

I Similar to DP methods, the TD method bases its update in

part on an existing estimate – a bootstrapping method.

4 / 27

V ( St ) = htt ,
tr ¥+2 t r

"

ht -13 .

.  -

V C Seti ) = Hitz t

f
 

ftp.t
r

"

rt-14 . .
.  -

At  + ,
= Vest ) - r VC Stu )

- -

- what text should be if  value

I
fn  is  correct

backup : I
-



TD error

TD error arises in various forms through-out reinforcement

learning

�t = rt+1 + �V (st+1)� V (st)

The TD error at each time is the error in the estimate made at

that time. Because the TD error at step t depends on the next

state and next reward, it is not actually available until step t + 1.

Updating the value function with the TD-error is called a backup.
The TD error is related to the Bellman equation.

5 / 27

-

Ust ) ← V ( St ) t a ft

St  = rt  -11 tr Vl Sta ) - V Cst )



SARSA: On-policy TD control

I TD prediction for control ie action-selection

I A generalised policy iteration method

I Balances between exploration and exploitation

I Learns tabular Q-function

Q(st , at) Q(st , at) + ↵ (rt+1 + �Q(st+1, at+1)� Q(st , at))

This update is done after every transition from a non-terminal

state st . If st+1 is terminal, then Q(st+1, at+1) is defined as zero.

This rule uses every element of the quintuple of events,

(st , at , rt+1, st+1, at+1), hence the name.

6 / 27

state - action - reward - state
- action



SARSA: On-policy TD control

Algorithm 1 SARSA

1: Initialise Q arbitrarily, Q(terminal , ·) = 0

2: repeat
3: Initialize s

4: Choose a ✏-greedily
5: repeat
6: Take action a, observe r , s 0

7: Choose a0 ✏-greedily
8: Q(s, a) Q(s, a) + ↵ (r + �Q(s 0, a0)� Q(s, a))
9: s  s 0,a a0

10: until s is terminal

11: until convergence

7 / 27

E- greedy .

.

a- argnafjfoe.ae) w . p .

I - E

random action
.

W . p E

no policy is needed !
E- greedily choose A

'

I -

step roll - out

E- greedy The



Properties of SARSA

I SARSA is an on-policy algorithm which means that while

learning the optimal policy it uses the current estimate of the

optimal policy to generate the behaviour.

I SARSA converges to an optimal policy as long as all

state-action pairs are visited an infinite number of times and

the policy converges in the limit to the greedy policy (✏ = 1
t ).

8 / 27



Q-learning: O↵-Policy TD Control

In Q-learning the learned action-value function, Q, directly

approximates the optimal action-value function, independent of the

policy being followed.

Q(st , at) (st , at) + ↵

✓
rt+1 + �max

a0
Q(st+1, a

0
)� Q(st , at)

◆

This dramatically simplifies the analysis of the algorithm and

enabled early convergence proofs: all that is required for correct

convergence is that all pairs continue to be updated.

9 / 27

Q



Q-learning: O↵-policy TD control

Algorithm 2 Q-learning

1: Initialise Q arbitrarily, Q(terminal , ·) = 0

2: repeat
3: Initialize s

4: repeat
5: Choose a ✏-greedily
6: Take action a, observe r , s 0

7: Q(s, a) Q(s, a) + ↵ (r + �maxa0 Q(s 0, a0)� Q(s, a))
8: s  s 0

9: until s is terminal

10: until convergence

10 / 27

W.p. I - *FrogmoreQCS ,
a ,

a

hip E random a
.

s
'

is generated .



SARSA vs Q-learning

Comparison of the SARSA and the Q-learning algorithm on the

cli↵-walking task (a variant of grid-world). The results show the

advantage of on-policy methods during the learning process.

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 141

Reward
per

epsiode

!100

!75

!50

!25

0 100 200 300 400 500

Episodes

Sarsa

Q-learning

S G

r = !100

T h e  C l i f f

r = !1 safe path

optimal path

R

R

Sum of 
rewards
during

episode

Figure 6.5: The cli�-walking task. The results are from a single run, but smoothed by
averaging the reward sums from 10 successive episodes.

The lower part of Figure 6.5 shows the performance of the Sarsa and Q-learning
methods with �-greedy action selection, � = 0.1. After an initial transient, Q-learning
learns values for the optimal policy, that which travels right along the edge of the
cli�. Unfortunately, this results in its occasionally falling o� the cli� because of
the �-greedy action selection. Sarsa, on the other hand, takes the action selection
into account and learns the longer but safer path through the upper part of the
grid. Although Q-learning actually learns the values of the optimal policy, its on-
line performance is worse than that of Sarsa, which learns the roundabout policy.
Of course, if � were gradually reduced, then both methods would asymptotically
converge to the optimal policy.

Exercise 6.9 Why is Q-learning considered an o�-policy control method?

Q-learning Expected Sarsa

Figure 6.6: The backup diagrams for Q-learning and expected Sarsa.

11 / 27



Expected Sarsa

I An alternative to taking a random action and using the

estimate of the Q-function for that action in TD-error (as in

SARSA) is to use the expected value of the Q-function.

Q(st , at) Q(st , at) + ↵ (E [Q(st+1, at+1) | st+1]� Q(st , at))

= Q(st , at)+

↵

 
rt+1 + �

X

a0

⇡(a0|st+1)Q(st+1, a
0
)� Q(st , at)

!

I Although computationally more complex, this method has a

lower variance.

I Generally performs better and it can be either on-policy or

o↵-policy.

12 / 27

rpandom
action



Summary

I Prediction: the value function must accurately reflect the

policy

I Improvement: the policy must improve locally (eg ✏-greedy)
with respect to the current value function

I SARSA is an on-policy TD method

I Q-learning is an o↵-policy TD method

I Expected SARSA can be either an on-policy or an o↵-policy

method

I They can be applied on-line, with a minimal amount of

computation, to learn from interaction with an environment

13 / 27

works for tabular  setting
works fur tabular

setting


