On-policy Monte Carlo control &~ Jreccly

bty Bateon)) = g 2
Algorithm 4 OnZpolicy Monte Carlo control [WMM
1: Initialise @ and 7 arbitrarily ' g
2: Returns(s, a) « empty list Vs € S,a € A
3: repeat

4— forsc€ Sand ac Ado
Generate an episode using e-greedy 7 starting with s, a
for%a)in the episode do =~ T
eturns(s, a) < append return following s, a
Q(s, a) = average(Returns(s, a))
—end for
for@in the episode do
7(s) = arg max, Q(s, a)
end for
end for
. until convergence
v eVolwde & T,WFW\M_ Foh‘téj
Q’ES, a) 7 ($) 22/26

Monte Carlo off-policy methods

In off-policy methods we have two policies
target policy the policy being learned
» The target policy is the greedy policy with
respect to Q.

behaviour policy the policy that generates behaviour

» The behaviour policy must have a non-zero probability of
selecting all actions that might be selected by the target
policy (coverage).

» To insure this we require the behaviour policy to be soft (i.e.,
that it select all actions in all states with non-zero probability)

> The behaviour policy i1 can be anything, but in order to assure
convergence of 7 to the optimal policy, an infinite number of
returns must be obtained for each pair of state and action.

23 /26

Off-policy Monte Carlo control

Algorithm 5 Off-policy Monte Carlo control
1: Initialise Q arbitrarily, C(s,a) =0Vs € S,a € A 7 < greedy
with respect to Q

2: repeat

3: Generate an episode [sp, a, . ..,arT_1, ST] using soft policy p
4 R+<0W+1

5. fort = T down-to 0 do

6: R+ YR+ r41

7 C(st,at) < C(st,ar) + W

8: Q(st, ar) < Qst; at) + oz (R — Qlst, ar))
0: 7(s) = argmax, Q(s, a)

10: if a; # m(st) then

11: Exit for loop

12: end if

13: W « Wu(ahst)

14: end for

15: until convergence
24 /26

Recos Bellmon Egquatim :
gsar= E[ﬁ«lﬁ——’ a=a 4 Z \["‘(5) peErfs.a
= EDqu| Se=s se] 4 rm[, .,r_ 2, (5 €'
Mw T is 3m@ wrt QL therefrre
€50 B LRl e +ré‘:rr(::»1 sa) .-;xeAd‘cs', d)
o m(s) = arg max, Q(s, 2) famt—>T
[ine 9 of Ho code emswres that Rekind e Ha Same
for the befouioan poliay ft andd He greeely poliey 7T,

alEe=s, as-ﬂlﬂ.eﬂ-a] Emd
#E r(m[sa) By =5 L)
—A—
@\(;* =5, 0t “{“*»ﬂ‘ﬂ EE’M(SF‘. w=a, ey =d)
+Y§; PG [s.a) @ZE (s.a)
& — -~ —

Thusl 8: Q(st,a¢) + Q(st,ac) +

Toray (R— Qlst,ar))

13;

1
#(aes)

Mote tal R is +ha culvent estivabin uj— Teturn
tadar policy AL, which showld be e scaled by
M(he,5e) for an ectimatim 7& value funokim
Lngler T,

Summary

» Model-based vs model-free methods

» The Monte Carlo methods learn value functions and optimal
policies from experience in the form of sample episodes.

» They do not require the model of the environment and can be
learned directly in the interaction with the environment of in
simulation.

» They simply average many returns for each state-action pair.

» On-policy vs off-policy methods.

25 /26

Jemporel — D7
lg D)ﬁ-@/VMC_e /Ulvdw o/(S

In this lecture...

Introduction to temporal-difference learning

SARSA: On-policy TD control

Q-learning: Off-policy TD control

Planning and learning with tabular methods

2/27

Temporal-difference (TD) learning

Temporal-difference methods are similar to
Dynammic programming update estimates based in part on other
learned estimates, without waiting for the final

outcome (they bootstrap)

Monte Carlo methods learn directly from raw experience without a
model of the environment’s dynamics

V() = Vg +V Ky + Y hys - -

V(Ses)= Yoo+ Kl ¥ Yaeg - - - -

s, = V(S
L= VOO =Y V(s .
» TD methods on1y wait J‘H;)ll the next time step to update the

value estimates.

TD prediction

> At time t + 1 they immediately form a target and make an
update using the observed reward r;11 and the current

estimate V/(s¢41). Vi shodd be i velue
phekt £n i;!:meet
Lachaf C V(s) V(s) +a(re +V(se) — V(s),

where a > 0 is a step-size parameter.

» Note that this is similar to the MC update except that it takes
place at every step.

» Similar to DP methods, the TD method bases its update in
part on an existing estimate — a bootstrapping method.

TD error

TD error arises in various forms through-out reinforcement

learning
[6e= reea +9V(sen) — V()|

The TD error at each time is the error in the estimate made at
that time. Because the TD error at step t depends on the next
state and next reward, it is not actually available until step t + 1.
Updating the value function with the TD-error is called a backup.
The TD error is related to the Bellman equation.

\/(59 . \/(91;3 + o 6“{7
51 = Kb'H +r \/(g't-l-l) —\\/(St)

SARSA: On-policy TD control
Hode - Lot —vowond — A ~ adkm

TD prediction for control ie action-selection

v

v

A generalised policy iteration method

v

Balances between exploration and exploitation

v

Learns tabular Q-function

Q(st,at) + Q(st;ar) + a(rey1 +yQ(Se+1,ac41) — Q(st, ar))

This update is done after every transition from a non-terminal
state s;. If spy1 is terminal, then Q(s¢41,ar+1) is defined as zero.
This rule uses every element of the quintuple of events,

(St,at, Fe+1, St+1, at+1), hence the name.

6 /27

SARSA: On-policy TD control
i,gmolg.. asagrex Qer) WP

Yondom adk¥n Wwp

Algorithm 1 SARSA

L. Initialise @ arbitrarily, Q(terminal,-) =0

2: repeat

3: Initialize s

4: Choose a e-greedily ho Fa\«‘c,% is needesl !

5. repeat _ . /
6: Take action a, observe r, s’ € WO{,Q chse q
7 Choose a’ e-greedily |- stey, woll-out-

8: ngs a) < Q(s a)+a(r+9Q(s,a) — Q(s,a))

9 s<-sa % a

10: until s is terminal
11: until convergence

27

Properties of SARSA

» SARSA is an on-policy algorithm which means that while
learning the optimal policy it uses the current estimate of the
optimal policy to generate the behaviour.

» SARSA converges to an optimal policy as long as all

state-action pairs are visited an infinite number of times and

the policy converges in the limit to the greedy policy (e = %)

27

Q-learning: Off-Policy TD Control

In Q-learning the learned action-value function, Q, directly
approximates the optimal action-value function, independent of the
policy being followed.

Q(st, ar) «Qst, ar) + (rm +ymax Q(st+1,3") — Q(st, at))

This dramatically simplifies the analysis of the algorithm and
enabled early convergence proofs: all that is required for correct
convergence is that all pairs continue to be updated.

27

Q-learning: Off-policy TD control

Algorithm 2 Q-learning
1. Initialise Q arbitrarily, Q(terminal,-) =0

2: repeat

3: Initialize s

4: repeat w.p. [-&€ a=orgrer Qs

5 Choose a e-greedily bp £ yewbea Q.

6: Take action a, observe r, s’ 8" s Aed

7 Q(s,a) + Q(s,a) + a(r+ymaxy Q(s',a") — Q(s, a))
8 s« s

9: until s is terminal
10: until convergence

10/27

SARSA vs Q-learning

Comparison of the SARSA and the Q-learning algorithm on the
cliff-walking task (a variant of grid-world). The results show the
advantage of on-policy methods during the learning process.

Sarsa
-25
Sum of
ds 07 _
rewards Q-learning
during
episode |
-100 T T T T 1
0 100 200 300 400 500

Episodes

11/27

Expected Sarsa

» An alternative to taking a random action and using the
estimate of the Q-function for that action in TD-error (as in
SARSA) is to use the expected value of the Q-function.

rondom, 046
Qser 2¢) — Qs 4e) + 0 (E[Q(Se1, 2e11) | 5e1] — Qse, 20))
= Q(st, ar)+

(ft+1 + ’YZ |5t+1 5t+17 3/) - Q(Sh at))

> Although computationally more complex, this method has a
lower variance.

» Generally performs better and it can be either on-policy or
off-policy.

12 /27

Summary

» Prediction: the value function must accurately reflect the
policy

» Improvement: the policy must improve locally (eg e-greedy)
with respect to the current value function

» SARSA is an on-policy TD method ks for tabuby s
> Q-learning is an off-policy TD method WLS fv Yohulo » fwﬁ‘

» Expected SARSA can be either an on-policy or an off-policy
method

» They can be applied on-line, with a minimal amount of
computation, to learn from interaction with an environment

13 /27

