
Approximate Solution

Methods .

In this lecture...

Value-function approximation

Gradient methods

Linear methods

Least-Squares TD

Policy gradient methods

REINFORCE

2 / 25

Value-function approximation

I Representing value function as a table is not possible for large

state spaces or continuous state spaces

I In this case value function can be a parameterised function

with weight vector ✓ 2 Rn
:

V⇡(s) ⇡ V̂⇡(s,✓)

I The number of components of ✓ is much less than the

number of states (n⌧ |S|), and changing one weight changes

the estimated value of many states.

I When a single state is updated, the change generalises from

that state to a↵ect the values of many other states.

3 / 25

Back-ups as input-output pairs

Value function estimation can be described as a series of back-ups:

Monte Carlo back-up st 7! Rt

TD back-up st 7! rt + �V̂ (st+1,✓)

DP back-up s 7! E⇡[rt + �V̂ (st+1,✓) | st = s]

Each can be seen as an example of the desired input-output

behaviour of the value function.

This means that we can apply function approximation but only
such that allows data to be obtained sequentially.

4 / 25

Prediction Objective

In the case of approximation it is not possible to get the prediction

in all states correct. Therefore, we produce a distribution over

states which specifies how much we care about the error in each

particular state d(s).

The objective function is then Mean Squared Value Error:

MSVE (✓) =
X

s

d(s)

⇣
V⇡(s)� V̂ (s,✓)

⌘2

Typically one chooses d(s) to be the fraction of time spent in s

under the target policy ⇡ - occupancy frequency.

5 / 25

On-policy distribution

I h(s) denotes the probability that an episode begins in state s

I e(s) denotes the average time steps spent in state s in a

single episode.

e(s) = h(s) +

X

ŝ

e(ŝ)

X

â

⇡(â | ŝ)p(s | ŝ, â)

This system of equations can be solved for the expected number of

visits e(s) yielding the distribution:

d(s) =
e(s)P
s0 e(s

0)

6 / 25

?

Stochastic gradient descent

I V̂ (s,✓) is di↵erentiable wrt ✓ = (✓1, ✓2, · · · , ✓n)T.
I ✓t is updated at each of a series of discrete time steps,

t = 0, 1, 2, 3,

I A sample st 7! V⇡(st) consists of a (possibly random) state st

and its true value under the policy ⇡. We assume that states

appear in examples with the same distribution, d(s), over

which we are trying to minimize the MSVE :

✓t+1 = ✓t �
1

2
↵r

⇣
V⇡(st)� V̂ (st ,✓t)

⌘2

= ✓t + ↵
⇣
V⇡(st)� V̂ (st ,✓t)

⌘
rV̂ (st ,✓t),

↵ > 0 is a step-size parameter.

I It’s called stochastic because the update is done on only a

single example, which has been selected stochastically.

7 / 25

O

Target output

I In practise true value V⇡(st) is not available during learning.

I Instead, we have st 7! Ut where Ut is a noisy estimate of

V⇡(st). The general SGD method for state-value prediction is:

✓t+1 = ✓t + ↵
⇣
Ut � V̂ (st ,✓t)

⌘
rV̂ (st ,✓t)

I If Ut is an unbiased estimate (E [Ut] = V⇡(st)) for each t,

then ✓t is guaranteed to converge to a local optimum for

decreasing ↵.

8 / 25

What's Ut ?

Prediction with function approximation

Algorithm 1 Gradient Monte Carlo Algorithm for Approximating

V̂ ⇡ V⇡

1: Input: the policy ⇡ to be evaluated

2: Input: a di↵erentiable function V̂ (s,✓) : S ⇥ Rn ! R
3: Initialise ✓0
4: repeat
5: Generate an episode s0, a0, r1, · · · rT , sT using ⇡
6: for t = 0, 1, · · ·T do

7: ✓t+1 = ✓t + ↵
⇣
Rt � V̂ (st ,✓t)

⌘
rV̂ (st ,✓t)

8: end for
9: until convergence

9 / 25

Val St.

Semi-gradient methods

I If instead of MC, we are using TD or DP updates for

prediction using SGD, ie we perform bootstrapping, they all

depend on the current value of the weight vector ✓t
I This implies that they will be biased and that they will not

produce a true gradient-descent method.

I They include only a part of the gradient and are called

semi-gradient methods.

10 / 25

Linear methods

One of the most important special cases of function approximation

is that in which the approximate function, V̂ (s,✓), is a linear

function of the weight vector, ✓:

V̂ (s,✓) = ✓T · �(s)

=

X

i

✓i�i (s)

� = (�1,�2, · · · ,�n)
T
, �i (s) : S ! R are feature functions.

11 / 25

insta?
415)

Linear approximation

It is natural to use stochastic gradient descent updates with linear

function approximation. The gradient of the approximate value

function with respect to ✓ in this case is:

rV̂ (s,✓) = �(s)

In linear case there is only one optimum.

12 / 25

Semi-gradient TD update

✓t+1 = ✓t + ↵
⇣
rt+1 + �✓Tt �t+1 � ✓Tt �t

⌘
�t

= ✓t + ↵
⇣
rt+1�t � �t(�t � ��t+1)

T✓t
⌘
,

where �t = �(st). Once the system has reached steady state, for

any given ✓t , the expected next weight vector is:

E [✓t+1 | ✓t] = ✓t + ↵(b � A✓t),

where

b = E [rt+1�t]

A = E [�t(�t � �T�t+1)]

If the system converges to ✓, then b � A✓ = 0

13 / 25

Least-Squares TD

TD with linear function approximation converges asymptotically,

for appropriately decreasing step sizes, to the TD fixpoint:

✓ = A
�1b

A = E [�t(�t � ��t+1)
T
]

b = E [Rt+1�t]

If this is so, then we don’t need to compute the solution iteratively.

Instead, we can calculate A and b separately and then find the

fixpoint.

14 / 25

Least-Squares TD prediction

Algorithm 2 Least-Squares TD

1: Input: policy ⇡, features �(s) 2 Rn,�(terminal) = 0

2: Initialise dA�1 = ✏�1I , b̂ = 0
3: repeat
4: for each episode do
5: Initialise s and obtain �
6: for each step do
7: Choose a ⇠ ⇡(· | s), take a, observe r , s 0, obtain �0

8: v = dA�1(�� ��0
)

9: dA�1 = dA�1 � (dA�1�)vT/(1 + vT�)
10: b̂ b̂ + r�
11: ✓ = A

�1b
12: s s

0,� �0

13: end for
14: end for
15: until convergence

15 / 25

How to update 41 s) ht s ?

Properties of LSTD

I Complexity is O(n
2
) vs O(n) for semi-gradient TD

I No step size parameter is required

I ✏-greedy policy is used in the policy improvement step

I This requires setting ✏: if ✏ is too small the sequence of

inverses can vary wildly, and if ✏ is too large then learning is

slowed

I It never forgets which is problematic if the target policy

changes as it does in reinforcement learning and generalised

policy iteration.

16 / 25

Summary

I Reinforcement learning systems must be capable of

generalization if they are to be applicable to artificial

intelligence or to large engineering applications.

I In parameterised function approximation the value function is

parameterised by a weight vector ✓

I To find a good weight vector we use a variation of stochastic

gradient descent

I Good results can be obtained for semi-gradient methods in

the special case of linear function approximation, in which the

value estimates are weighted sum of features.

I LSTD is the most data-e�cient linear TD prediction method,

but has computational complexity O(n
2
) for n features

17 / 25

Policy gradient methods

I Policy gradient methods learn a parametrised policy that can

select actions without needing to compute a value function

I Policy ⇡ is parametrised with ! 2 Rn

⇡(a | s,!) = p(at = a | st = s,!t = !)

I Given a performance measure J(!) the gradient is

!t+1 = !t + ↵rJ(!t)

I J(!) is typically the value of the initial state V⇡(!)(s0),

18 / 25

Policy approximation

I Stochastic policy

I Approximation method such that gradient r!⇡(a|s,!) exists
and is finite

I We often use a Gibbs policy:

⇡(a|s,!) = exp(!T (s, a))P
a0 exp(!

T (s, a0))

where denotes parametrised the feature functions.

19 / 25

yes,
a)

Policy gradient theorem

rJ(!) =
X

s

d⇡(s)
X

a

Q⇡(s, a)r!⇡(a | s,!)

PROOF

20 / 25

REINFORCE

I The policy gradient theorem gives us an exact expression for

the gradient; all we need is some way of sampling whose

expectation equals or approximates this expression.

I Notice that the right-hand side is a sum over states weighted

by how often the states occurs under the target policy ⇡
weighted again by � times how many steps it takes to get to

those states.

I If we just follow ⇡ we will encounter states in these

proportions, which we can then weight by � to preserve the

expected value.

21 / 25

REINFORCE

rJ(!) = E⇡

�tRt

r!⇡(a|s,!)
⇡(a|st ,!)

�

= E⇡
⇥
�tRtr! log ⇡(a|st ,!)

⇤

!t+1 = !t + ↵�tRtr log ⇡(a|st ,!)

In case ⇡ is a Gibbs policy:

r log ⇡(a|s,!) = (s, a)�
X

b

⇡(b|s,!) (s, b)

22 / 25

-

REINFORCE, A Monte-Carlo Policy-Gradient Method

Algorithm 3 REINFORCE

1: Input: a di↵erentiable policy parameterization ⇡(a|s,!), ↵ > 0

2: Initialise !
3: repeat
4: Generate an episode s0, a0, r1, · · · , sT , aT following ⇡(·|·,!)
5: for each step t = 0, · · · ,T do
6: Rt return from step t

7: ! ! + ↵�tRtr log ⇡(a|st ,!)
8: end for
9: until convergence

23 / 25

Summary

I Instead of parametrising value functions we can directly

parametrise policy

I Policy gradient theorem states the value of the gradient

I An episodic Monte Carlo algorithm which estimates policy

parameters using policy gradient theorem is REINFORCE

algorithm

24 / 25

