
Actor - Critic Method



In this lecture...

The actor-critic architecture

Least-Squares Policy Iteration

Natural actor-critic

2 / 21



Actor-critic methods

I Actor-critic methods implement generalised policy iteration -

alternating between a policy evaluation and a policy

improvement step.

I There are two closely related processes of

actor improvement which aims at improving the current policy

critic evaluation which evaluates the current policy

If the critic is modelled by a bootstrapping

method it reduces the variance so the learning is

more stable than pure policy gradient methods.

3 / 21



Relation to other RL methods

Value-based methods:

I estimate the value

function

I policy is implicit (eg

✏-greedy)

Policy-based methods

I estimate the policy

I no value function

Actor-critic methods

I estimate the policy

I estimate the value

function

Value-based 
methods

Policy-based 
methods

Actor-critic
methods

4 / 21



Actor-critic architecture

Actor

Environment

Critic

Reward

State

Values

Action

5 / 21



Behaviour vs target policy for actor-critic methods

I The policy used to generate the samples (behaviour policy)
could be di↵erent from the one which is evaluated and

improved (target policy).

I This allows the critic to learn about the actions not preferred

by the target policy and therefore improve the target policy.

I This is impossible to achieve if behaviour policy is the same as

target policy and if they are both deterministic.

I In the case that the behaviour and the target policy are the

same but stochastic the estimation on low-probability states

might be poor.

I If behaviour policy is completely random it might not visit

important parts of the space.

I The best choice of the behaviour policy is to add exploration

into the target policy.

6 / 21



Implementing actor-critic architecture

Small state-action space The critic is a Q-function estimator and

the actor is ✏-greedy or Boltzmann policy estimated

in a tabular way.

Large state-action spaces Both the critic and the actor use

function approximation

7 / 21

Boltzmannestimated in a tabular  

way .

-
-

large stale IAIN sample any . unity
large action



Implementing a critic

I The critic estimates the value of the current policy –

prediction problem

I Since the actor uses Q-values to choose actions, the critic

must estimate the Q-function

I For small state-spaces we could use tabular TD algorithms to

estimate the Q-function (SARSA, Q-learning, etc)

I For large state-spaces we could use LSTD to estimate the

Q-function.

8 / 21

-

,-
Small state -

spaces : TD algorithms to

estate Qfn .

SARSA
,

Q -

learning ,

.
.

.



Implementing an actor

Policy improvement can be implemented in two ways:

greedy improvement Moving the policy towards the greedy policy

underlying the Q-function estimate obtained from the

critic

policy gradient Perform policy gradient directly on the

performance surface underlying the chosen

parametric policy class

9 / 21

-

=



Greedy improvement

I For small state-action spaces the policy is greedy with respect

to the obtained Q-value

I For large state-action spaces the policy is parametrised and

the greedy action is computed on the fly

10 / 21



Least-Squares Policy Iteration

Algorithm 1 Least-Squares Policy Iteration

1: Input: parametrisation of Q(·, ·;✓) = ✓T�(·, ·)
2: Initialise ✓ arbitrarily

3: repeat
4: ⇡(s) = argmaxa ✓

T�(s, a) {policy improvement}
5: ✓ = LSTD(⇡,�,✓) {policy evaluation}
6: until convergence

11 / 21



Policy gradient

I Policy gradient methods perform stochastic gradient descent

on the performance surface of the parametrised policy.

I Policy gradient theorem (last lecture) gives

rJ(!) = E⇡
⇥
�tRtr! log ⇡(a|s,!)

⇤
(1)

= E⇡
⇥
�tQ⇡(s, a)r! log ⇡(a|s,!)

⇤
(2)

= E⇡
⇥
�t (Q⇡(s, a)� V⇡(s))r! log ⇡(a|s,!)

⇤
(3)

PROOF

I Advantage function A⇡(s, a) is defined as

A⇡(s, a) = Q⇡(s, a)� V⇡(s)

12 / 21

?



Compatible function approximation

actor policy that takes actions parametrised with !, for
example

⇡(a|s,!) = exp(!T (s, a))P
a0 exp(!

T (s, a0))

critic Advantage function that evaluates the actor

parametrised with ✓

�tA(st , a,✓) = ✓
T�(st , a)

such that the choice of the approximation is

compatible with the policy parametrisation: if !
changes ✓ changes too.

13 / 21

?

9

\



Limitations of vanilla policy gradient

I Vanilla policy gradient methods are not always stable as

(large) changes in the parameters can result in unexpected

policy moves.

I Convergence can be very slow.

(More in next lecture.)

14 / 21



Natural actor-critic [Peters and Schaal, 2008]

I Uses compatible function approximation for actor and critic

I A modified form of gradient – natural gradient is used to find

the optimal parameters

15 / 21



Natural Policy Gradient
I Advantage function is parametrised with parameters ✓ such

that the direction of change is the same as for the policy

parameters !

�tr✓A(st , a,✓) = r! log ⇡(st , a,!)

I Then by replacing

�tA(st , a,✓) = r! log ⇡(st , a,!)
T✓

in Eq 3

I It can be shown

✓ = G�1
! r!J(!)

where G! is the Fisher information matrix

G! = E⇡(!)

h
r log ⇡(b, a,!)r log ⇡(b, a,!)T

i

I ✓ is the natural gradient of J(!)

16 / 21



Natural gradient [Amari, 1998]

I Distance in Riemann space: |d!|2 = d!TG!d!, where G! is

a metric tensor

I Direction of steepest descent in Riemann space for some loss

function L(!) is G�1
! r!L(!)

I If ! is used to optimise the estimate of a probability

distribution p(x |!) then the optimal metric tensor is Fisher

information matrix as this give distances invariant to scaling

of the parameters.

G! = E (r log p(x |!)r log p(x |!)T)

I It can be shown that KL(p(x |!)||p(x |! + d!)) ⇡ d!TG!d!

17 / 21



Episodic Natural Actor Critic

Algorithm 2 Episodic Natural Actor Critic

1: Input: parametrisation of ⇡(!)
2: Input: parametrisation of �tA(✓) = ✓T�
3: Input: step size ↵ > 0

4: Initialise ! and ✓
5: repeat
6: Execute the episode according to the current policy ⇡(!)
7: Obtain sequence of states st , actions at and return R
8: Critic evaluation Choose ✓ and J to minimise

(
P

t ✓
T�(st , at) + J � R)2

9: Actor update !  ! + ↵✓
10: until convergence

In practice the update is not performed after every episode but

rather after a number of episodes to improve stability and

e�ciency.

18 / 21



Summary

I Actor-critic methods implement generalised policy iteration

where the actor aims at improving the current policy and the

critic evaluates the current policy.

I For large state-action spaces, both the actor and the critic are

parametrised functions.

I The actor and the critic can be estimated using compatible

function approximation, where their parameters depend on

each other and are estimated using stochastic gradient

descent.

I Instead of the vanilla gradient which has low convergence

rates, the natural gradient can be used and this yields natural

actor-critic algorithm.

19 / 21


