
Deep Reinforcement Learning

In this lecture...

Introduction to deep reinforcement learning

Value-based Deep RL

Deep Q-network

Policy-based Deep RL

Advantage actor-critic

Model-based Deep RL

2 / 25

Deep reinforcement learning

Reinforcement learning where

I the value function,

I the policy, or

I the model

is approximated via a neural network is deep reinforcement learning.
Neural network approximates a function as a non-linear function
which is preferred in reinforcement learning. However, the
approximation does not give any interpretation and the estimate is
a local optimum which is not always desirable.

3 / 25

Deep representations

I A deep representation is a composition of many functions

I Its gradient can be backpropagated by the chain rule

4 / 25

Deep neural networks

Neural network transforms input vector x into an output y:

h0 = g0(W0x
T + b0)

hi = gi (Wih
T
i�1 + bi), 0 < i < m

y = gm(Wmh
T
m�1 + bm)

where

gi (di↵erentiable) activation functions hyperbolic
tangent tanh or sigmoid �, 0 i m

Wi , bi parameters to be estimated, 0 i m

It is trained to minimise the loss function L = |y⇤ � y|2 with
stochastic gradient descent in the regression case. In the
classification case, it minimises the cross entropy �

P
i y

⇤
i log yi .

5 / 25

Weight sharing

I Recurrent neural network shares weights between time-steps

hidden layer t0

Input feature vector t0

output t0

hidden layer t1

Input feature vector t1

output t1

hidden layer tn

Input feature vector tn

output tn

I Convolutional neural network shares weights between local
regions

input feature vector x hidden layer h1 hidden layer h2

6 / 25

Q-networks

I Q-networks approximate the Q-function as a neural network
I There are two architectures:

1. Q-network takes an input s, a and produces Q(s, a)
2. Q-network takes an input s and produces a vector

Q(s, a1), · · · ,Q(s, ak)

as

Q(s,a)

s

Q(s,a1) Q(s,a2) Q(s,ak)

7 / 25

Deep Q-network

Q(s, a,✓) is a neural network.

MSVE =

✓
r + �max

a0
Q(s 0, a0,✓)� Q(s, a,✓)

◆2

I Q-learning algorithm where Q-function estimate is a neural
network

I This algorithm provides a biased estimate

This algorithm diverges because

I States are correlated

I Targets are non-stationary

8 / 25

DQN - Experience replay

I In order to deal with the correlated states, the agent builds a
dataset of experience and then makes random samples from
the dataset.

I In order to deal with non-stationary targets, the agent fixes the
parameters ✓� and then with some frequency updates them

MSVE =

✓
r + �max

a0
Q(s 0, a0,✓�)� Q(s, a,✓)

◆2

9 / 25

Atari

10 / 25

DQN for Atari [Mnih et al., 2015]

I End-to-end learning of values Q(s, a) from pixels s

I State s is stack of raw pixels from last 4 frames

I Action a is one of 18 joystick/button positions

I Reward r is change in score for that step

11 / 25

Results - Atari

12 / 25

Prioritised replay [Schaul et al., 2015]

I Related to prioritised sweeping in Dyna-Q framework

I Instead of randomly selecting experience order the experience
by some measure of priority

I The priority is typically proportional to the TD-error

� = |r + �max
a0

Q(s 0, a0,✓�)� Q(s, a,✓)|

13 / 25

Double DQN [van Hasselt et al., 2015]

I Remove upward bias caused by maxa0 Q(s 0, a0,✓�)
I The idea is to produce two Q-networks

1. Current Q-network ✓ is used to select actions
2. Older Q-network ✓� is used to evaluate actions

MSVE =

✓
r + �Q(s 0, argmax

a0
Q(s 0, a0,✓),✓�)� Q(s, a,✓)

◆2

14 / 25

Dueling Q-network [Wang et al., 2015]

I Dueling Q-network combined two streams to produce
Q-function:
1. one for state values
2. another for advantage function

I The network learns state values for which actions have no
e↵ect

I Dueling architecture can more quickly identify correct action
in the case of redundancy

15 / 25

Dueling Q-network

I Traditional DQN and
dueling DQN architecture I The value stream learns to

pay attention to the road.

I The advantage stream learns
to pay attention only when
there are cars immediately in
front

16 / 25

Asynchronous deep reinforcement learning

I Exploits multithreading of standard CPU

I Execute many instances of agent in parallel

I Network parameters shared between threads

I Parallelism decorrelates data

I Viable alternative to experience replay

17 / 25

Policy approximation

I Policy ⇡ is a neural network parametrised with ! 2 Rn,
⇡(a, s,!)

I Performance measure J(!) is the value of the initial state
V⇡(!)(s0) = E⇡(!)[r0 + �r1 + �2r2,+ · · ·]

I The update of the parameters is

!t+1 = !t + ↵rJ(!t)

I And the gradient is given by the policy gradient theorem

rJ(!) = E⇡
⇥
�tRtr! log ⇡(a|st ,!)

⇤

I This gives REINFORCE algorithm for a neural network policy

18 / 25

Natural actor-critic with neural network approximations

I Approximate the advantage function as a neural network
�tA(s, a,✓)

I Approximate the policy as a neural network ⇡(a, s,!)

Critic evaluation Choose ✓ and J to minimise
(
P

t �
tA(st , at ,✓) + J � R)2

Actor update ! ! + ↵✓ using compatible function
approximation, where ✓ is natural gradient of
J(!)

19 / 25

Advantage actor-critic [Mnih et al., 2016]

Approximate the policy as a neural network ⇡(a, s,!)

I Define the objective
J(!) = V⇡(!)(s0) = E⇡(!)[r0 + �r1 + �2r2,+ · · ·]

I Update ! with rJ(!)
rJ(!) = E⇡ [�t(Rt � V (st ,✓))r! log ⇡(at , st ,!)]

Approximate the value function as a neural network V (s,✓)

I Define the loss L(✓) = �t(Rt � V (st ,✓))2

I Update ✓ with rL(✓)
Compatible function approximation: rJ(!) depends on the
current estimate of V (s,✓)

20 / 25

Advantage actor-critic

Algorithm 1 Advantage actor-critic

1: Input: neural network parametrisation of ⇡(!)
2: Input: neural network parametrisation of V (✓)
3: repeat
4: Initialise ✓,!,V (terminal ,✓) = 0
5: Initialise s0
6: Obtain an episode s0, a0, r1, · · · , rT , sT according to ⇡(!)
7: RT = 0
8: for t = T downto 0 do
9: Rt�1 = rt + �V (st ,✓)

10: rJ = rJ + �t(Rt � V (st ,✓))r! log ⇡(at , st ,!)
11: rL = rL+ �tr✓(Rt � V (st ,✓))2

12: end for
13: ! = ! + ↵rJ
14: ✓ = ✓ + �rL
15: until convergence

21 / 25

Model-based Deep RL

I Dyna-Q framework can be used where transitions
probabilities, rewards and the Q-function are all approximated
by a neural network.

I Challenging to plan due to compounding errors

I Errors in the transition model compound over the trajectory

I Planning trajectories di↵er from executed trajectories

I At end of long, unusual trajectory, rewards are totally wrong

22 / 25

Summary

I Neural networks can be used to approximate the value
function, the policy or the model in reinforcement learning.

I Any algorithms that assumes a parametric approximation can
be applied with neural networks

I However, vanilla versions might not always converge due to
biased estimates and correlated samples

I With methods such as prioritised replay, double Q-network or
duelling networks the stability can be achieved

I Neural networks can also be applied to actor-critic methods

I Using them for model-based method does not always work
well due to compounding errors

23 / 25

