DEQF RﬁIATWCQh\M Lrem'n?a

In this lecture...

Introduction to deep reinforcement learning
Value-based Deep RL

Deep Q-network

Policy-based Deep RL

Advantage actor-critic

Model-based Deep RL

2/25

Deep reinforcement learning

Reinforcement learning where
» the value function,
> the policy, or

» the model

is approximated via a neural network is deep reinforcement learning.

Neural network approximates a function as a non-linear function
which is preferred in reinforcement learning. However, the
approximation does not give any interpretation and the estimate is
a local optimum which is not always desirable.

25

Deep representations

> A deep representation is a composition of many functions
> lts gradient can be backpropagated by the chain rule

25

Deep neural networks

Neural network transforms input vector x into an output y:

ho = go(Wox" + by)
hy =gi(Wh] ; +b),0<i<m
y= gm(WmhL_l + bm)

where

gi (differentiable) activation functions hyperbolic
tangent tanh or sigmoid o, 0 < i < m
Wi, b; parameters to be estimated, 0 </ < m
It is trained to minimise the loss function L = |y* — y|? with
stochastic gradient descent in the regression case. In the
classification case, it minimises the cross entropy — ;v log y;.

Weight sharing

» Recurrent neural network shares weights between time-steps

Ceman | [Comnr |
’ hidden layer to }—>’ hidden layer t1 }—> —| hidden layer tn

‘ Input feature vector to

‘ Input feature vector t1 ‘ Input feature vector tn

» Convolutional neural network shares weights between local
regions

input feature vector x hidden layer h1 hidden layer h2

6

25

Q-networks

» Q-networks approximate the Q-function as a neural network
» There are two architectures:

1. Q-network takes an input s, a and produces Q(s, a)
2. Q-network takes an input s and produces a vector

Q(S, 21),) Q(S,ak)

25

Deep Q-network

Q(s, a,0) is a neural network.
2
MSVE = <r +ymax Q(s',d,0) — Q(s, a, 0)>
a/

» Q-learning algorithm where Q-function estimate is a neural
network

» This algorithm provides a biased estimate
This algorithm diverges because
» States are correlated

> Targets are non-stationary

25

DQN - Experience replay

> In order to deal with the correlated states, the agent builds a
dataset of experience and then makes random samples from
the dataset.

> In order to deal with non-stationary targets, the agent fixes the
parameters 6~ and then with some frequency updates them

2
MSVE = (r +ymaxQ(s',a',07) — Q(s, a, 0))

25

Atari

reward

r

action

T‘
<
|

25

DQN for Atari [Mnih et al., 2015]

v

End-to-end learning of values Q(s, a) from pixels s

State s is stack of raw pixels from last 4 frames

v

» Action a is one of 18 joystick/button positions

v

Reward r is change in score for that step

32 4x4 filters Fully-connected linear
output layer

256 hidden units
16 8x8 filters

4x84x84

[T o

Fully-connected layer
Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Stack of 4 previous
frames

11/25

Results - Atari

%000€ %0004
L 1))l

%009 %005

%007 %00€
1 1

[

JowieeT seour] isog

|oAo|-uewny mojoq

abuanay sewnzsjuopy
23 sjerud
JeyAeID

oqisos4

sploigisy

uewoed ‘SW
Buimog

yunq ajanoq
1senbeag

aimusp

ualy

Jepiuy

piey Jaay

1SIeH yueg
apadiuad
puewwo) saddoyd
JOM 1O pieZIM
auoz ajpeg

xuaisy

A0 10 [aA9}-URWINY 1B

EEL
¥e8.0

AedooH 80|
umog pue dn
Aquaq Buiysty
onpuz

10iid dwiL
Aemaaiy
Jeise n-Buny
weyyueint
J8pry weag
ssapenu| adeds
Buod

puog sawer
siuua)
ooseBuey
Juuny peoy
Wnessy

[4o]

aweo siy| sweN
¥oeny uoweq
Jeydoo
Jequi) Azes
snuepy

llequid 08pIA

12/25

Prioritised replay [Schaul et al., 2015]

> Related to prioritised sweeping in Dyna-Q framework

> Instead of randomly selecting experience order the experience
by some measure of priority

» The priority is typically proportional to the TD-error
§=I|r+ymaxQ(s’,a',07) — Q(s, a,0)]
a/

13 /25

Double DQN [van Hasselt et al., 2015]

» Remove upward bias caused by maxy Q(s’,a’,07)
» The idea is to produce two Q-networks

1. Current Q-network 0 is used to select actions
2. Older Q-network @~ is used to evaluate actions

2
MSVE = (r +9Q(s';argmax Q(s',4,0),07) — Q(s, a, 0)>

14 /25

Dueling Q-network [Wang et al., 2015]

» Dueling Q-network combined two streams to produce
Q-function:
1. one for state values
2. another for advantage function

» The network learns state values for which actions have no
effect

» Dueling architecture can more quickly identify correct action
in the case of redundancy

15/25

Dueling Q-network

VALUE ADVANTAGE

» Traditional DQN and
dueling DQN architecture > The value stream learns to
pay attention to the road.
» The advantage stream learns
to pay attention only when
there are cars immediately in

front
16 /25

Asynchronous deep reinforcement learning

v

Exploits multithreading of standard CPU

v

Execute many instances of agent in parallel

v

Network parameters shared between threads

Parallelism decorrelates data

v

v

Viable alternative to experience replay

17/25

Policy approximation

» Policy 7 is a neural network parametrised with w € R",
m(a,s,w)

» Performance measure J(w) is the value of the initial state
Vr(w)(50) = En(w)lro + v +72r2, +- -]

» The update of the parameters is

Wiyl = Wt + OzVJ(wt)
» And the gradient is given by the policy gradient theorem
VJ(w) = Ex [y* RV, log w(als;, w)]

» This gives REINFORCE algorithm for a neural network policy

18 /25

Natural actor-critic with neural network approximations

» Approximate the advantage function as a neural network
vtA(s, a, 0)
» Approximate the policy as a neural network 7(a, s, w)
Critic evaluation Choose @ and J to minimise
(5 7' Alse. at, 8) + J — R)?
Actor update w < w + a@ using compatible function

approximation, where 0 is natural gradient of
J(w)

19/25

Advantage actor-critic [Mnih et al., 2016]

Approximate the policy as a neural network 7(a, s, w)
» Define the objective
J(@) = Viw)(50) = Ex(w)lro + v +v2r2, + -]
» Update w with VJ(w)
VI(w) = Ex [y'(Re — V(st,0)) Vo log m(ar, st, w)]
Approximate the value function as a neural network V(s,)
» Define the loss L(0) = v¢(R: — V(st,0))?
» Update 0 with VL(6)

Compatible function approximation: VJ(w) depends on the
current estimate of V/(s, 6)

20 /25

Advantage actor-critic

Algorithm 1 Advantage actor-critic

1. Input: neural network parametrisation of 7(w)
2: Input: neural network parametrisation of V/(8)
3: repeat
Initialise 0, w, V(terminal,0) =0
Initialise s
Obtain an episode sp, ag, r1,- - - , 7, sT according to m(w)
Rr=0
for t = T downto 0 do
Ri—1=r++vV(st, 0)
10: VJ=VJ+~ (R — V(st,0))V, log w(at, s, w)
11: VL=VL+ ’YtVQ(Rt — V(St, 0))2
12: end for
132 w=w+aVJ
14:. 60=60+pVL
15: until convergence

© o N gk

21/25

Model-based Deep RL

» Dyna-Q framework can be used where transitions
probabilities, rewards and the Q-function are all approximated
by a neural network.

» Challenging to plan due to compounding errors
» Errors in the transition model compound over the trajectory
» Planning trajectories differ from executed trajectories

» At end of long, unusual trajectory, rewards are totally wrong

Summary

» Neural networks can be used to approximate the value
function, the policy or the model in reinforcement learning.

» Any algorithms that assumes a parametric approximation can
be applied with neural networks

» However, vanilla versions might not always converge due to
biased estimates and correlated samples

» With methods such as prioritised replay, double Q-network or
duelling networks the stability can be achieved

» Neural networks can also be applied to actor-critic methods

» Using them for model-based method does not always work
well due to compounding errors

23 /25

