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In this lecture...

Introduction to deep reinforcement learning
Value-based Deep RL

Deep Q-network

Policy-based Deep RL

Advantage actor-critic

Model-based Deep RL
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Deep reinforcement learning

Reinforcement learning where
» the value function,
> the policy, or

» the model

is approximated via a neural network is deep reinforcement learning.

Neural network approximates a function as a non-linear function
which is preferred in reinforcement learning. However, the
approximation does not give any interpretation and the estimate is
a local optimum which is not always desirable.
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Deep representations

> A deep representation is a composition of many functions
> lts gradient can be backpropagated by the chain rule
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Deep neural networks

Neural network transforms input vector x into an output y:

ho = go(Wox" + by)
hy =gi(Wh] ; +b),0<i<m
y= gm(WmhL_l + bm)

where

gi (differentiable) activation functions hyperbolic
tangent tanh or sigmoid o, 0 < i < m
Wi, b; parameters to be estimated, 0 </ < m
It is trained to minimise the loss function L = |y* — y|? with
stochastic gradient descent in the regression case. In the
classification case, it minimises the cross entropy — ;v log y;.



Weight sharing

» Recurrent neural network shares weights between time-steps

Ceman | [Comnr |
’ hidden layer to }—>’ hidden layer t1 }—> —| hidden layer tn

‘ Input feature vector to

‘ Input feature vector t1 ‘ Input feature vector tn

» Convolutional neural network shares weights between local
regions

input feature vector x hidden layer h1 hidden layer h2
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Q-networks

» Q-networks approximate the Q-function as a neural network
» There are two architectures:

1. Q-network takes an input s, a and produces Q(s, a)
2. Q-network takes an input s and produces a vector

Q(S, 21), ) Q(S,ak)
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Deep Q-network

Q(s, a,0) is a neural network.
2
MSVE = <r +ymax Q(s',d,0) — Q(s, a, 0)>
a/

» Q-learning algorithm where Q-function estimate is a neural
network

» This algorithm provides a biased estimate
This algorithm diverges because
» States are correlated

> Targets are non-stationary
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DQN - Experience replay

> In order to deal with the correlated states, the agent builds a
dataset of experience and then makes random samples from
the dataset.

> In order to deal with non-stationary targets, the agent fixes the
parameters 6~ and then with some frequency updates them

2
MSVE = (r +ymaxQ(s',a',07) — Q(s, a, 0))
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Atari
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DQN for Atari [Mnih et al., 2015]

v

End-to-end learning of values Q(s, a) from pixels s

State s is stack of raw pixels from last 4 frames

v

» Action a is one of 18 joystick/button positions

v

Reward r is change in score for that step

32 4x4 filters Fully-connected linear
output layer

256 hidden units
16 8x8 filters

4x84x84

[T o

Fully-connected layer
Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Stack of 4 previous
frames
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Results - Atari
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Prioritised replay [Schaul et al., 2015]

> Related to prioritised sweeping in Dyna-Q framework

> Instead of randomly selecting experience order the experience
by some measure of priority

» The priority is typically proportional to the TD-error
§=I|r+ymaxQ(s’,a',07) — Q(s, a,0)]
a/
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Double DQN [van Hasselt et al., 2015]

» Remove upward bias caused by maxy Q(s’,a’,07)
» The idea is to produce two Q-networks

1. Current Q-network 0 is used to select actions
2. Older Q-network @~ is used to evaluate actions

2
MSVE = (r +9Q(s';argmax Q(s',4,0),07) — Q(s, a, 0)>
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Dueling Q-network [Wang et al., 2015]

» Dueling Q-network combined two streams to produce
Q-function:
1. one for state values
2. another for advantage function

» The network learns state values for which actions have no
effect

» Dueling architecture can more quickly identify correct action
in the case of redundancy
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Dueling Q-network

VALUE ADVANTAGE

» Traditional DQN and
dueling DQN architecture > The value stream learns to
pay attention to the road.
» The advantage stream learns
to pay attention only when
there are cars immediately in

front
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Asynchronous deep reinforcement learning

v

Exploits multithreading of standard CPU

v

Execute many instances of agent in parallel

v

Network parameters shared between threads

Parallelism decorrelates data

v

v

Viable alternative to experience replay
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Policy approximation

» Policy 7 is a neural network parametrised with w € R",
m(a,s,w)

» Performance measure J(w) is the value of the initial state
Vr(w)(50) = En(w)lro + v +72r2, +- -]

» The update of the parameters is

Wiyl = Wt + OzVJ(wt)
» And the gradient is given by the policy gradient theorem
VJ(w) = Ex [y* RV, log w(als;, w)]

» This gives REINFORCE algorithm for a neural network policy
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Natural actor-critic with neural network approximations

» Approximate the advantage function as a neural network
vtA(s, a, 0)
» Approximate the policy as a neural network 7(a, s, w)
Critic evaluation Choose @ and J to minimise
(5 7' Alse. at, 8) + J — R)?
Actor update w < w + a@ using compatible function

approximation, where 0 is natural gradient of
J(w)
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Advantage actor-critic [Mnih et al., 2016]

Approximate the policy as a neural network 7(a, s, w)
» Define the objective
J(@) = Viw)(50) = Ex(w)lro + v +v2r2, + -]
» Update w with VJ(w)
VI(w) = Ex [y'(Re — V(st,0)) Vo log m(ar, st, w)]
Approximate the value function as a neural network V(s, )
» Define the loss L(0) = v¢(R: — V(st,0))?
» Update 0 with VL(6)

Compatible function approximation: VJ(w) depends on the
current estimate of V/(s, 6)
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Advantage actor-critic

Algorithm 1 Advantage actor-critic

1. Input: neural network parametrisation of 7(w)
2: Input: neural network parametrisation of V/(8)
3: repeat
Initialise 0, w, V(terminal,0) =0
Initialise s
Obtain an episode sp, ag, r1,- - - , 7, sT according to m(w)
Rr=0
for t = T downto 0 do
Ri—1=r++vV(st, 0)
10: VJ=VJ+~ (R — V(st,0))V, log w(at, s, w)
11: VL=VL+ ’YtVQ(Rt — V(St, 0))2
12:  end for
132 w=w+aVJ
14:. 60=60+pVL
15: until convergence

© o N gk
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Model-based Deep RL

» Dyna-Q framework can be used where transitions
probabilities, rewards and the Q-function are all approximated
by a neural network.

» Challenging to plan due to compounding errors
» Errors in the transition model compound over the trajectory
» Planning trajectories differ from executed trajectories

» At end of long, unusual trajectory, rewards are totally wrong



Summary

» Neural networks can be used to approximate the value
function, the policy or the model in reinforcement learning.

» Any algorithms that assumes a parametric approximation can
be applied with neural networks

» However, vanilla versions might not always converge due to
biased estimates and correlated samples

» With methods such as prioritised replay, double Q-network or
duelling networks the stability can be achieved

» Neural networks can also be applied to actor-critic methods

» Using them for model-based method does not always work
well due to compounding errors
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