
Finding Large Sets Without Arithmetic

Progressions of Length Three: An Empirical

View and Survey II

William Gasarch a

aUniversity of Maryland at College Park, Department of Computer Science,
College Park, MD, 20742

James Glenn b

bLoyola College in Maryland, Dept. of Computer Science, 4501 N. Charles St,
Baltimore, MD, 21210

Clyde P. Kruskal a

Abstract

There has been much work on the following question: given n, how large can a
subset of {1, . . . , n} be that has no arithmetic progressions of length 3. We call
such sets 3-free. Most of the work has been asymptotic. In this paper we sketch
applications of large 3-free sets, review the literature of how to construct large 3-
free sets, and present empirical studies on how large such sets actually are. The two
main questions considered are (1) How large can a 3-free set be when n is small,
and (2) How do the methods in the literature compare to each other? In particular,
when do the ones that are asymptotically better actually yield larger sets?

Key words: Arithmetic Sequence, van der Waerden’s Theorem,

Contents

1 Introduction 3

1.1 Historical Background 3

Email addresses: gasarch@cs.umd.edu (William Gasarch), jglenn@cs.loyola.edu (James
Glenn), kruskal@cs.umd.edu (Clyde P. Kruskal).

Preprint submitted to Elsevier 1 December 2010

1.2 Our Results and A Helpful Fact 5

2 Applications 6

2.1 The Diagonal Queens Domination Problem 6

2.2 Matrix Multiplication 7

2.3 Application to Communication Complexity 7

2.4 Linearity Testing 8

3 What Happens for Small n? 9

3.1 The Base 3 Method 9

3.2 Simple Upper Bounds via Splitting 11

3.3 Exact Values via Intelligent Backtracking 12

3.4 Upper Bounds via Linear Programming 22

3.5 Lower Bounds via Thirds Method 25

3.6 Other methods 26

3.7 The Values of sz(n) for Small n 29

4 What Happens for Large n? 30

4.1 3-Free Subsets of Size n0.63: The Base 3 Method 30

4.2 3-Free Subsets of Size n0.68−ε: The Base 5 Method 30

4.3 3-Free Subsets of Size n
1− 1+ε

lg lg n : The KD Method 31

4.4 3-Free Subsets of Size n
1− 3.5

√
2√

lg n : The Block Method 31

4.5 3-Free Subsets of Size n
1− 2

√
2√

lg n : The Sphere Methods 33

5 Comparing All the Methods 50

6 Using the Asymptotic Literature for Upper Bounds 50

7 Future Directions 51

8 Acknowledgments 51

2

9 Appendix I: Comparison to Known Results 54

10 Appendix II: Tables for Small n 56

11 Appendix III: The value of c for the Block Method 59

12 Appendix IV: Rec. Values of d vs. Optimal Values 60

13 Appendix V: The Value of c for the Sphere Method 61

14 Appendix VI: Comparing Different Sphere Methods 62

15 Appendix VII: Comparing all Methods for large n 63

16 Appendix VIII: Roth’s Method used Numerically 69

1 Introduction

1.1 Historical Background

The motivation for this paper begins with van der Waerden’s theorem:

Definition 1 Let [n] denote the set {1, . . . , n}.

Definition 2 A k-AP is an arithmetic progression of length k.

Theorem 3 ([45, 19]) For all k, for all c, there exists W (k, c) such that for all c-colorings
of [W (k, c)] there exists a monochromatic k-AP.

The numbers W (k, c) are called van der Waerden numbers. In the original proof of van der
Waerden’s theorem the bounds on W (k, c) were quite large. Erdos and Turan [13] wanted
a different proof which would yield smaller bounds on W (k, c). They adapted a different
viewpoint: If [W (k, c)] is c-colored then the most common color appears at least W (k, c)/c
times. They thought that the monochromatic k-AP would be in the most common color.
Formally they conjectured the following:

For every k ∈ N and λ > 0 there exists n0(k, λ) such that, for every n ≥ n0(k, λ), for every
A ⊆ [n], if |A| ≥ λn then A has a k-AP.

The k = 3 case of this conjecture was originally proven by Roth [19, 34, 35] using analytic
means. The k = 4 case was proven by Szemeredi [19, 42] (see also Gowers proof [17]) by a

3

combinatorial argument. Szemeredi [43] later proved the whole conjecture with a much harder
proof. Furstenberg [14] provided a very different proof using Ergodic theory. Gowers [18]
provided an analytic proof that yielded much smaller upper bounds for the van der Waerden
Numbers.

We are concerned with the k = 3 case.

Definition 4 For k ∈ N, a set A is k-free if it does not have any arithmetic progressions of
size k.

Definition 5 Let sz (n) be the maximum size of a 3-free subset of [n]. (‘sz’ stands for
Szemeredi.)

Roth’s theorem [34] (but see also [19]) yields the upper bound

(∀λ)(∃n0)(∀n ≥ n0)[sz(n) ≤ λn].

Roth later [35] improved this to

(∃c)(∃n0)(∀n ≥ n0)
[
sz(n) ≤ cn

log log n

]
.

Better results are known: Szemeredi [44] (but see also [21]) and Heath-Brown [25] have
obtained

(∃c)(∃n0)(∀n ≥ n0)
[
sz(n) ≤ n

(log n)c

]
.

Szemeredi obtained c = 1/20. Bourgain [5] (but see also [20]) has shown that, for all ε,
c = 1

2
− ε works. In the same paper he showed

(∃c)(∃n0)(∀n ≥ n0)
[
sz(n) ≤ cn

√
log log n

log n

]
.

The above discussion gives an asymptotic upper bound on sz(n). What about lower bounds?
That is, how large can a 3-free set of [n] be when n is large?

The best asymptotic lower bound is Behrend’s [2] (but also see Section 4.5 of this paper)
construction of a 3-free set which yields that there exist constants c1, c such that sz(n) ≥
c1n

1−c/
√

log n.

4

Combining the above two results we have the following: There exist constants c1, c2, c such
that

c1n
1−c/

√
log n ≤ sz(n) ≤ c2n

√
log log n

log n
.

(∃c)(∃n0)(∀n ≥ n0)
[
sz(n) ≤ cn

√
log log n

log n

]
.

Our paper investigates empirical versions of these theorems (see next section for details).
Prior empirical studies have been done by Erdos and Turan [13], Wagstaff [46] and Wrob-
lewski [47]. Erdos and Turan [13] computed sz(n) for 1 ≤ n ≤ 21. Wagstaff [46] computed
sz(n) for 1 ≤ n ≤ 52 (he also looked at 4-free and 5-free sets). Wroblewski [47] has on his
website, in different terminology, the values of sz(n) for 1 ≤ n ≤ 150. We compute sz(n) for
1 ≤ n ≤ 186 and get close (but not matching) upper and lower bounds for 187 ≤ n ≤ 250.
We also obtain new lower bounds on sz for three numbers. Since Wroblewski website uses a
different notation than our paper we discuss the comparison in Appendix I.

1.2 Our Results and A Helpful Fact

This paper has two themes:

(1) For small values of n, what is sz(n) exactly?
(2) How large does n have to be before the asymptotic results are helpful?

In Section 2 we have a short summary of how 3-free sets have been used in mathematics and
computer science. In Section 3 we develop new techniques to find sz(n) for small values of
n. By small we mean n ≤ 250. We obtain the following.

(1) Exact values of sz(n) for 1 ≤ n ≤ 186.
(2) Upper and lower bounds for sz(n) for 187 ≤ n ≤ 250.

In Section 4 we summarize several known methods for obtaining large 3-free sets of [n] when
n is large. The method that is best asymptotically the Sphere Method, is nonconstructive.
We present it and several variants. Since the Sphere method is nonconstructive it might
seem impossible to code. However, we have coded it up along with the variants of it, and
the other methods discussed. In Section 5 we present the data and discuss what it means.
Evidence suggests that for n ≥ 109 the nonconstructive sphere methods produce larger 3-free
sets than any of the other known methods. In Section 6 we use the proof of the first Roth’s
theorem, from [19], to obtain lower bounds on sz(n) for actual numbers n. Using Roth’s
theorem yields better results than naive methods. The proofs of the results mentioned above
by Szemeredi, Heath-Brown, and Bourgain may lead to even better results; however, these

5

proofs are somewhat difficult and may well only help for n too large for a computer to handle.
Note that the quantity from Bourgain’s proof,

√
log log n

log n
,

only helps us if it is small. Using base 2 and n = 21024 this quantity is
√

10
1024

≈ 0.1, which

is not that small. Note that n = 21024 is already far larger than any computer can handle
and the advantage over Roth’s (first) theorem seems negligible. Even so, it would be of some
interest for someone to try. This would entail going through (say) Bourgain’s proof and
tracking down the constants.

The next fact is trivial to prove; however, since we use it throughout the paper we need a
shorthand way to refer to it:

Fact 6 Let x ≤ y ≤ z. Then x, y, z is a 3-AP iff x + z = 2y.

2 Applications

We sketch four applications of 3-free sets. The first is a combinatorics problem about chess
and the other three are applications in theoretical computer science.

2.1 The Diagonal Queens Domination Problem

How many queens do you need to place on an n × n chess board so that every square is
either occupied or under attack? How many queens do you need if you insist that they are
on the main diagonal? The former problem has been studied in [22] and the latter in [7]. It
is the diagonal problem that is connected to 3-free sets.

Theorem 7 Let diag(n) be the minimal number of queens needed so that they can be placed
on the main diagonal of an n × n chessboard such that every square is either occupied or
under attack. Then, for n ≥ 2, diag(n) = n− sz(dn/2e).

The theorems surveyed in this paper will show that, for large n, you need ‘close to’ n queens.

6

2.2 Matrix Multiplication

It is easy to multiply two n× n matrices in O(n3) steps. Strassen showed how to lower this
to O(n2.87) [41] (see virtually any algorithms textbook, e.g. [10, 12, 27, 30, 33]). The basis
of this algorithm is a way to multiply two 2 × 2 matrices using only 7 multiplications (but
18 additions). The best matrix multiplication algorithm known takes O(n2.36) steps [9]. It
uses 3-free sets to guide the multiplication of smaller matrices.

The algorithm needs 3-free sets of size n1−o(1) which, as we will discuss later, are known
to exist. Unfortunately larger 3-free sets will not lead to better matrix multiplication algo-
rithms. However, larger sets that satisfy other combinatorial properties will lower the matrix
multiplication exponent. See [8].

2.3 Application to Communication Complexity

Definition 8 Let f be any function from {0, 1}L × {0, 1}L × {0, 1}L to {0, 1}.

(1) A protocol for computing f(x, y, z), where Alice has x, y, Bob has x, z, and Carol has
y, z, is a procedure where they take turns broadcasting information until they all know
f(x, y, z). (This is called ‘the forehead model’ since we can think of Alice having z on her
forehead, Bob having y on his forehead, and Carol having x on her forehead. Everyone
can see all foreheads except his or her own.)

(2) Let df (L) be the number of bits transmitted in the optimal deterministic protocol for
f . This is called the multiparty communication complexity of f . (The literature usually
denotes df (L) by d(f) with the L being implicit.)

Definition 9 Let L ∈ N. We view elements of {0, 1}L as L-bit numbers in base 2. Let
f : {0, 1}L × {0, 1}L × {0, 1}L → {0, 1} be defined as

f(x, y, z) =
{

1 if x + y + z = 2L;
0 otherwise.

The multiparty communication complexity of f was studied by [6] (see also [28] and [3]).
They used it as a way of studying branching programs. A careful analysis of the main theorem
of [6] yields the following.

Theorem 10 Let f be the function in Definition 9.

(1)

df (L) = O

(
log

(
L2L

sz(2L)

))
.

7

(2) We will later see that sz(2L) ≥ 2L−c
√

L ([2] or Section 4.5 of this paper). Hence df (L) =
O(
√

L).

In [3] we study this protocol empirically. The results indicate that the protocol’s communi-
cation complexity is around 3.1

√
L.

2.4 Linearity Testing

One ingredient in the proofs about probabilistically checkable proofs (PCPs) has been linear
testing [38, 1]. Let GF(2n) be the finite field on 2n elements (GF stands for ‘Galois Field’).
Given a black box for a function f : GF(2n) → {0, 1} we want to test if it is linear. One
method, first suggested by [4], is to pick x, y ∈ GF(2n) at random and see if f(x + y) =
f(x) + f(y). This test can be repeated to reduce the probability of error.

We want a test that, for functions f that are ‘far from’ linear, will make fewer queries to
obtain the same error rate. The quantity d(f) (different notation from the df (L) in the last
section) is a measure of how nonlinear f is. The more nonlinear f is, the smaller d(f) is
(see [40, 24]).

In [40] the following was suggested: Let G = (V, E) be a graph on k vertices. For every v ∈ V
pick α(v) ∈ GF(2n) at random. For each (u, v) ∈ E test if f(α(u)+α(v)) = f(α(u))+f(α(v)).
Note that this test makes k random choices from GF(2n) and |E| queries. In [40] they showed
that, using this test, the probability of error is ≤ 2−|E| + d(f).

In [24] a graph is used that obtains probability of error ≤ 2−k2−o(1) + d(f)k1−o(1)
. The graph

uses 3-free sets. It is a bipartite graph (X, Y, E) such that the following happens:

• There exists a partition of X × Y into O(k) sets of the form Xi × Yi. We denote these
X1 × Y1, X2 × Y2, . . ., Xk × Yk.

• For all i, the graph restricted to Xi×Yi is a matching (i.e., it is a set of edges that do not
share any vertices).

This is often expressed by saying that the graph is the union of O(k) induced matchings.

We reiterate the construction of such a graph from [24] (which is reiterated from [37]). Let
A ⊆ [k] be a 3-free set. Let G(A) be the bipartite graph on vertex sets U = [3k] and V = [3k]
defined as the union over all i ∈ [k] of Mi = {(a + i, a + 2i) | a ∈ A}. One can check that
each Mi is an induced matching.

8

3 What Happens for Small n?

In this section we present several techniques for obtaining exact values, and upper and lower
bounds, on sz(n).

Subsection 1 describes The Base 3 Method for obtaining large (though not optimal) 3-free
sets. Subsection 2 describes The Splitting Method for obtaining upper bounds on sz(n).
Both the Base 3 method and the Splitting Method are easy; the rest of our methods are
more difficult. Subsection 3 describes an intelligent backtracking method for obtaining sz(n)
exactly. It is used to obtain all of our exact results. Subsection 4 describes how to use linear
programming to obtain upper bounds on sz(n). All of our upper bounds on sz(n) come from a
combination of splitting and linear programming. Subsection 5 describes The Thirds Method
for obtaining large 3-free sets. It is used to obtain all of our large 3-free sets beyond where
intelligent backtracking could do it. Subsection 6 describes methods for obtaining large 3-free
sets whose results have been superseded by intelligent backtracking and the Thirds method;
nevertheless, they may be useful at a later time. They have served as a check on our other
methods.

3.1 The Base 3 Method

Throughout this section sz(n) will be the largest 3-free set of {0, . . . , n − 1} instead of
{1, . . . , n}.

The following method appeared in [13] but they do not take credit for it; hence we can call
it folklore. Let n ∈ N. Let

An = {m | 0 ≤ m ≤ n and all the digits in the base 3 representation of m are in the set {0, 1} }.

We will later show that An is 3-free and |An| ≈ 2log3 n = nlog3 2 ≈ n0.63.

Example: Let n = 92 = 1 × 34 + 0 × 33 + 1 × 32 + 0 × 31 + 2 × 30. Hence n in base 3 is
10102. We list the elements of A92 in several parts.

(1) The elements of A92 that have a 1 in the fifth place are {10000, 10001, 10010, 10011, 10100, 10101}.
This has the same cardinality as the set {0000, 0001, 0010, 0011, 0100, 0101} which is
A0102.

(2) The elements of A92 that have a 0 in the fifth place are the 24 numbers {0000, 0001, . . . , 1111}.

The above example illustrates how to count the size of An. If n has k digits in base 3 then
there are clearly 2k−1 elements in An that have 0 in the kth place. How many elements of
An have a 1 in the kth place? In the case above it is |An−3k−1|. This is not a general formula

9

as the next example shows.

Example: Let n = 113 = 1 × 34 + 2 × 33 + 1 × 32 + 1 × 31 + 2 × 30. Hence n in base 3 is
12112. We list the elements of A113 in several parts.

(1) The elements of A113 that have a 1 in the fifth place are {10000, 10001, 10010, 10011, 10100, 10101, . . . , 11111}.
This has 25 elements.

(2) The elements of A113 that have a 0 in the fifth place are the 24 numbers {0000, 0001, . . . , 1111}.

The above example illustrates another way to count the size of An. If n has k digits in base 3
then there are clearly 2k−1 elements in An that have 0 in the kth place. How many elements
of An have a 1 in the kth place? Since 11111 ≤ 12112 every sequence of 0’s and 1’s of length
5 is in A113.

The two examples demonstate the two cases that can occur in trying to determine the size
of An. The following definition and theorem formalize this.

Definition 11 Let S be defined as follows. Let n ∈ N. Let k be the number of base 3 digits
in n. (Note that k = blog3 nc+ 1.)

• S(0) = 1 and
•

S(n) = 2k−1 +

{
2k−1 if 3k−1 + · · ·+ 30 ≤ n ;
S(n− 3k−1) otherwise.

Theorem 12 Let n ∈ N (n can be 0)

(1) An has size S(n).
(2) An is 3-free.

Proof:

1) We show that An is of size S(n) by induction on n. If n = 0 then A0 = {0} which is of
size S(0) = 1.

Inductively assume that, for all 0 ≤ m < n, Am is of size S(m).

Let k be the number of base 3 digits in n. There are several cases.

(1) n ≥ 3k−1 + · · ·+ 30. Note that every element of (in base 3)

{0 · · · 0, 0 · · · 1, 0 · · · 10, 0 · · · 11, . . . , 1 · · · 11}

(all numbers of length k) is in An, and An cannot have anymore elements. Hence An is
of size 2k = S(n).

10

(2) n < 3k−1 + · · ·+ 30. Note that the kth digit in base 3 is 1 since if it was 2 we would be
in case 1, and if it was 0 then the number would only need k− 1 (or less) digits in base
3.
(a) We count the numbers of the form 1bk−1 · · · b0 such that bk−1, . . . , b0 ∈ {0, 1}

and 1bk−1, . . . , b0 ≤ n. This is equivalent to asking that the number (in base 3)
bk−1 · · · b0 ≤ n − 3k, which is in An−3k . Hence we have a bijection between the
elements of An that begin with 1 and the set An−3k−1 . Inductively this is S(n− 3k).

(b) We count the numbers of the form 0bk−1 · · · b0 such that bk−1, . . . , b0 ∈ {0, 1} and
1bk−1, . . . , b0 ≤ n. Since the kth digit in base 3 of n is 1, there are clearly 2k−1

elements of this form.
Hence we have An is of size S(n− 3k−1) + 2k = S(n).

2) We show that An is 3-free. Let x, y, z ∈ An form a 3-AP. Let x, y, z in base 3 be x =
xk−1 · · ·x0, y = yk−1 · · · y0, and z = zk−1 · · · a0, By the definition of An, for all i, xi, yi, zi ∈
{0, 1}. By Fact 6 x + z = 2y. Since xi, yi, zi ∈ {0, 1} the addition is done without carries.
Hence we have, for all i, xi + zi = 2yi. Since xi, yi, zi ∈ {0, 1} we have xi = yi = zi, so
x = y = z.

3.2 Simple Upper Bounds via Splitting

Theorem 13

(1) For all n1, n2, sz(n1 + n2) ≤ sz(n1) + sz(n2).
(2) For all n, sz(kn) ≤ k · sz(n).

Proof:

1) Let A be a 3-free subset of [n1 + n2]. Let A1 = A∩ [1, n1] and A2 = A∩ [n1 + 1, n2]. Since
A1 is a 3-free subset of [n1], |A1| ≤ sz(n1). Since A2 is the translation of a 3-free subset of
[n2], |A2| ≤ sz(n2). Hence

|A| = |A1|+ |A2| ≤ sz(n1) + sz(n2).

2) This follows from part (1).

Since we will initially not know sz(n1) and sz(n2), how can we use this theorem? We will often
know upper bounds on sz(n1) and sz(n2) and this will provide upper bounds on sz(n1 + n2).

Assume we know upper bounds on sz(1), . . . , sz(n−1). Call those bounds usz(1), . . . , usz(n−
1). Then usz(n), defined below, bounds sz(n).

11

usz(n) = min{usz(n1) + usz(n2) | n1 + n2 = n}

This is the only elementary method we have for getting upper bounds on sz(n). We will look
at a sophisticated method, which only works for rather large n, in Section 6.

3.3 Exact Values via Intelligent Backtracking

In this section we describe several backtracking algorithms for finding sz(n). All of them
will be a depth first search. The key differences in the algorithms lie in both how much
information they have ahead of time and the way they prune the backtrack tree. Most of the
algorithms find sz(1), . . . , sz(i− 1) before finding sz(i).

Throughout this section we will think of elements of {0, 1}∗ and finite sets of natural numbers
interchangeably. The following notation makes this rigorous.

Notation: Let σ ∈ {0, 1}n.

(1) We identify σ with the set {i | σ(i) = 1}.
(2) If 1 ≤ i ≤ j ≤ n then we denote σ(i) · · ·σ(j) by σ[i . . . j].
(3) σ has a 3-AP means there exists a 3-AP x, y, z such that σ(x) = σ(y) = σ(z) = 1.
(4) σ is 3-free means that σ does not have a 3-AP.
(5) #(σ) is the number of bits set to 1 in σ. Note that it is the number of elements in the

set we identify with σ.
(6) Let σ = ατ where α, τ ∈ {0, 1}∗. Then α is a prefix of σ, and τ is a suffix of σ.

We will need an algorithm to test if a given string is 3-free. Let THREE FREE be such a
test. We will describe our implementation of this in Section 3.3.3.

For all of the algorithms in this section we will present a main algorithm that calls a DFS,
and then present the DFS.

3.3.1 Basic Backtracking Algorithms

In our first algorithm for sz(n) we do a depth first search of {0, 1}n where we eliminate a
node α if α is not 3-free.

BASIC(n)
sz(n) = 0
BASIC DFS(ε, n)
Output(sz(n))

12

END OF ALGORITHM

BASIC DFS(α, n)
If |α| = n then

sz(n) = max(sz(n), #(α))
Else

BASIC DFS(α0, n) (Since α is 3-free, so is α0)
If THREE FREE(α1) then BASIC DFS(α1, n)

END OF ALGORITHM

The algorithm presented above will find sz(n) but is inefficient. The key to the remaining
algorithms in this section is to cut down on the number of nodes visited. In particular, we
will not pursue α0 if we can guarantee that any 3-free suffix of α0 will not have enough 1’s
in it to make it worth pursuing.

Assume we know sz(1), . . . , sz(n − 1). By Theorem 13, sz(n) ∈ {sz(n − 1), sz(n − 1) + 1}.
Hence what we really need to do is see if it is possible for sz(n) = sz(n− 1) + 1.

Assume A ∈ {0, 1}n is a 3-free set with #(A) = sz(n− 1) + 1 and prefix α. Then

A = ατ where |τ | = n− |α| and

#(α) + #(τ) = sz(n− 1) + 1.

Since τ is 3-free we know that #(τ) ≤ sz(n− |α|). Therefore if α is the prefix of a 3-free set
of [n] of size sz(n− 1) + 1 then

#(α) + sz(n− |α|) ≥ sz(n− 1) + 1

Notation:

POTB(α, n) =
{

TRUE if #(α) + sz(n− |α|) ≥ sz(n− 1) + 1;
FALSE otherwise.

The POT stands for Potential: does α have the potential to be worth pursuing? The B stands
for Basic, since we are using it in the Basic algorithm.

We now have two tests to eliminate prefixes: THREE FREE(α) and POTB(α, n). If α ends
in a 0 then we do not need to test THREE FREE(α) if α ends in a 1 then we do not need
to test POTB(α, n).

BASIC2(n)

13

sz(n) = sz(n− 1)
BASIC DFS2(ε, n)
Output(sz(n))

END OF ALGORITHM

BASIC DFS2(α, n)
If |α| = n then

if #(α)) = sz(n− 1) + 1 then
sz(n) = sz(n− 1) + 1
Exit BASIC DFS2 and all recursive calls of it

Else
If POTB(α0, n) then BASIC DFS2(α0, n)
If THREE FREE(α1) then BASIC DFS2(α1, n)

END OF ALGORITHM

3.3.2 Backtracking Algorithm with Information

Definition 14 For all i ∈ N let SZ(i) be the set of all 3-free sets of [i].

Let L and m be parameters. We will later take them to be L = 25 and m = 80. We will do
the following to obtain information in two phases which will be used to prune the depth first
search tree.

Phase I: Find SZ(L).

Phase II: For each σ ∈ SZ(L), for each n ≤ m, find the size of the largest 3-free set of
{0, 1}L+n that begins with σ.

Phase I: Find SZ(L)

In phase I we find all 3-free sets of [L] by using the following recurrence. We omit the details
of the program.

SZ(0) = {ε}
SZ(L) = {α0 | α ∈ SZ(L− 1)} ∪ {α1 | α ∈ SZ(L− 1) ∧ THREE FREE(α1)}

Phase II: Generating More Information

In this phase we gather the following information: for every σ ∈ SZ(L), for every n ≤ m,
we find the ρ ∈ {0, 1}n such that THREE FREE(σρ) and #(ρ) is maximized; then let
NUM(σ, n) = #(ρ). Note that NUM(σ, n) is the maximum number of 1’s that can be in an
extension σ while keeping the entire string 3-free. The 1’s in σ do not count. The main point

14

of the phase is to find NUM(σ, n) values; we do not keep the ρ’s that are encountered. We
do not even calculate sz values in the algorithm; however, we can (and do) easily calculate
some sz values after this phase.

CLYDE- NEXT SENTENCE IS NEW AND ALLOWS US TO START WITH n=1 AND
ASSUME ALL PRIOR VALUES KNOWN.

It is easy to see that, for all σ ∈ SZ(L), NUM(σ, 0) = 0. Hence we only discuss the case
n ≥ 1. The algorithm will be given an input n, 1 ≤ n ≤ m and will try to find, for every
σ ∈ SZ(L), NUM(σ, n).

CLYDE- WE”VE REALLY CUT DOWN WHAT WE NEED AHEAD OF TIME:

Before trying to find NUM(σ, n), where 1 ≤ n ≤ m, we have computed the following:

(1) SZ(L) from phase I.
(2) For all σ′ ∈ SZ(L), for every n′ < n, NUM(σ, n′).

It is easy to see that NUM(σ, n) ∈ {NUM(σ, n− 1), NUM(σ, n− 1)+1}. Let α ∈ {0, 1}≤L+m

be such that σ is a prefix of α. We will want to pursue strings α that have a chance of
showing NUM(σ, n) = NUM(σ, n− 1) + 1.

Assume A ∈ {0, 1}L+n is such that A is 3-free, A has prefix α (hence prefix σ), and

#(A) = NUM(σ, n− 1) + 1 + #(σ).

Note that such an A will show that NUM(σ, n) = NUM(σ, n− 1) + 1 with the last n bits of
A playing the role of ρ in the definition of NUM(σ, n). Rewrite α as βσ′ where β ∈ {0, 1}∗
and σ′ ∈ {0, 1}L. Note that

A = βσ′A[|β|+ L + 1 . . . n + L] = αA[|β|+ L + 1 . . . n + L].

Hence

#(A) = #(α) + #(A[|β|+ L + 1 . . . n + L]).

We bound #(A) from above. Since we know α we know #(α). (Now is the key innovation.)
Note that A[|β|+L+1 . . . n+L] is a string of length n−|β| such that σ′A[|β|+L+1 . . . n+L]
is 3-free. Hence

#(A[|β|+ L + 1 . . . n + L]) ≤ NUM(σ′, n− |β|)

15

therefore

#(A) = #(α) + #(A[|β|+ L + 1 . . . n]) ≤ #(α) + NUM(σ′, n− |β|).

By our assumption #(A) = NUM(σ, n− 1) + 1 + #(σ), so

NUM(σ, n− 1) + 1 + #(σ) = #(A) ≤ #(α) + NUM(σ′, n− |β|).

Hence

#(α) + NUM(σ′, n− |β|) ≥ NUM(σ, n− 1) + 1 + #(σ).

We define a potential function that uses this test.

POTG(σ, α, n) =
{

TRUE if #(α) + NUM(σ′, n− |β|) ≥ NUM(σ, n− 1) + 1 + #(σ);
FALSE otherwise.

INITGATHER(n)
For every σ ∈ SZ(L)

NUM(σ, 0) = 0-
END OF ALGORITHM

GATHER(n) (Assume n ≥ 1.)
For every σ ∈ SZ(L)

NUM(σ, n) = NUM(σ, n− 1)
GATHER DFS(σ, ε, n)

END OF ALGORITHM

GATHER DFS(σ, α, n) (σ is of length L)
If |α| = n then

If #(α) = NUM(σ, n− 1) + 1 then
NUM(σ, n) = NUM(σ, n− 1) + 1
Exit GATHER DFS and all recursive calls of it.

Else
If POTG(σ, α0, n) then GATHER DFS(σ, α0, n)

END OF ALGORITHM

Now that we have the values NUM(σ, n) for all n, 0 ≤ n ≤ m we can compute sz(n).

FINDsz(n)

16

If n ≤ L then sz(n) = max{#(σ[1..n]) | σ ∈ SZ(L)}
If L < n ≤ m + L then sz(n) = max{NUM(σ, n− L) | σ ∈ SZ(L)}

END OF ALGORITHM

Phase III: Using the Information Gathered

We will present the algorithm for n > m. We devise a potential function for prefixes.

Assume A ∈ {0, 1}n is a 3-free set with #(A) = sz(n− 1) + 1 and prefix α. Rewrite α as βσ′

where β ∈ {0, 1}∗ and σ′ ∈ {0, 1}L. Note that

A = βσ′A[|β|+ L + 1 . . . n].

Hence

#(A) = #(βσ′) + #(A[|β|+ L + 1 . . . n]) = #(α) + #(A[|β|+ L + 1 . . . n]).

We bound #(A) from above. Clearly we know #(βσ′) = #(α). (Now is the key innovation.)
Note that σ′A[|β|+ L + 1 . . . n] is a 3-free string of length L + n− |β| −L = n− |β| that has
σ′ ∈ SZ(L) as a prefix. Hence

#(A[|β|+ L + 1 . . . n]) ≤ NUM(σ′, n− |β| − L).

Therefore

#(A) ≤ #(α) + NUM(σ′, n− |β| − L).

Since #(A) = sz(n− 1) + 1 we have

sz(n− 1) + 1 = #(A) ≤ #(α) + NUM(σ′, n− |β| − L).

Hence

#(α) + NUM(σ′, n− |β| − L) ≥ sz(n− 1) + 1.

If n − |β| − L ≤ m then NUM(σ′, n − |β| − L) has been computed and we use this test. If
n− |β| − L > m then we cannot use this test; however in this case there are several weaker
bounds we can use.

17

Test T1: We use sz. Since

#(A[|β|+ L + 1 . . . n]) ≤ sz(n− |β| − L)

we define T1(α) as follows

T1(α) : #(α) + sz(n− |β| − L) ≥ sz(n− 1) + 1.

Note that this is the same test used in POTB.

Test T2: We use NUM and sz. Note that A[|β|+ 1, . . . , |β|+ m] is a string of length m that
extends σ′. Hence

#(A[|β|+ 1, . . . , |β|+ m]) ≤ NUM(σ′, m).

Clearly

#(A[|β|+ m + 1, . . . , n]) ≤ sz(n−m− |β|).

Hence

#A(|β|+ 1, . . . , n) ≤ NUM(σ′, m) + sz(n−m− |β|).

We define T2(α) as follows:

T2(α) : #(α) + NUM(σ′, m) + sz(n−m− |β|) ≥ sz(n− 1) + 1.

Test T3: We use forbidden numbers. In Section 3.3.3 we will see that associated with α will
be forbidden numbers. These are all the f , |α| < f ≤ n such that, viewing α as a set, α∪{f}
has a 3-AP. Let c be the number of numbers that are not forbidden. If α can be extended to
a 3-free set of [n] that has sz(n− 1) + 1 elements in it then we need the following to be true.

T3(α) : #(α) + c ≥ sz(n− 1) + 1.

18

Notation: Let σ′ ∈ {0, 1}L, α ∈ {0, 1}∗, n ∈ N, and |α| < n. Let α = βσ′. Then

POT(α, n) =

TRUE if n− |β| − L ≤ m and
#(α) + NUM(σ′, n− |β| − L) ≥ sz(n− 1) + 1;

TRUE if n− |β| − L > m and
T1(α) ∧ T2(α) ∧ T3(α);

FALSE otherwise.

FINAL(n)
sz(n) = sz(n− 1)
For every σ ∈ SZ(L)

FINAL DFS(σ, n)
Output(sz(n))

END OF ALGORITHM

FINAL DFS(α, n)
If |α| = n then

If #(α) = sz(n− 1) + 1 then
sz(n) = sz(n− 1) + 1
Exit FINAL DFS and all recursive calls to it

Else (In what follows we know |α| < n.)
If POT(α0, n) then FINAL DFS(α0, n)
If THREE FREE(α1) then FINAL DFS(α1, n)

END OF ALGORITHM

3.3.3 Testing if a string is 3-free

CLYDE- I ADMIT MORE CLEARLY THAT THERE IS NO ALGORITHM THREEFREE
ALSO- IN ORIGINAL PAPER WE HAD THE EXAMPLE OF HOW TO USE THE PRO-
CESS IN THE NEXT SECTION ENTITLED ‘HOW WE REALLY CODED IT UP’ I HAVE
MOVED IT TO THIS SECTION.

In the above algorithms we called a procedure called THREE FREE. We do not have such
a procedure. Instead we have a process that does the following.

• A string is being constructed bit by bit.
• While constructing it we need to know if adding a 1 will cause it to no longer be 3-free.

We describe this process.

(1) We are building α which will be a string of length at most n. We maintain both the
string α and the array of forbidden bits f .

(2) Assume α is currently of length i. If k ≥ i + 1 and fk = 1 then setting α(k) = 1 would

19

create a 3-AP in α.
(3) Initially α is of length 0 and f is an array of n 0’s.
(4) (This is another key innovation.) Assume that we have set α(1) · · ·α(i−1). Conceptually

maintain α and f as follows

α1 α2 α3 · · · αi−2 αi−1

fn · · · f2i+1 f2i f2i−1 f2i−2 · · · fi+1 fi

(5) If we append 0 to α then the new α and f are

α1 α2 α3 · · · αi−2 αi−1 0

fn · · · f2i+2 f2i+1 f2i−2 f2i−1 · · · fi+3 fi+2 fi+1

(6) If we want to append 1 to α we do the following:
(a) Shift f one bit to the right.

α1 α2 α3 · · · αi−2 αi−1

fn · · · f2i f2i−1 f2i−2 f2i−3 · · · fi+2 fi+1

(b) The bit string α remains as the above diagram, and f is replaced by the bitwise OR
of α and f . (The bits of f that do not correspond to bits of α remain the same.)
We denote the new f by f ′.

(c) Shift α one bit to the left and append a 1 to it.

α1 α2 α3 · · · αi−2 αi−1 1

f ′
n · · · f ′

2i f ′
2i−1 f ′

2i−2 · · · f ′
i+3 f ′

i+2 f ′
i+1

We leave it to the reader to verify that this procedure correctly sets f . Note that this
procedure is very fast since the main operations are bit-wise ORs and SHIFTs.

In the DFS algorithms above we often have the line

If THREE FREE(α1) then DFS(α1) (where DFS is one of the DFS algorithms).

As noted above we do not have a procedure THREE FREE. So what do we really do? We
use the forbidden bit array. For example, lets say that the first 99 bits of α are known and
the forbidden bit pattern from 100 to 108 is as follows.

· · · 100 101 102 103 104 105 106 107 108

f ′
n · · · 1 1 1 1 0 0 1 0 0

20

We are pondering extending α by 0 or 1. But note that the next place to extend α is a
forbidden bit. In fact, the next 4 places are all forbidden bits. Hence we automatically put
0’s in the next four places. After that we do the recursive calls to the DFS procedure.

We illustrate this by showing how we really would code BASIC DFS.

Definition 15 Let α, f ∈ {0, 1}∗ such that f is the forbidden bit array for α. Let b ∈ {0, 1}.
Then ADJUST(α, f, b) is the forbidden bit array that is created when b is appended to α.
The details were described above.

BASIC DFS(α, f, n)
If |α| = n then

sz(n) = max{sz(n), #(α)} Exit BASIC DFS
Else

While (f|α|+1 = 1) and (|α| ≤ n)
α = α0

BASIC DFS(α0, ADJUST(α, f, 0), n) BASIC DFS(α1, ADJUST(α, f, 1), n)
END OF ALGORITHM

CLYDE- This section was entitled ‘How we Really Coded this up’ I have retitled it ‘Coding
techniques to speed up our program’

3.3.4 How we Really Coded this up

If there is a 3-free set A ∈ {0, 1}n such that #(A) = sz(n − 1) + 1 then A(1) = A(n) = 1
(otherwise there would be a 3-free subset of [n − 1] of size sz(n − 1) + 1). We use this as
follows.

(1) In BASIC and BASIC2 we can start with 1 instead of ε. We can also end with a 1.
(2) In FINAL we need only begin with the σ ∈ SZ(L) that begin with 1. (GATHER is

unaffected since we need to gather information about all σ including those that begin
with 0.)

(3) In the procedure THREE FREE we test if σ is 3-free, we are actually testing if σ∪{n}
is 3-free.

CLYDE- THIS PARAGRAPH IS NEW.

In the algorithms above we keep trying to improve sz(n) even if we have the value sz(n−1)+1.
When coding it up we exited the program when the value sz(n− 1) + 1 was obtained.

21

3.3.5 Empirical Results

The test

#(α) + NUM(σ′, n− |β| − L) ≥ sz(n− 1) + 1.

cut down on the number of nodes searched by a factor of 10. The tests T1 and T2 were
useful but not dramatic. The test T3 did not seem to help much at all.

The method enabled us to find exact values up to sz(186).

3.4 Upper Bounds via Linear Programming

We rephrase the problem of finding a large 3-free set of [n] as an integer programming
problem:

Maximize: x1 + · · ·+ xn

Constraints:

xi + xj + xk ≤ 2 for 1 ≤ i < j < k ≤ n where i, j, k is a 3-AP.

0 ≤ xi ≤ 1

Say that (x1, . . . , xk) is a solution. Then the set

A = {i | xi = 1}

is a 3-free set of size sz(n). Hence we can talk about solutions to this integer programming
problem, and 3-free sets A, interchangeably.

The general integer programming problem is NP-complete. We have tried to use IP packages
to solve this but the problem is too big for them. The two we used are actually parts of LP
packages, CPLEX [11] and GLPK [16]. However, we can use linear programming, and these
packages, to get upper bounds on sz(n).

If the integer program above is relaxed to be a linear program, and the max value for
x1 + · · · + xn was s, then we would know sz(n) ≤ s. We will use this linear program, with
many additional constraints, to obtain upper bounds on values of sz(n) for which we do not
have exact values.

22

CLYDE- I DESCRIBE BELOW WHAT HAPPENED AND WHY I NEEDED TO USE
LOWER CONSTRAINTS.

If we just use the relaxation of the integer programming problem given in the last section
then the upper bounds obtained are worse than those in the above table. Hence we will need
to add more upper bound constraints. For example, if we know that sz(100) ≤ 27 and we
are looking at sz(200) we can put in the constraints

x1 + · · ·+ x100 ≤ 27

x2 + · · ·+ x101 ≤ 27

...

x100 + · · ·+ x199 ≤ 27

x101 + · · ·+ x200 ≤ 27

x1 + x3 + x5 + · · ·+ x199 ≤ 27

More generally, if we know sz(i) for i ≤ m then, for every 3 ≤ i ≤ m, we have the constraints

xb1 + · · ·+ xbi
≤ sz(i) such that b1 < · · · < bi is an i-AP .

Putting in all of these constraints caused us linear programs that took too long to solve.
However, the constraints based on sz(100 + 27 are intuitively more powerful than the con-
straints based on sz(3) = 2. Hence we put in less constraints. However, it turned out that
putting in all constraints that used the values of sz(i) for 20 ≤ i ≤ 186 yielded programs that
ran quickly. But there was another problem— These programs always resulted in numbers
bigger than our upper bounds on sz(n) based on splitting, hence the information was not
useful.

We then put in lower bound constraints. For example, if we want to see if sz(187) = 41 we
can have the constraint

x1 + · · ·+ x187 = 41.

We can also have constraints based on known lower values of sz. For example, since sz(100) =
27 a 3-free set of [187] of size 41 would need to have

x101 + · · ·+ x187 ≥ 14

23

since otherwise

x1 + · · ·+ x187 ≤ 40.

We then put in all lower bound constraints. This always resulted in either finding the con-
jectured value (which was not helpful) or finding that the feasible region was empty. In the
latter case we know that the conjectured value cannot occur.

We now formalize all of this.

INPUT:

• n
• usz(1), . . . , usz(n− 1) (upper bound on sz).
• t. (We want to show sz(n) < t.)

OUTPUT: Either “sz(n) ≤ t− 1” or “NO INFO”

We will add the following constraints.

New Upper Constraints using Known Values of sz

For every i, 3 ≤ i ≤ m, we have the constraints

xb1 + · · ·+ xbi
≤ sz(i) such that b1 < · · · < bi is an i-AP .

New Lower Constraints Based on usz(i)

From the upper bound constraints we have

xb1 + · · ·+ xbi
≤ sz(i) such that b1 < · · · < bi is an i-AP .

If A is to have t elements in it we need

∑
j /∈{b1,...,bi}

xj ≥ t− sz(i) such that b1 < · · · < bi is an i-AP .

New Lower Constraints Based on Prefixes

We want to know if there is a 3-free set A ⊆ {1, . . . , n} with #(A) ≥ t. Let L be a parameter.
We consider every σ ∈ {0, 1}L that could be a prefix of A. In order to be a prefix it must

24

satisfy the following criteria (and even then it might not be a prefix).

• σ is 3-free.
• For every i, 1 ≤ i ≤ L, let τi be the i-length prefix of σ. Then

#(τi) + sz(n− i) ≥ t.

• σ begins with a 1. We can assume this since if there is such a 3-free set that does not not
begin with 1 then we can shift it.

Definition 16 If σ satisfies the criteria above then GOOD(σ) is TRUE, else it is false.

For each such σ such that GOOD(σ) = TRUE we create a linear program that has the
following additional constraints.

xi = σ(i) for all i, 1 ≤ i ≤ L.

xL+1 + xL+2 + · · ·+ xn ≥ t−#(σ).

If every such linear program returns a value that is ≤ t−1 then we can say that sz(n) ≤ t−1.
If any return a value that is ≥ t then we cannot make any conclusions.

Using L = 30 we improved many of the upper bounds obtained by the splitting method.
This value of L was chosen partially because of issues with word-size.

3.5 Lower Bounds via Thirds Method

The large 3-free sets that are found by the methods above all seem to have many elements
in the first and last thirds but very few in the middle third. This leads to the following
algorithm to find a large 3-free set. Assume n is divisible by 3.

Given a large 3-free set A ⊆ [m] one can create a 3-free set of [3m− 1] in the following way:
A∪B where B is the set A shifted to be a subset of {2m + 1, . . . , 3m}. You can then try to
include some elements from the middle; however, most of the elements of the middle will be
excluded.

We could take different 3-free sets of [m] for A and B. In fact, we could go through all large
3-free sets of [m].

In practice we do not use the maximum three free set of [m/3]. We sometimes found larger
3-free sets of [m] by using 3-free sets of size between m/3− log m and m/3 + log m that are
of size within one or two of maximum. This leads to most of the remaining middle elements
being forbidden; hence, searching for the optimal number that can be placed is easy. There is

25

nothing sacrosanct about log m and being within one or two of maximum. We only used this
technique for numbers between 3 and 250; for larger values of m other paramters may lead
to larger 3-free sets. We do not that for m ≤ 186, values for which we know sz(m) exactly,
the thirds method always found a set of size sz(m).

(1) sz(194) ≥ 41. (This was known by [47].)
(2) sz(204) ≥ 42. (This is new.)
(3) sz(209) ≥ 43. (This was known by [47].)
(4) sz(215) ≥ 44. (This was known by [47].)
(5) sz(227) ≥ 45. (This is new.)
(6) sz(233) ≥ 46. (This is new.)
(7) sz(239) ≥ 47. (This was known by [47].)
(8) sz(247) ≥ 48. (This was known by [47].)

The three free set that showed sz(204) ≥ 42 is

BILL- MAKE THIS PRETTY!!!! LATER- WAIT FOR CLYDE.

{1, 3, 8, 9, 11, 16, 20, 22, 25, 26, 38, 40, 45, 46, 48, 53, 57, 59, 62, 63,
127, 132, 134, 135, 139, 140, 147, 149, 150, 152, 156, 179,
181, 182, 186, 187, 189, 194, 198, 200, 203, 204}.

The three free set that showed sz(227) ≥ 45 is

{1, 2, 6, 8, 12, 17, 19, 20, 24, 25, 27, 43, 45, 51, 54, 55, 58, 60, 64, 72, 76, 79,
129, 145, 147, 154, 155, 159, 160, 167, 169, 170, 172, 176,
201, 202, 206, 208, 212, 217, 219, 220, 224, 225, 227}.

The three free set that showed sz(233) ≥ 46 is

{1, 4, 5, 11, 13, 14, 16, 26, 29, 30, 35, 50, 52, 58, 61, 62, 68, 73, 76, 77, 80, 82, 97,
137, 152, 154, 157, 158, 161, 166, 172, 173, 176,
182, 184, 199, 204, 205, 208, 218, 220, 221, 223, 229, 230, 233}.

3.6 Other methods

We present methods for constructing large 3-free sets that were tried but ended up not being
as good as Intelligent Backtracking or the Thirds Method. These methods, or modifications
of them, may prove useful later. In addition they were a check on our data.

26

3.6.1 The Concatenation Method

The following theorem is similar in proof to Theorem 13.

Definition 17 If B is a set and m ∈ N then an m-translate of B is the set {x+m | x ∈ B}.

We need the following simple fact.

Fact 18 Let n = n1 + n2. Let A1 be the set of all 3-free subsets of [n1]. Let A2 be the set of
all 3-free subsets of [n2]. If A is a 3-free subset of [n1 +n2] then A = A1 ∪A2 where A1 ∈ A1

and A2 is an n1-translate of some element of A2.

Definition 19 If n, k ∈ N then En,k the set of 3-free subsets of [n] that contain both 1 and
n and have size k.

The following assertions, stated without proof, establish the usefulness of the E ’s in comput-
ing sz(n):

(a) |E1,0| = 0, |E1,1| = 1. (This is used at the base of a recursion.)
(b) if n ≥ 2 then |En,0| = 0, |En,1| = 0, and |En,2| = 1. (This is used at the base of a

recursion.)
(c) if En,k 6= ∅ then sz(n) ≥ k;
(d) if En,k = ∅ where k, n > 1 then En,l = ∅ for all l > k; and
(e) if En,k = ∅ and k, n > 1 then sz(n) < k.

The sets that comprise En,k can be obtained from Em,l where m < n and l < k. Let A ∈ En,k.
Partition A into A1 = A ∩ {1, . . . , dn

2
e} and A2 = A ∩ {dn

2
e+ 1, . . . , n}. Let x be the largest

element of A1 and let y be the smallest element of A2. Then A1 ∈ Ex,|A1| and A2 is a (y− 1)-
translation of an element of En−y+1,|A2|. This can be used to obtain a Dynamic Program to
find En,k.

This method requires too much time and space to be useful for finding sz(n). However, it is
useful if you want to find many large 3-free sets of [n].

3.6.2 The Greedy Vertex Cover Method

We can rephrase our problem as that of finding the maximum independent set in a hyper-
graph.

Definition 20

(1) A hypergraph is a pair (V, E) such that E is a collection of subsets of V . The elements
of V are called vertices. The elements of E are called hyperedges.

27

(2) A 3-uniform hypergraph is one where all of the hyperedges have exactly three vertices in
them.

(3) If H = (V, E) is a hypergraph then H, the complement of H, is (V,P(V) − E) where
P(V) is the powerset of V .

(4) If H = (V, E) is a hypergraph then an independent set of H is a set U ⊆ V such that

(∀U ′ ⊆ U)[U ′ /∈ E].

(5) If H = (V, E) is a hypergraph then a vertex cover of H is a set U ⊆ V such that

(∀e ∈ E)(∃v ∈ U)[v ∈ E].

Note 1 If U is a vertex cover of H then U is an independent set of H.

Let G = (V, E) be the following 3-uniform hypergraph.

V = {1, . . . , n};

E = {(i, j, k) : (i < j < k) ∧ i, j, k form a 3-AP}.

The largest independent set in this hypergraph corresponds to the largest 3-free set of [n]. Un-
fortunately the independent set problem, even for the simple case of graphs, is NP-complete.
In fact, approximating the maximum independent set is known to be NP-hard [23]. It is
possible that our particular instance is easier.

We have used the greedy method for vertex cover on our hypergraph; the complement of the
cover gives a (not necessarily good) solution quickly. To compute the greedy vertex cover, at
each step one selects the vertex in G with highest degree (ties are broken randomly). Once a
vertex is selected it is removed from the graph along with all its incident edges. This process
continues until no edges remain in G. For each of the O(n) removals we find the vertex with
highest degree in O(n) time, so the greedy vertex cover can be found in O(n2) time.

This method does not give us optimal 3-free sets and hence is not useful for computing sz(n).

However, it does give large 3-free sets that are close to optimal, within one or two, and it is
fast.

3.6.3 The Randomization Method

We describe two methods to produce large 3-free sets that use randomization.

The first method, given below, uses a randomly chosen permutation of 1, . . . , n.

1) Randomly permute 1, . . . , n to get a1, . . . , an.

28

2) Set S = ∅.
3) For i = 1 to n add ai to S if doing so does not create a 3-AP in S

BILL- why was space a problem again?

Running time is O(n2) using appropriate data structures, but the space requirements are
large for large n. (Note that storing a permutation of size n takes Θ(n log n) space which
is big for large values of n.) When space is a factor, we use a different method which keeps
track of the 3-free set S and the set of numbers that can be added to it without introducing
a 3-AP.

1) Set S = ∅ and P = {1, . . . , n}
2) While P 6= ∅

a) randomly select an element x from P
b) set S = S ∪ {x}
c) remove from P all elements that form a 3-AP with x and another element of S

The second method also runs in time O(n2) but is empirically slower than the first method.
However, with the use of an appropriate data structure, P requires far less storage space
than the permutation required by the first method.

These methods, just like the Greedy Vertex Cover method, do not give us optimal 3-free sets
and hence is not useful for computing sz(n).

However, they do give large 3-free sets that are close to optimal and they are fast.

3.7 The Values of sz(n) for Small n

We have several tables of results for small n in the appendix. A lower bound of X on sz(n)
means that there is a 3-free set of [n] of size X. An upper bound of X on sz(n) means that
no set of [n] of size X is 3-free.

There are three tables of information about sz(n) for small n in Appendix II.

(1) Tables 1 and 2 gives exact values for sz(n) for 1 ≤ n ≤ 186. We obtained these results
by intelligent backtracking.

(2) Table 3 gives upper and lower bounds for 187 ≤ n ≤ 250. The upper bounds for
187 ≤ n ≤ 250 were obtained by Theorem 13 and the linear programming upper bound
technique described in Section 3.4. The lower bounds for 187 ≤ n ≤ 250 were obtained
by the thirds-method described in Section 3.5.

29

4 What Happens for Large n?

In this section we look at several methods to construct 3-free sets. In a later section we will
compare these methods to each other. We present the literature in order of how large the
sets produced are, which is not the order they appeared in historically.

4.1 3-Free Subsets of Size n0.63: The Base 3 Method

We restate Theorem 12 here for completeness.

Theorem 21 For all n, sz(n) ≥ nlog3 2 ∼ n0.63.

4.2 3-Free Subsets of Size n0.68−ε: The Base 5 Method

According to [13], G. Szekeres conjectured that sz(n) = Θ(nlog3 2). This was disproven by
Salem and Spencer [39] (see below); however, in 1999 Ruzsa (Section 13 of [36]) noticed that
a minor modification to the proof of the Theorem 21 yields the following theorem which also
disproves the conjecture. His point was that this is an easy variant of Theorem 12 so it is
surprising that it was not noticed earlier.

Theorem 22 For every ε > 0 there exists n0 such that, for all n ≥ n0, sz(n) ≥ n(log5 3)−ε ∼
n0.68−ε.

Proof sketch: Let L be a parameter to be chosen later. Let k = blog5 nc − 1. Let A be
the set of positive integers that, when expressed in base 5,

(1) use at most k digits,
(2) use only 0’s, 1’s, and 2’s, and
(3) use exactly L 1’s.

One can show, using Fact 6, that A ⊆ [n] and A is 3-free. If we take L = bk/3c one can show
that |A| ≥ n(log5 3)−ε.

Consider the following variant of the Base 5 method. Use Base 5, but use digits {−1, 0, 1}
and require that every numbers has exactly L 0’s. If (bk−1, . . . , b0) is a number expressed in
Base 5 with digits {−1, 0, 1} and with exactly L digits 0, then

∑k−1
i=0 b2

i = n−L. This method,
expressed this way, is a our version of the Sphere Method (see Section 4.5) with parameters
d = 1 and s = n− L.

30

4.3 3-Free Subsets of Size n1− 1+ε
lg lg n : The KD Method

The first disproof of Szekeres’s conjecture (that sz(n) = Θ(nlog3 2)) was due to Salem and
Spencer [39].

Theorem 23 For every ε > 0 there exists n0 such that, for all n ≥ n0, sz(n) ≥ n1− 1+ε
lg lg n

Definition 24 Let d, n ∈ N. Let k =
⌊
log2d−1 n

⌋
− 1. Assume that d divides k. KDd,n is the

set of all x ≤ n such that

(1) when expressed in base 2d− 1 only uses the digits 0, . . . , d− 1, and
(2) each digit appears the same number of times, namely k/d.

We omit the proof of the following lemma.

Lemma 25 For all d, n KDd,n is 3-free.

Theorem 26 For every ε > 0 there exists n0 such that, for all n ≥ n0, sz(n) ≥ n1− 1+ε
lg lg n .

Proof sketch: An easy calculation shows that, for any d, n, KDd,n ⊆ [n]. By Lemma 25
KDd,n is 3-free. Clearly

|KDd,n| =
k!

[(k/d)!]d
.

By picking d such that (2d)d(lg d)2 ∼ n one can show that |A| ≥ n1− 1+ε
lg lg n .

We do not use the d that is recommended. Instead our computer program looks at all possible
d. There are not that many d’s to check since most of them will not satisfy the condition
that d divides k. Both the value of d recommended, and the ones we use, are very low and
very close together. For example, for n = 10100 the recommended d is around 8 or 9, whereas
it turns out that 13 is optimal.

4.4 3-Free Subsets of Size n
1− 3.5

√
2√

lg n : The Block Method

Behrend [2] and Moser [31] both proved sz(n) ≥ n
1− c√

lg n , for some value of c. Behrend proved
it first and with a smaller (hence better) value of c, but his proof was nonconstructive (i.e,

31

the proof does not indicate how to actually find such a set). Moser’s proof was constructive.
We present Moser’s proof here; Behrend’s proof is presented later.

Theorem 27 [31] For all n, sz(n) ≥ n
1− 3.5

√
2√

lg n ∼ n
1− 4.2√

lg n ,

Proof sketch:

Let r be such that 2r(r+1)/2 − 1 ≤ n ≤ 2(r+1)(r+2)/2 − 1. Note that r ≥
√

2 lg n− 1.

We write the numbers in [n] in base 2. We think of a number as being written in r blocks of
bits. The first (rightmost) block is one bit long. The second block is two bits long. The rth
block is r bits long. Note that the largest possible number is r(r +1)/2 1’s in a row, which is
2r(r+1)/2 − 1 ≤ n. We call these blocks x1, . . . , xr. Let Bi be the number represented by the
ith block. The concatenation of two blocks will represent a number in the natural way.

Example: We think of (1001110101)2 as (1001 : 110 : 10 : 1) so x1 = (1)2 = 1, x2 = (10)2 =
2, x3 = (110)2 = 6, and x4 = (1001)2 = 9. We also think of x4x3 = (1001110)2 = 78.
End of Example

The set A is the set of all numbers xrxr−1 . . . x1 such that

(1) For 1 ≤ i ≤ r − 2 the leftmost bit of xi is 0. Note that when we add together two
numbers in A the first r − 2 blocks will add with no carries.

(2)
∑r−2

i=1 x2
i = xrxr−1

Example: Consider the number (10110011011000101011010)2. We break this into blocks to
get (0000010 : 110011 : 01100 : 0101 : 011 : 01 : 0)2. Note that there are r = 7 blocks and the
rightmost r− 2 = 5 of them all have a 0 as the leftmost bit. The first 5 blocks, reading from
the right, as base 2 numbers, are 0 = 0, 01 = 1, 011 = 3, 0101 = 5, 01100 = 12. The leftmost
two blocks merged together are 0000010110011 = 179. Note that 02+12+32+52+122 = 179.
Hence the number (10110011011000101011010)2 is in A.
End of Example

We omit the proof that A is 3-free, but note that it uses Fact 6.

How big is A? Once you fill in the first r− 2 blocks, the content of the remaining two blocks
is determined and will (by an easy calculation) fit in the allocated r +(r− 1) bits. Hence we
need only determine how many ways the first r− 2 blocks can be filled in. Let 1 ≤ i ≤ r− 2.
The ith block has i places in it, but the leftmost bit is 0, so we have i−1 places to fill, which
we can do 2i−1 ways. Hence there are

∏r−2
i=1 2i−1 =

∏r−3
i=0 2i = 2(r−2)(r−3)/2.

(r − 2)(r − 3) ≥ (
√

2 lg n− 3)(
√

2 lg n− 4) = 2 lg n− 7
√

2 lg n + 12

So

32

(r − 2)(r − 3)/2 ≥ lg n− 3.5
√

2 lg n + 6

So

2(r−2)(r−3)/2 ≥ 2lg n−3.5
√

2 lg n+6 ∼ n
1− 3.5

√
2√

lg n

The block method allows you to find large 3-free sets quickly. Table 4 in Appendix III shows
the sizes of sets it produces for rather large values of n. We also include an estimate of the

c assuming that the sets are of size n
1− c√

lg n . The value of c seems pretty steady at between
4 and 5.

4.5 3-Free Subsets of Size n
1− 2

√
2√

lg n : The Sphere Methods

In Sections 4.1, 4.2, 4.3, and 4.4 we presented constructive methods for finding large 3-free
sets of [n] for large n. In this section we present the Sphere Method, and variants of it, all
of which are nonconstructive. Since the method is nonconstructive it is not obvious how to
code it. However, we have done so and will explain how in this section. We investigate several
variants of the Sphere Method and then compare them at the end of this section.

4.5.1 The Sphere Method

The result and proof in this section are a minor variant of what was done by Behrend [2, 19].
We will express the number in a base and put a condition on the representation so that the
numbers do not form a 3-AP. It will be helpful to think of the numbers as vectors.

Definition 28 Let x, b ∈ N and k = blogb xc. Let x be expressed in base b as
∑k

i=0 xib
i. Let

~x = (x0, . . . , xk) and |~x| =
√∑k

i=0 x2
i .

Behrend used digits {0, 1, 2 . . . , d} in base 2d + 1. We use digits {−d,−d + 1, . . . , d} in base
4d+1. This choice gives slightly better results since there are more coefficients to use. Every
number can be represented uniquely in base 4d + 1 with these coefficients. There are no
carries since if a, b ∈ {−d, . . . , d} then −(4d + 1) < a + b < (4d + 1).

We leave the proof of the following lemma to the reader.

Lemma 29 Let x =
∑k

i=0 xi(4d + 1)i, y =
∑k

i=0 yi(4d + 1)i, z =
∑k

i=0 zi(4d + 1)i, where
−d ≤ xi, yi, zi ≤ d. Then the following hold.

(1) x = y iff (∀i)[xi = yi].
(2) If x + y = 2z then (∀i)[xi + zi = 2yi]

33

The set Ad,s,k defined below is the set of all numbers that, when interpreted as vectors, have
norm s (norm is the square of the length). These vectors are all on a sphere of radius

√
s.

We will later impose a condition on k so that Ad,s,k ⊆ [−n/2, n/2].

Definition 30 Let d, s, k ∈ N.

Ad,s,k =
{
x : x =

k−1∑
i=0

xi(4d + 1)i ∧ (∀i)[−d ≤ xi ≤ d] ∧ (|~x|2 = s)
}

Definition 31 Let d, s,m ∈ N.

Bd,s,k =
{
x : x =

k−1∑
i=0

xi(4d + 1)i ∧ (∀i)[0 < xi ≤ d] ∧ (|~x|2 = s)
}

Lemma 32 Let n, d, s, k ∈ N.

(1) Ad,s,k is 3-free.
(2) If n = (4d + 1)k then Ad,s,k ⊆ {−n/2, . . . , n/2}.

Proof: a) Assume, by way of contradiction, that x, y, z ∈ Ad,s,k form a 3-AP. By Fact 6,
x+ z = 2y. By Lemma 29 (∀i)[xi + zi = 2yi]. Therefore ~x+~z = 2~y, so |~x+~z| = |2~y| = 2|~y| =
2
√

s. Since |~x| = |~z| =
√

s and ~x and ~z are not in the same direction |~x + ~z| < 2
√

s. This is
a contradiction.

b) The largest element of Ad,s,k is at most

k−1∑
i=0

d(4d + 1)i = d
k−1∑
i=0

(4d + 1)i =
(4d + 1)k − 1

2
=

n− 1

2
≤ n/2.

Similarly, the smallest element is ≥ −n/2.

Lemma 33 For all d, s, k

|Ad,s,k| =
k∑

m=0

(
k

m

)
2m|Bd,s,m|.

Proof:

Define

Am
d,s,k =

{
x : x =

k−1∑
i=0

xi(4d + 1)i ∧ (∀i)[−d ≤ xi ≤ d]

∧(exactly m of the xi’s are nonzero) ∧ (|~x|2 = s)
}

34

Clearly |Ad,s,k| =
∑k

m=0 |Am
d,s,k|.

Note that |Am
d,s,k| can be interpreted as first choosing m places to have non-zero elements

(which can be done in
(

k
m

)
ways), then choosing the absolute values of the elements (which

can be done in |Bd,s,m| ways) and then choosing the signs (which can be done in 2m ways).

Hence |Am
d,s,k| =

(
k
m

)
2m|Bd,s,m|. So

|Ad,s,k| =
k∑

m=0

(
k

m

)
2m|Bd,s,m|.

Theorem 34 For every ε there exists n0 such that, for all n ≥ n0, sz(n) ≥ n
1− 2+ε√

lg n .

Proof sketch:

Let d, s, k be parameters to be specified later. We use the set Ad,s,k which, by Lemma 32, is
3-free. We seek values of d, k, s such that |Ad,s,k| is large and contained in [−n/2, n/2]. Note
that once k, d are set the only possibly values of s are {0, 1, . . . , kd2}.

A calculation shows that if k ≈
√

lg n and d is such that n = (4d + 1)k then
⋃kd2

s=0 |Ad,s,k| is

so large that there exists a value of s such that |Ad,s,k| ≥ n
1− 2+ε√

lg n . Note that the proof is
nonconstructive in that we do not specify s; we merely show it exists.

Notation The method for finding 3-free sets that from Theorem 34 is called The SPHERE
method.

Our proof differs from Behrend’s in that we use negative numbers. The use of negative
numbers allowed us to use one more coordinate, which leads to a slight improvement in the
constant.

The proof recommends using k ≈
√

lg n and d such that n = (4d + 1)k. We optimize over all
k, d, s. Table 5, in Appendix IV. shows, for a variety of values of n,

(1) The size of the largest 3-free set we could find using optimal values of d, k, s
(2) The value of d we used.
(3) The value of d that the proof recommends. We denote this by drec.
(4) The value of k we used.
(5) The value of k that the proof recommends. We denote this by krec.

35

(6) The value of s that we use. (Note that there is no recommended value of s in the proof;
they show that a good value of s exists nonconstructively.)

Note that our value of k is larger than theirs and our value of d is much smaller than theirs.
This might make you think that a more refined proof, using smaller values of d, can yield a
better asymptotic result. However, as we will see, this is unlikely.

Table 6, in Appendix V, estimates the value of c (assuming the sets are of size n
1− c√

lg n)
using a variant of the SPHERE-method which we will discuss later. These values seem to be
converging as n gets large. This indicates that the analysis of the SPHERE-method gives a
reasonably tight upper bound on the size of the 3-free sets generated. Note that this value of
c (around 2.54) is better than that in Table 4 for the Block method (around 4.3). Also note
that even with the optimal values of d, k, s the construction gives the expected asymptotic
behavior. Hence it is unlikely that a different analysis (with larger k and much smaller d)
will lead to better asymptotic results.

4.5.2 Variants of the Sphere Method

In the proof of Theorem 34 we used that two distinct vectors of size
√

s cannot sum to a
vector of size 2

√
s. We can rephrase this by saying that if L = {s} and |~x|2, |~y|2, |~z|2 ∈ L

then ~x+~z 6= 2~y. We did not use that the vectors were lattice points. In this section we state
and prove some theorems that lead to slightly better results.

Lemma 35 Let s, a, b, c, k ∈ N. Let ~x, ~z, ~y be distinct lattice points in Rk+1. Assume that,
when interpreted as numbers in some base x < y < z and they are in arithmetic progression.
Assume that ~x+~z = 2~y. Assume |~x|2 = s+a, |~z|2 = s+b, and |~y|2 = s+c. Let D = 2a+2b−4c.
The following must all occur.

(1) D > 0.

(2) a + b ≤ 4c + 2s + 2
√

(s + a)(s + b).

(3) a + b is even.
(4) D ≡ 0 (mod 4) hence (by 1) D ≥ 4.
(5) c < max{a, b}.
(6) There is a representation of D as a sum of squares, D = p2

0 + · · ·+ p2
f (in applications

of this theorem we can assume the pi’s are positive), such that the following hold:
(a) for all i, pi is even, and
(b) if f = 0 then 2p0 divides b− a + D and one of the following happens:

(i) a < b, or
(ii) c < a = b and there is an i such that zi > 0, xi = −zi < 0 and yi = 0, or
(iii) a > b and there is an i such that xi < 0.

(c) GCD(p0, . . . , pf) divides (b− a + D)/2.
(d) If a = b + e (e ≥ 0) then there exists a choice of f + 1 numbers i1, . . . , if+1 and a

36

choice of pluses and minuses such that the equation below is satisfied.

f∑
j=0

±pijxij = (D + e)/2.

(e) If b = a + e (e ≥ 0) then there exists a choice of f + 1 numbers i1, . . . , if+1 and a
choice of pluses and minuses such that the equation below is satisfied.

f∑
j=0

±pijzij = (D − e)/2.

Proof:

Throughout the proof let ~x = (x0, . . . , xk), ~y = (y0, . . . , yk), and ~z = (z0, . . . , zk). We will
need the following observation. Since ~x + ~z = 2~y, for every i, xi + zi is even. Therefore, for
every i, xi − zi is even and (xi − zi)

2 ≡ 0 (mod 4).

Look at the parallelogram formed by ~0, ~x, ~z and 2~y. Denote the length of the diagonal from
~x to ~z by Ldiag. Since the sum of the squares of the sides of a parallelogram is the sum of
the squares of the diagonals we have

2(s + a) + 2(s + b) = 4(s + c) + L2
diag.

2a + 2b = 4c + L2
diag.

Note that D = L2
diag.

1) If D = 0 then Ldiag = 0, the parallelogram collapses to a a line, and ~x = ~z, a contradiction.
If Ldiag < 0 then the parallelogram ceases to exist, hence ~x + ~z < 2~y, a contradiction. So we
have D > 0.

2) Since Ldiag is the distance between ~x and ~z we have the following.

L2
diag =

∑k
i=0(xi − zi)

2

=
∑k

i=0 x2
i +

∑k
i=0 z2

i − 2
∑k

i=0 xizi

= (s + a) + (s + b)− 2
∑k

i=0 xizi

= 2s + a + b− 2
∑k

i=0 xizi

= 2s + a + b− 2|~x||~z| cos θ (where θ is the angle between ~x and ~z)

37

For all θ, cos θ ≥ −1. Hence

L2
diag ≤ 2s + a + b + 2|~x||~z| = 2s + a + b + 2

√
(s + a)(s + b).

Hence

2a + 2b = 4c + L2
diag ≤ 4c + 2s + a + b + 2

√
(s + a)(s + b) and so

a + b ≤ 4c + 2s + 2
√

(s + a)(s + b).

3) Since |~x− ~z| = Ldiag, |~x− ~z|2 = L2
diag = D.

Note that 2(a + b) ≡ 2a + 2b− 4c (mod 4). This is interesting since 2a + 2b− 4c = D. We
now look at D in a different light.

D = |~x− ~z|2 =
k∑

i=0

(xi − zi)
2.

Recall that xi − zi is even.

k∑
i=0

(xi − zi)
2 ≡ 0 (mod 4).

Putting this all together we get 2(a + b) ≡ 0 (mod 4), so a + b is even.

4) Since a + b is even, D = 2a + 2b − 4c = 2(a + b) − 4c ≡ 0 (mod 4). Since D > 0 and
D ≡ 0 (mod 4), we have D ≥ 4.

5) We now show that c < max{a, b}. Assume, by way of contradiction, that c ≥ max{a, b}.
Then D = 2a+2b−4c = 2(a−c)+2(b−c) ≤ 0. This contradicts D > 0. Hence c < max{a, b}.

6) For all i, 0 ≤ i ≤ k, let pi = |xi − zi|. Then D =
∑k

i=0(xi − zi)
2 =

∑k
i=0 p2

i . Let f + 1 be
the number of nonzero terms. Renumber so that, for all i, 0 ≤ i ≤ f , p2

i = (xi − zi)
2 6= 0 (so

xi − zi = ±pi) and for all i > f , (xi − zi)
2 = 0 (so xi = zi). We express all of the xi in terms

of zi as follows

38

~z = (z0, z1, z2, . . . , zf , zf+1, . . . , zk).

~x = (z0 ± p0, z1 ± p1, z2 ± p2, . . . , zf ± pf , zf+1, . . . , zk).

b− a = (s + b)− (s + a) = |~z|2 − |~x|2

=
∑k

i=0 z2
i − (

∑f
i=0(zi ± pi)

2 +
∑k

i=f+1 z2
i)

=
∑f

i=0 z2
i −

∑f
i=0(zi ± pi)

2

=
∑f

i=0 z2
i − (

∑f
i=0 z2

i) + 2(∓p0z0 ∓ p1z1 ∓ · · · ∓ pfzf)−
∑f

i=0 p2
i

= 2(∓p0z0 ∓ p1z1 ∓ · · · ∓ pfzf)−
∑f

i=0 p2
i

= 2(∓p0z0 ∓ p1z1 ∓ · · · ∓ pfzf)−D.

We use this to prove 6a, 6b, and 6c.

6a) pi = ±(xi − zi) which is even.

6b) Assume f = 0 (so there is exactly one i such that xi 6= zi). Since b− a = 2(±z0p0)−D
we know that 2z0 divides D + (b− a).

Assume a ≥ b. We will later break into the cases a = b and a > b.

By the renumbering we can assume that ~x and ~z are as follows:

~x = (x0, x1, . . . , xk),

~z = (x0 ± p0, x1, . . . , xk).

Since x < z (as numbers) we have to have that the ± is actually a +. Hence

~x = (x0, x1, . . . , xk),

~z = (x0 + p0, x1, . . . , xk).

Note that

|~x|2 =
∑k

i=0 x2
i = x2

0 +
∑k

i=1 x2
i ,

|~z|2 = (x0 + p0)
2 +

∑k
i=1 x2

i .

39

Since a ≥ b we have |~x| ≥ |~z|. Hence

x2
0 ≥ (x0 + p0)

2

x2
0 ≥ x2

0 + 2x0p0 + p2
0

0 ≥ 2x0p0 + p2
0

0 ≥ p0(2x0 + p0)

(1) If a = b then the ≥ becomes an = and we get

0 = p0(2x0 + p0)

0 = 2x0 + p0

x0 = −p0/2

z0 = x0 + p0 = p0/2

Since ~y = (~x + ~z)/2 we have
~y = (0, x1, . . . , xk) hence
|~y|2 =

∑k
i=1 x2

i <
∑k

i=0 x2
i . Therefore c < a = b.

(2) If a > b then the ≥ becomes a > and we get

0 > p0(2x0 + p0)

0 > 2x0 + p0

Since p0 > 0 we obtain x0 < 0.

6c) Since b−a = 2(±z0p0 · · ·±zfpf)−D the Diophantine equation
∑f

i=0 piwi = (b−a+D)/2
has a solution in integers. Hence GCD(p0, . . . , pf) divides (b−a+D)/2. (It is an easy exercise
to show that

∑
piwi = E has a solution in integers iff GCD(p0, . . . , pf) divides E. See [26],

page 15, problems 6, 13, 14 for a guide to how to do this.)

6d) Assume a = b + e (e ≥ 0). Then |x|2 = |z|2 + e. By renumbering we can assume

~x = (x0, x1, . . . , xk),

~z = (x0 ± p0, x1 ± p1, . . . , xf ± pf , xf+1, . . . , xk).

40

Since |x|2 = |z|2 + e we have

∑f
i=0 x2

i = e +
∑f

i=0(xi ± pi)
2∑f

i=0 x2
i = e +

∑f
i=0 x2

i + 2
∑f

i=0±pixi +
∑f

i=0 p2
i

0 = e + 2
∑f

i=0±pixi +
∑f

i=0 p2
i

0 = e + 2
∑f

i=0±pixi + D

−(D + e)/2 =
∑f

i=0±pixi

(D + e)/2 =
∑f

i=0∓pixi

6e) Assume b = a + e (e ≥ 0). Then |x|2 + e = |z|2. By renumbering we can assume

~z = (z0, z1, . . . , zk),

~x = (z0 ± p0, z1 ± p1, . . . , zf ± pf , zf+1, . . . , zk).

Since |x|2 + e = |z|2 we have

e +
∑f

i=0 x2
i =

∑f
i=0(xi ± pi)

2

e +
∑f

i=0 x2
i =

∑f
i=0 x2

i + 2
∑f

i=0±pixi +
∑f

i=0 p2
i

e = 2
∑f

i=0±pixi +
∑f

i=0 p2
i

e = 2
∑f

i=0±pixi + D

(e−D)/2 =
∑f

i=0±pixi

(D − e)/2 =
∑f

i=0∓pixi

Definition 36 Let d, s ∈ N. Let C(~x) be a condition on ~x (e.g., (∀i, j)[|xi− xj| 6= 2]). Then
we define

Ad,s,k,C =
{
x : (∃x0, . . . , xk)

[
x =

k∑
i=0

xi(4d + 1)i ∧ (∀i)[−d ≤ xi ≤ d] ∧ |~x|2 = s ∧ C(~x)
]}

Definition 37 Let e, s ∈ N. Let C1(~x), C2(~x), · · ·, Ce(~x) be conditions on ~x (e.g., (∀i, j)[|xi−
xj| 6= 2]). Then we define

Ad,s,k,C1,...,Ce = Ad,s,k,C1∧···∧Ce .

41

The next two theorems both apply Lemma 35 to obtain larger 3-free sets. The proofs are
very similar.

Theorem 38 Let d, k, s ∈ N. If C(~x) be the condition (∀i)[xi 6= 0] then Ad,s,k ∪Ad,s+1,k,C is
3-free. We call this the SPHERE-NZ method. NZ stands for Non-Zero.

Proof: Assume, by way of contradiction, that x, y, z ∈ Ad,s,k,C∪Ad,s+1,k. Let a, b, c ∈ {0, 1}
be such that |~x|2 = s+a, |~z|2 = s+ b, and |~y|2 = s+ c. There are eight possibilities; however,
by Lemma 35.5 we can ignore the cases where c = 1 or a = b = 0. For each remaining
possibilities we note that either Lemma 35 or condition C is violated.

a b c D Reason

0 1 0 2 D 6≡ 0 (mod 4)

1 0 0 2 D 6≡ 0 (mod 4)

1 1 0 4 see below

The only case that was not handled is a = 1, b = 1, and c = 0. Note that D = 4. There is only
one way to represent 4 as a sum of even squares: 4 = 22. This corresponds to Lemma 35.6b.
Note that f = 0 and a = b. Hence, by Lemma 35.6b.ii, for some i, yi = 0. This contradicts
the condition C.

Theorem 39 Let d, k, s ∈ N. If C(~x) is the condition (∀i)[xi ≥ 0] then Ad,s,k ∪ Ad,s+1,k,C is
3-free. We call this the SPHERE-NN method. NN stands for Non-Negative.

Proof: Assume, by way of contradiction, that x, y, z ∈ Ad,s,k ∪ Ad,s+1,k,C form a 3-AP.
Let a, b, c ∈ {0, 1} be such that |~x|2 = s + a, |~z|2 = s + b, and |~y|2 = s + c. There are eight
possibilities; however, by Lemma 35.5 we can ignore the cases where c = 1 or a = b = 0. For
each of remaining possibilities we note that either Lemma 35 or condition C is violated.

a b c D Reason

0 1 0 2 D 6≡ 0 (mod 4)

1 0 0 2 D 6≡ 0 (mod 4)

1 1 0 4 see below

The only case that was not handled is a = 1, b = 1, c = 0. Note that D = 4. There is only
one way to represent 4 as a sum of even squares: 4 = 22. This corresponds to Lemma 35.6b.
Note that f = 0 and c < a = b so we have to have that, for some i, xi < 0. Since ~x is of
length s + 1 This contradicts condition C on Ad,s+1,k,C .

42

The method of Theorem 38 can be extended; however, this leads to more complex conditions.
We give one more example and then a general theorem.

Definition 40 Let a ∈ N. The condition ±x1±x2 6= a is shorthand for the ∧ of the following
four conditions.

1) x1 + x2 6= a,

2) x1 − x2 6= a,

3) −x1 + x2 6= a,

4) −x1 − x2 6= a.

Definition 41 Let a, f ∈ N. The condition ±x1 ± x2 ± · · · ± xf 6= a is shorthand for the ∧
of the following 2f conditions

1) x1 + x2 + · · ·+ xf 6= a,

2) x1 + x2 + · · ·+ xf−1 − xf 6= a,

...
...

2k) −x1 − x2 − · · · − xf−1 − xf 6= a.

Theorem 42 Let d, k, s ∈ N. Let C1(~x) be the condition (∀i)[xi 6= 0]. Let C2(~x) be the
condition (∀i, j)[i 6= j ⇒ ±xi ± xj 6= 2]. The set Ad,s,k ∪ Ad,s+1,k,C1 ∪ Ad,s+2,C1,C2 is 3-free.

Proof: Assume, by way of contradiction, that

x, y, z ∈ Ad,s,k ∪ Ad,s+1,k,C1 ∪ Ad,s+2,k,C1,C2

form a 3-AP. Let a, b, c ∈ {0, 1, 2} be such that |~x|2 = s + a, |~z|2 = s + b, and |~y|2 = s + c.
There are 27 possibilities for a, b, c. By Lemma 35.5 we need not consider any case where
c = 2. By Theorem 38, we need not consider any case with a, b, c ∈ {0, 1}. By Theorem 38,
with s + 1 instead of s, we need not consider any case with a, b, c ∈ {1, 2}. This leaves the

43

following cases:

a b c D Reason

0 2 0 4 See Below

0 2 1 0 D ≤ 0 Lemma 35.1

1 2 0 6 D 6≡ 0 (mod 4) Lemma 35.4

2 2 0 8 See Below

We now consider the two cases not covered in the chart above.

Case 1: a = 0, b = 2, and c = 0. In this case D = 4. There is only one way to represent 4
as a sum of even squares. 4 = 22. Hence f = 0 and p0 = 2. Note that D + (b − a) = 6 and
2p0 = 4. By Lemma 35.c 2p0 divides D + (b− a). This means 4 divides 6, a contradiction.

Case 2: a = 2, b = 2, and c = 0. In this case D = 8. There is only one way to represent 8 as
a sum of even squares. 8 = 22 + 22. Hence p0 = p1 = 2. By Lemma 35.6d we have that there
exists i, j such that ±2xi ± 2xj = 1

2
8 = 4. Hence ±xi ± xj = 2. This violates condition C2.

Theorem 43 Let d, k, s, g ∈ N. There exist conditions E1, . . . , Ek which are conjunctions of
conditions of the type in Definition 41, such that the following set is 3-free.

Ad,s,k ∪ Ad,s+1,k,E1 ∪ · · · ∪ Ad,s+k,k,E1,···,Ek
.

Proof:

We proof this by induction on k. For k = 1, 2 we know the theorem is true by Theorems 38
and 42. We assume the theorem is true at k − 1 with conditions E1, . . . , Ek−1 and come up
with condition Ek. We do a constructive induction in that we do not know Ek originally, but
will know it at the end of the proof.

Assume, by way of contradiction, that

x, y, z ∈ Ad,s,k ∪ Ad,s+1,k,E1 ∪ · · · ∪ Ad,s+k,k,E1,···,Ek

form a 3-AP. Let a, b, c ∈ {0, 1, 2, 3, . . . , k} be such that |~x|2 = s + a, |~z|2 = s + b, and
|~y|2 = s + c. There are k3 possibilities for a, b, c. By Lemma 35.5 we need not consider
any case where c = k. By the induction hypothesis we need not consider any case with
a, b, c ∈ {0, 1, . . . , k − 1}. By the induction hypothesis, with s + 1 instead of s, we need not

44

consider any case with a, b, c ∈ {1, 2, . . . , k}. Hence we need only consider the case where
one of a, b is k, and one of a, b, c is 0.

Form a table similar to those in Theorem 38 and Theorem 42. The entries fall into several
categories.

(1) D ≤ 0.
(2) D 6≡ 0 (mod 4).
(3) Every decomposition of D into even squares, D = p2

0 + · · · + p2
f , has the property that

GCD(p0, . . . , pf) does not divide (b− a−D)/2.

All of these categories contradiction Lemma 35.6c.

Let (a, b, c, D) be a row that does not lead to contradiction. There are two cases: a ≥ b and
a < b.

Assume a ≥ b. Let e be such that a = b + e. Since at least one of a, b is k we have a = k.
For every decomposition of D into even squares such that GCD(p0, . . . , pf) does not divide
(b− a + D)/2 we have, by Lemma 35.6d, there exists a choice of f + 1 numbers i1, . . . , if+1

and a choice of pluses and minuses such that the equation below is satisfied.

f∑
j=0

±pijxij = (D + e)/2.

Take this equation and make its negation into a condition. Note that this is a condition on
~x, and |x| = s + a = s + k, so the condition is on Ad,s,k.

Assume a < b. Let e be such that b = a + e. Since at least one of a, b is k we have b = k.
For every decomposition of D into even squares such that GCD(p0, . . . , pf) does not divide
(b− a + D)/2 we have, by Lemma 35.6d, there exists a choice of f + 1 numbers i1, . . . , if+1

and a choice of pluses and minuses such that the equation below is satisfied.

f∑
j=0

±pijzij = (D + e)/2.

Take this equation and make its negation into a condition. Note that this is a condition on
~z, and |z| = s + b = s + k, so the condition is on Ad,s,k.

There may be many conditions, each decomposition of D into even squares may lead to one.
Let Ek be the conjunction of all of these conditions over all of the rows.

45

We can apply Lemma 35 to the case where we have one of the vectors much larger.

Theorem 44 Let d, s, k ∈ N. Let C be the condition xi ≥ 0. The set Ad,s,k ∪ Ad,10s,k,C is
3-free. We call this the SPHERE-FAR method.

Proof: Assume, by way of contradiction, that x, y, z ∈ Ad,s,k ∪ Ad,10s,k,C form a 3-AP.
Let a, b, c ∈ {0, 9s} be such that |~x|2 = s + a, |~z|2 = s + b, and |~y|2 = s + c. There are
eight cases to consider. By Lemma 35.5 we need not consider any case where c = 9s. We use
Lemma 35.2 in the table below.

a b c D a + b 4c + 2s + 2
√

(s + a)(s + b) Reason

0 9s 0 18s 9s (2 +
√

10)s a + b > 4c + 2s + 2
√

(s + a)(s + b)

9s 0 0 18s 9s (2 + 2
√

10)s a + b > 4c + 2s + 2
√

(s + a)(s + b)

9s 9s 0 36s 18s 22s See Below

The only case to consider is a = b = 9s and c = 0. Note that

2~y = ~x + ~z

|2~y|2 = |~x + ~z|2

|(2y0, . . . , 2yk)|2 = |(x0 + z0), . . . , (xk + zk)|2∑k
i=0 2y2

i =
∑k

i=0(xi + zi)
2∑k

i=0 2y2
i =

∑k
i=0 x2

i + 2xizi + z2
i

2
∑k

i=0 y2
i = (

∑k
i=0 x2

i) + (2
∑k

i=0 xizi) +
∑k

i=0 z2
i

2s = s + 9s + 2(
∑k

i=0 xizi) + s + 9s

2s = 20s + 2(
∑k

i=0 xizi)

−9s =
∑k

i=0 xizi

Note that since xi, zi ≥ 0 we have that the right hand side is ≥ 0. But the left hand side is
< 0. This is a contradiction.

Note 2 In the proof that Ad,s,k ∪Ad,10s,k,C we used the value ‘10’ twice. In the first two rows
of the table we needed the value to be as high as 10. In the third row of the table we could
have used 2.

46

4.5.3 Using the Sphere Method

In this section, for ease of exposition, we discuss how to use the Sphere method if you were
only dealing with nonnegative numbers. The methods discussed can be easily adjusted for
the case where numbers can be positive or negative.

The next theorem shows how to find the optimal (d, s) pair quickly if you have a priori
bounds on what you are looking for.

Theorem 45 Let N(d, k, s) = |{(x0, . . . , xk) : 0 ≤ xi ≤ d ∧∑k
i=0 x2

i = s}|.

(1) Let D, K, S ∈ N. We can determine the values of N(d, k, s) for all d, k, s such that
0 ≤ d ≤ D, 0 ≤ k ≤ K, and 0 ≤ s ≤ S in time O(DK2S).

(2) There is an algorithm that will, given n, find the optimal (d, s) pair in time O(n3 log3 n).

Proof: 1) Note that for all k and for all s 6= 0,

N(0, k, 0) = 1;

N(0, k, s) = 0.

Let

Nj(d, k, s) = |{(x0, . . . , xk) : 0 ≤ xi ≤ d∧
k∑

i=0

x2
i = s∧ exactly j of the components are d }|.

Note that since the j d’s could be in any of
(

k
j

)
places, and the remaining k− j components

must add up to s−jd2, using numbers ≤ d−1, we have Nj(d, k, s) =
(

k
j

)
N(d−1, k−j, s−jd2).

Hence

N(d, k, s) =
k∑

j=0

Nj(d, k, s) =
k∑

j=0

(
k

j

)
N(d− 1, k − j, s− jd2).

To use this we first compute the
(

k
j

)
for 1 ≤ k ≤ K and 0 ≤ j ≤ k. This can be done

using the recurrence
(

k
j

)
=
(

k−1
j

)
+
(

k−1
j−1

)
and dynamic programming. This will take O(K2)

time. Using these numbers and the recurrence for N(d, k, s), we can easily write a dynamic
program that runs in time O(K2 + DK2S) = O(DK2S).

2) The optimal value of d is ≤ n. The largest k can be is log n. The largest s can be is
d2k ≤ n2 log n. Hence, applying the first part of this theorem, we can compute the optimal
in O(n3 log3 n) steps.

47

Table 5, in Appendix IV, suggests that the optimal d is actually ≤ O(log n). If this is the
case then the run time can be reduced to O(log6 n).

When we have a particular n in mind, N(d, k, s) may overcount, since some of the numbers
counted may be greater in magnitude than n. Denote by Ad,s,k,n the set of numbers in Ad,s,k

that are no greater in absolute value than n. In order to compute | Ad,s,k,n | we must do some
extra work. Denote by Ld,s,k,n the set of integers in Ad,s,k that are greater than n, so that
Ld,s,k,n = Ad,s,k −Ad,s,k,n. We next partition Ld,s,k,n according to the most significant digit in
which its members differ from n. Write n in base (4d + 1) as n1, . . . , nk and, for 0 ≤ i < k
let Ld,s,k,i be the subset of Ld,s,k,n whose elements start with n1 . . . ni (note that if any of
n1, . . . , ni has absolute value greater than d then Ld,s,k,n,i = ∅). Now the (i + 1)st digit of
each element of Ld,s,k,n,i must be between ni+1 + 1 and d inclusive, but the remaining digits
are subject only to the constraint that the sum of the squares is s. If you consider only those
remaining digits, they represent a number with k− i− 1 digits, each less than d in absolute
value whose squares add up to s− n2

1 − · · ·n2
i − x2

i+1. Considering all possible values of xi+1

leads to an expression for the size of any nonempty Ld,s,k,n,i:

| Ld,s,k,n,i |=
d∑

x=ni+1+1

N(d, k − i− 1, s−
i∑

j=1

n2
j − x2).

Summing this quantity over all possible i gives us | Ld,s,k,n | and hence Ad,s,k,n.

The calculations of N(d, k, s) and |Ad,s,k,n| can be modified easily for the cases in which
negative digits and/or zero digits are not allowed.

By Theorem 38 the set Ad,s,k,C ∪ Ad,s+1,k is 3-free. The condition C is simple, so an easy
modification of Theorem 45 gives us a way to find the the value of s that optimizes |Ad,s,k,C |+
|Ad,s+1,k| quickly. Similarly for Theorem 39. One can derive more complex conditions and
hence larger 3-free sets (see [15]). Our initial attempts at this yielded very little gain; hence
we did not pursue it any further. Nevertheless, for these more complex conditions one can
still compute the sizes quickly as we show below. This technique may be useful to later
researchers. We present them for the case where all the digits are ≥ 0 for ease of exposition.

N(d, k, s, C) = |{(x0, . . . , xk) : 0 ≤ xi ≤ d ∧
k∑

i=0

x2
i = s ∧ C(~x)}|.

In order to compute this we need to keep track of which elements we are already using and
which ones are forbidden. We let U be the multiset of elements already being used and F be
the set of elements forbidden from being used. We also let k0 be the original value of k we
started with. Note that C will be a k0-ary predicate.

48

Let N(d, k0, k, s, C, U, F) be all (x0, . . . , xk) such that

(1) for all i, 0 ≤ xi ≤ d and xi /∈ F ,
(2)

∑k
i=0 x2

i = s
(3) Let U ′ = U ∪ {x1, . . . , xk} (a multiset). For any vector ~u′ of elements in U ′ we have

C(~u′).

Let Nj(d, k0, k, s, C, U, F) be the subset of N(d, k, s, C, U, F) such that exactly j of the com-
ponents are d. We now define Nj(d, k0, k, s, C, U, F) with a recurrence.

(1) Assume d ∈ F . Then

Nj(d, k0, k, s, C, U, F) =
{

0 if j ≥ 1;
N(d− 1, k0, k, s, C, U, F) if j = 0.

(2) Assume j = 0. Then N0(d, k0, k, s, C, U, F) = N(d− 1, k0, k, s, C, U, F).
(3) Assume d /∈ F and j ≥ 1.

(a) Uj = U ∪ {d, d, . . . , d} (j times)
(b) Fj = F ∪ {f : (∃u0, . . . , u`−1, u`+1, . . . , uk0 ∈ Uj)[¬C(u0, . . . , u`−1, f, u`+1, . . . , uk0]}

(This is the only time we use k0.)

(c) Nj(d, k0, k, s, C, U, F) =
(

k
j

)
N(d− 1, k0, k − j, s− jd2, C, Uj, Fj).

In summary N(d, k0, k, s, C, U, F) is

(1) N(d− 1, k0, k, s, C, U, F) if d ∈ F , and

(2) N(d− 1, k0, k, s, C, U, F) +
∑k

j=1

(
k
j

)
N(d− 1, k0, k − j, s− jd2, C, Uj, Fj) if d /∈ F .

4.5.4 Comparing the Sphere Methods

We now present comparisons between the different Sphere Methods.

In Table 7, in Appendix VI, we use the following notation.

(1) SPHERE denotes |Ad,s,k|.
(2) SPHERE-NZ denotes |Ad,s,k ∪ Ad,s+1,k,C | where C is the condition that all digits are

nonzero. Informally, we will take the vectors on two spheres: on that is s away from the
origin, and one that is s + 1 away from the origin; however, the coordinates in the one
that is s + 1 away have to all be nonzero.

(3) SPHERE-NN denotes |Ad,s,k,C ∪Ad,s+1,k,C | where C is the condition that all digits are
nonnegative. We maximize over all d, s, k.

In all three cases we maximize over all d, s, k such that k =
⌊
log4d+1 n

⌋
−1. The data indicates

that the SPHERE-NZ method is the best one.

49

5 Comparing All the Methods

Tables 8-13 in Appendix VII compares the size of 3-sets generated by most of the methods
of this paper for n = 101, . . . , 1065. Then from n = 1066 to n = 10100 we show what happens
for all methods except the SPHERE method which is too slow to run for those values. We
abbreviate the names of the methods as B3 (Base 3), B5 (Base 5), KD (KD), BL (Block)
and SP (SPHERE-NN) method).

Here are some observations

(1) For all n on our table either Base 3 or Sphere is the best method. There may be a
particular number which, due to its representation in base 5, the Base 5 method does
better than either Base 3 or Sphere. For 109 ≤ n ≤ 1065 the Sphere method is producing
larger 3-free sets than any other method. We stopped at 1065 since at that point the
Sphere method took too much time. Given this evidence and that asymptotically the
Sphere method produces larger 3-free sets, we suspect that for n ≥ 109 the Sphere
method really does produce larger 3-free sets of [n] than the other methods.

(2) BL is better than KD asymptotically but this is the pair that takes the longest to settle
down. They switch back and fourth quite a bit. This is because BL is particularly sen-
sitive to what type of number n is. When n ≥ 1090 the table suggests that BL produces
larger 3-free sets and will from then on. Given this evidence and that asymptotically
BL is better than KD, we suspect that for n ≥ 1090 BL really does produces larger sets
than KD. More generally, we suspect that for n ≥ 1090 the asymptotic behavior will
match the empirical behavior for all the methods with regard to which one produces
the largest, second largest, etc 3-free sets.

6 Using the Asymptotic Literature for Upper Bounds

Roth [19, 34, 35] showed the following: for every λ > 0 there exists n0 such that, for every
n ≥ n0, for every A ⊆ [n], if |A| ≥ λn then A has an arithmetic progression of length 3.

The proof as presented in [19] can help us obtain upper bounds. They actually prove the
following:

Theorem 46 Let c be such that 0 < c < 1 and let m ∈ N. Assume that sz(2m + 1) ≤
c(2m + 1). Assume that N, M ∈ N and ε > 0 satisfy the following:

(
m2N

2M2
+ 4εN + 4mM + 1)(c + ε) < c(c− ε)N

50

Then sz(N) ≤ (c− ε)N .

Theorem 13 and the comments after it yield an elementary method to obtain upper bounds
on sz(N). Theorem 46 yields a more sophisticated method; however, is it better? Tables
14-16 in Appendix VIII shows that, for large values of N , it is better. We take m = 50.
We know sz(101) ≤ 0.26733 × 101 hence we can take c = 0.26733. We take M to be values
between 119 and 1000. For each of these values we find the minimal N such that there is
an ε such that the theorem can be applied. We then note the percent improvement over the
elementary method.

A more careful analysis of Roth’s theorem (or alternative proofs of it) may yield better
bounds. Our interest would be to get bounds that work for lower numbers.

7 Future Directions

(1) We believe that using the methods in this paper and current technology, the value of
sz(200) can be obtained. We would like to develop techniques that get us much further
than that.

(2) A more careful examination of upper bounds in the literature, namely a detailed look
at the results of Roth, Szemeredi, Health-Brown, and Bourgain mentioned earlier, may
lead to better upper bounds.

(3) This paper has dealt with 3-AP’s. Similar work could be carried out for k-AP’s. Not
much is known about them; however, [32] (see also [29]) is a good start.

8 Acknowledgments

We would like to thank Jon Chapin, Walid Gomaa, Andre Utis, and the referees for proof-
reading and commentary. We would also like to thank Ryan Farrell, Tasha Innis, and Howard
Karloff for help on some of the integer and linear programming methods, and Robert Klein-
berg for discussions of matrix multiplication and 3-free sets. The first author would like to
thank NSF grant CCR-01-05413.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
intractability of approximation problems. Journal of the ACM, 45, 1998. Prior version
in FOCS92.

51

[2] F. Behrend. On set of integers which contain no three in arithmetic progression. Proc.
of the National Academy of Science (USA), 23:331–332, 1946.

[3] R. Beigel, W. Gasarch, and J. Glenn. The multiparty communication complexity of
exact-t: improved bounds and new problems. In Proceedings of the 31th International
Symposium on Mathematical Foundations of Computer Science 2001, Stara Lesna, Slo-
vakia, 2006.

[4] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to nu-
merical problems. Journal of Computer and System Sciences, 47:549–595, 1993.

[5] J. Bourgain. On triples in arithmetic progression. Geometric and Functional Analysis,
9:968–984, 1999.

[6] A. Chandra, M. Furst, and R. Lipton. Multiparty protocols. In Proceedings of the
Fifteenth Annual ACM Symposium on the Theory of Computing, Boston MA, pages
94–99, 1983. http://portal.acm.org/citation.cfm?id=808737.

[7] E. Cockayne and S. Hedetniemi. On the diagonal queens domination problem. Journal
of Combinatorial Theory, Series A, 42:137–139, 1986.

[8] Cohn, Kleinberg, Szegedy, and Umans. Group-theoretic algorithms for matrix mul-
tiplication. In Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science, Pittsburgh PA, 2005.

[9] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9:251–280, 1990. Earlier Version in STOC87.

[10] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, Cambridge, 2003.

[11] Cplex package for linear and integer programming. www.ilog.com/products/cplex/.
[12] S. Dasgupta, C. Papadimitrious, and U. Vazirani. Algorithms. McGraw Hill, 2008.
[13] P. Erdös and P. Turan. On some sequences of integers. Journal of the London Mathe-

matical Society, 11(2):261–264, 1936. http://jlms.oxfordjournals.org/.
[14] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi’s

on arithmetic progressions. Journal d’Analyse Mathematique, 31:204–256, 1977. http:
//www.cs.umd.edu/~gasarch/vdw/furstenbergsz.pdf.

[15] W. Gasarch. Finding large sets without arithmetic progressions of length three: A
survey, 2004. Email him at gasarch@cs.umd.edu for a copy. Not ready enough to be on
website.

[16] Glpk package for linear and integer programming. www.gnu.org/software/glpk/glpk.
html.

[17] W. Gowers. A new proof for Szemerédi’s theorem for arithmetic progressions of length
four. Geometric and Functional Analysis, 8:529–551, 1998. http://www.springerlink.
com or http://www.dpmms.cam.ac.uk/~wtg10/papers.html.

[18] W. Gowers. A new proof of Szemerédi’s theorem. Geometric and Functional Analysis,
11:465–588, 2001. http://www.dpmms.cam.ac.uk/~wtg10/papers/html or http://

www.springerlink.com.
[19] R. Graham, B. Rothchild, and J. Spencer. Ramsey Theory. Wiley, 1990.
[20] B. Green. On triples in arith. prog., 1999. www.dpmms.cam.ac.uk/~bjg23/papers/

52

bourgain.pdf.
[21] B. Green. Progressions of length 3 following Szemerédi, 1999. www.dpmms.cam.ac.uk/

~bjg23/papers/newszem.pdf.
[22] R. Guy. Unsolved problems in number theory. Springer Verlag, New York, 1981.
[23] J. Hastad. Clique is hard to approximate within n1−ε. In Proceedings of the 37th Annual

IEEE Symposium on Foundations of Computer Science, Burlington VT, 1996. Also at
Electronic Colloquium on Computational Complexity www.eccc.uni-trier.de/eccc.

[24] J. Hastad and A. Wigderson. Simple analysis of graph tests for linearity. Random
Structures and Algorithms, 22, 2003. Prior version in Complexity 2001.

[25] D. Heath-Brown. Integer sets containing no arithmetic progressions. Proceedings of the
London Mathematical Society, 35(2):385–394, 1987.

[26] K. Ireland and M. Rosen. A classical introduction to modern number theory. Springer-
Verlag, 1982.

[27] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley, 2006.
[28] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,

1997.
[29] I. Laba and M. T. Lacey. On sets of integers not containing long arithmetic progressions,

2001. arxiv.org/pdf/math.CO/0108155 or www.math.ubc.ca/~ilaba/preprints or
http://www.cs.umd.edu/~gasarch/vdw/vdw.html.

[30] A. Levitin. Design and analysis of algorithms. Addison-Wesley, 2007.
[31] L. Moser. On non-averaging sets of integers. Canadian Journal of Mathematics, 5:245–

252, 1953.
[32] R. Rankin. Sets of integers containing not more than a given number of terms in an

arithmetic progression. Proceedings of the Royal Society of Edinburgh Sect. A 65, pages
332–344, 1960—1961.

[33] G. Rawlins. Compared to what? An introduction to the analysis of algorithms. Freeman,
1992.

[34] K. Roth. Sur quelques ensembles d’ entiers. C.R. Acad. Sci Paris, 234:388–3901, 1952.
[35] K. Roth. On certain sets of integers. Journal of the London Mathematical Society,

28:104–109, 1953. http://jlms.oxfordjournals.org/.
[36] I. Ruzsa. Erdös and the numbers. Journal of Number Theory, pages 115–163, 1999.
[37] I. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles.

In Combinatorics, Fifth Hungarian Colloquium, Keszthely, 1976.
[38] S. A. S. Safra. Probabilistic checking of proofs: A new characterization of NP. Journal

of the ACM, 45, 1998. Prior version in FOCS92.
[39] R. Salem and D. Spencer. On set of integers which contain no three in arithmetic

progression. Proc. of the National Academy of Science (USA), 28:561–563, 1942. http:
//www.cs.umd.edu/~gasarch/vdw/vdw.html.

[40] A. Samorodnitsky and L. Trevisan. A PCP characterization of NP with optimal amor-
tized query complexity. In Proceedings of the Thirty-second Annual ACM Symposium
on the Theory of Computing, Portland OR, pages 191–199, 2000.

[41] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 14:354–356,

53

1969.
[42] E. Szeméredi. On sets of integers containing no four elements in arithmetic progression.

Acta Math. Sci. Hung., 20:89–104, 1969.
[43] E. Szeméredi. On sets of integers containing no k elements in arithmetic progression.

Acta Arith., 27:299–345, 1986.
[44] E. Szemerédi. Integer sets containing no arithmetic progressions. Acta Math. Sci. Hung.,

56:155–158, 1990.
[45] B. van der Waerden. Beweis einer Baudetschen Vermutung. Nieuw Arch. Wisk., 15:212–

216, 1927.
[46] S. Wagstaff. On k-free sequences of integers. Mathematics of Computation, pages 767–

771, 1972.
[47] J. Wroblewski. Nonaveraging sets search. www.math.uni.wroc.pl/~jwr/non-ave/

index.htm.

9 Appendix I: Comparison to Known Results

There are several websites that contain results similar to ours:

• http://www.math.uni.wroc.pl/̃jwr/non-ave/index.htm
• http://www.research.att.com/̃njas/sequences/A065825
• http://www.research.att.com/̃njas/sequences/A003002

The first one is a website about Nonaveraging sets search. A nonaveraging set is what we
have been calling a 3-free set. They study the problem in a different way.

Definition 47 For m ∈ N a(m) is the least number so that there is a nonaveraging subset
of {1, . . . , a(m)}.

The following are easily verified.

Fact 48

sz(a(m)) ≥ m.

sz(n) ≥ m iff a(m) ≤ n. Hence large 3-free sets yield upper bounds on a(m) and vice-versa.

If sz(n) < m then a(m) > n.

If sz(n) = m− 1 and sz(n + 1) = m then a(m) = n.

At the website they have exact values for a(m) for m ≤ 35. and upper bounds for a(m)
(hence 3-free sets) for m ≤ 1024. They have a(35) = 150 which yields sz(150) = 35.

54

Our table yields the following new results: a(37) = 163, a(38) = 167, a(39) = 169, a(40) =
174, and a(42) ≤ 204 (they had 205).

We summarize the difference between our data and the websites above:

(1) Our table yields the following new results stated in their terms: a(37) = 163, a(38) =
167, a(39) = 169, a(40) = 174, a(42) ≤ 204, a(45) ≤ 227, and a(46) ≤ 233.

(2) Our table yields the following new results stated in our terms:
(a) Before our paper sz(n) was known for n = 1, . . . , 150. Our paper has extended this

to n = 151, . . . , 186.
(b) sz(204) ≥ 42, sz(227) ≥ 45, and sz(233) ≥ 46.

(3) For several values of n over 1000 they have obtained lower bounds on sz(n) (that is,
large 3-free sets) that we have not been able to obtain.

(4) The second website is the entry on a(n) in the Online Encyclopedia. Currently the
first website has the most current results. The third website is the entry in the Online
Encyclopedia of sz(n). It only has values up to n = 53.

55

10 Appendix II: Tables for Small n

n sz(n) n sz(n) n sz(n) n sz(n)

1 1 26 11 51 17 76 22

2 2 27 11 52 17 77 22

3 2 28 11 53 17 78 22

4 3 29 11 54 18 79 22

5 4 30 12 55 18 80 22

6 4 31 12 56 18 81 22

7 4 32 13 57 18 82 23

8 4 33 13 58 19 83 23

9 5 34 13 59 19 84 24

10 5 35 13 60 19 85 24

11 6 36 14 61 19 86 24

12 6 37 14 62 19 87 24

13 7 38 14 63 20 88 24

14 8 39 14 64 20 89 24

15 8 40 15 65 20 90 24

16 8 41 16 66 20 91 24

17 8 42 16 67 20 92 25

18 8 43 16 68 20 93 25

19 8 44 16 69 20 94 25

20 9 45 16 70 20 95 26

21 9 46 16 71 21 96 26

22 9 47 16 72 21 97 26

23 9 48 16 73 21 98 26

24 10 49 16 74 22 99 26

25 10 50 16 75 22 100 27
Table 1
Values of sz(n); 1-100 found by Intelligent Backtracking

56

n sz(n) n sz(n) n sz(n) n sz(n)

101 27 126 32 151 35 176 40

102 27 127 32 152 35 177 40

103 27 128 32 153 35 178 40

104 28 129 32 154 35 179 40

105 28 130 32 155 35 180 40

106 28 131 32 156 35 181 40

107 28 132 32 157 36 182 40

108 28 133 32 158 36 183 40

109 28 134 32 159 36 184 40

110 28 135 32 160 36 185 40

111 29 136 32 161 36 186 40

112 29 137 33 162 36

113 29 138 33 163 37

114 30 139 33 164 37

115 30 140 33 165 38

116 30 141 33 166 38

117 30 142 33 167 38

118 30 143 33 168 38

119 30 144 33 169 39

120 30 145 34 170 39

121 31 146 34 171 39

122 32 147 34 172 39

123 32 148 34 173 39

124 32 149 34 174 40

125 32 150 35 175 40
Table 2
Values of sz(n); 101-186 found by Intelligent Backtracking

57

n low high n low high n low high

187 40 41 212 43 50 237 46 57

188 40 42 213 43 51 238 46 57

189 40 42 214 43 51 239 47 57

190 40 43 215 44 51 240 47 58

191 40 44 216 44 51 241 47 58

192 40 44 217 44 51 242 47 58

193 40 44 218 44 51 243 47 58

194 41 44 219 44 51 244 47 58

195 41 45 220 44 52 245 47 58

196 41 45 221 44 52 246 47 59

197 41 46 222 44 52 247 48 59

198 41 46 223 44 53 248 48 59

199 41 47 224 44 53 249 48 60

200 41 47 225 44 54 250 48 60

201 41 48 226 44 54

202 41 48 227 45 55

203 41 48 228 45 55

204 42 48 229 45 55

205 42 48 230 45 56

206 42 49 231 45 56

207 42 49 232 45 56

208 42 49 233 46 56

209 43 49 234 46 56

210 43 49 235 46 56

211 43 50 236 46 56
Table 3
Upper and Lower Bounds on sz(n)

58

11 Appendix III: The value of c for the Block Method

n size r c

10100 1.45× 1076 25 4.345009

10120 2.04× 1090 27 4.940027

10140 6.16× 10113 30 4.037468

10160 8.87× 10130 32 4.186108

10180 2.05× 10149 34 4.169110

10200 8.79× 10158 35 5.291252

10220 1.30× 10179 37 5.024243

10240 3.06× 10200 39 4.648799

10260 1.16× 10223 41 4.175105

10280 6.36× 10234 42 4.922910

10300 1.54× 10259 44 4.294720
Table 4
The value of c for the Block Method

59

12 Appendix IV: Rec. Values of d vs. Optimal Values

SPHERE

n size d drec k krec s

1010 2.35 · 106 2 159 11 4 21

1011 1.13 · 107 5 282 9 4 73

1012 7.76 · 107 4 500 10 4 65

1013 3.91 · 108 5 890 10 4 98

1014 2.29 · 109 5 1582 11 4 102

1015 1.55 · 1010 6 2812 11 4 149

1016 8.57 · 1010 8 793 11 5 237

1017 5.42 · 1011 9 1256 11 5 314

1018 3.46 · 1012 12 1991 11 5 521

1019 2.35 · 1013 10 3155 12 5 426

1020 1.51 · 1014 12 5000 12 5 606

1025 2.12 · 1018 22 7339 13 6 2110

1030 3.50 · 1022 37 50000 14 6 6215

1035 6.89 · 1026 57 340647 15 6 15824

1040 1.55 · 1031 83 258974 16 7 35952

1045 3.79 · 1035 116 1341348 17 7 74704

1050 1.01 · 1040 156 899140 18 8 143665

1055 2.87 · 1044 204 3749472 19 8 258929

1060 1.69 · 1049 259 15811389 20 8 441294

1065 5.33 · 1053 322 8340503 21 9 715666
Table 5
The values of d, k, and s that maximize the 3-free subsets of [n] found by the basic sphere method,
along with the d and k recommended by formulas.

60

13 Appendix V: The Value of c for the Sphere Method

n size c n size c n size c

101 2 1.273954 1023 7.65× 1016 2.324463 1045 7.31× 1035 2.482269

102 12 1.186736 1024 5.17× 1017 2.338832 1046 5.59× 1036 2.486448

103 42 1.448738 1025 3.67× 1018 2.345828 1047 4.26× 1037 2.491226

104 240 1.476126 1027 1.73× 1020 2.371840 1048 3.27× 1038 2.495356

105 736 1.738705 1028 1.26× 1021 2.376522 1049 2.53× 1039 2.498775

106 5376 1.688719 1029 8.90× 1021 2.386288 1050 1.96× 1040 2.502237

107 2.08× 104 1.847543 1030 6.33× 1022 2.395423 1051 1.52× 1041 2.505763

108 1.08× 105 1.911638 1031 4.66× 1023 2.400014 1052 1.18× 1042 2.509345

109 5.73× 106 1.969546 1032 3.35× 1024 2.408401 1053 9.13× 1042 2.513452

1010 2.74× 107 2.053144 1033 2.40× 1025 2.417581 1054 7.15× 1043 2.516402

1011 1.56× 107 2.092028 1034 1.73× 1026 2.426201 1055 5.60× 1044 2.519500

1012 9.81× 107 2.108959 1035 1.29× 1027 2.430556 1056 4.39× 1045 2.522653

1013 5.27× 108 2.162636 1036 9.63× 1027 2.435128 1057 3.45× 1046 2.525689

1014 3.51× 109 2.169946 1037 7.09× 1028 2.441841 1058 2.71× 1047 2.528914

1015 2.10× 1010 2.201351 1038 5.24× 1029 2.448323 1059 2.12× 1048 2.532694

1016 1.33× 1011 2.221836 1039 3.91× 1030 2.453841 1060 1.69× 1049 2.534664

1017 8.25× 1011 2.247178 1040 2.94× 1031 2.458659 1061 1.34× 1050 2.537321

1018 5.68× 1012 2.253504 1041 2.20× 1032 2.464334 1062 1.07× 1051 2.539395

1019 3.78× 1013 2.267350 1042 1.66× 1033 2.469219 1063 8.48× 1051 2.542350

1020 2.39× 1014 2.291080 1043 1.26× 1034 2.473619 1064 6.73× 1052 2.545279

1021 1.63× 1015 2.301971 1044 9.63× 1034 2.477426 1065 5.33× 1053 2.548522

1022 1.22× 1016 2.297940
Table 6
The value of c for the SPHERE Method

61

14 Appendix VI: Comparing Different Sphere Methods

n SPHERE-NZ SPHERE SPHERE-NN Who Wins

10 4 2 5 SPHERE-NN

100 20 12 16 SPHERE-NZ

1000 58 40 63 SPHERE-NN

104 288 240 252 SPHERE-NZ

105 960 672 924 SPHERE-NZ

106 5376 5376 3432 SPHERE-NZ

107 23040 17600 12870 SPHERE-NZ

108 1.07 · 105 95200 61894 SPHERE-NZ

109 5.97 · 105 4.88 · 105 3.00 · 105 SPHERE-NZ

1010 2.89 · 106 2.35 · 106 1.40 · 106 SPHERE-NZ

1011 1.66 · 107 1.13 · 107 6.98 · 106 SPHERE-NZ

1012 1.04 · 108 7.76 · 107 4.20 · 107 SPHERE-NZ

1013 5.41 · 108 3.91 · 108 2.25 · 108 SPHERE-NZ

1014 3.66 · 109 2.29 · 109 1.32 · 109 SPHERE-NZ

1015 2.18 · 1010 1.15 · 1010 8.08 · 109 SPHERE-NZ

1016 1.36 · 1011 8.57 · 1010 4.88 · 1010 SPHERE-NZ
Table 7
SPHERE-NZ vs SPHERE vs SPHERE-NN

62

15 Appendix VII: Comparing all Methods for large n

n B3 B5 KD BL SP ORDER

10 5 3 2 1 4 B3>B5>KD>SP>BL

100 24 12 7 1 20 B3>B5>KD=SP>BL

1000 105 56 29 1 58 B3>B5>KD>SP>BL

SP>KD !!!

104 512 240 126 2 288 B3>B5=SP>KD>BL

105 2048 912 462 8 960 B3>B5>SP>KD>BL

106 8192 5376 1716 8 5376 B3>B5=SP>KD>BL

107 3.28 · 104 1.72 · 104 6435 64 2.30 · 104 B3>SP>B5>KD>BL

108 1.31 · 105 9.03 · 104 2.49 · 104 64 1.07 · 105 B3>SP>B5>KD>BL

SP>B3 !!!

109 5.24 · 105 3.66 · 105 9.24 · 104 1.02 · 103 5.97 · 105 SP>B3>B5>KD>BL

1010 2.10 · 106 2.05 · 106 5.05 · 105 1.02 · 103 2.89 · 106 SP>B3>B5>KD>BL

1011 1.05 · 107 8.95 · 106 1.70 · 106 3.27 · 104 1.66 · 107 SP>B3>B5>KD>BL

1012 5.03 · 107 4.17 · 107 9.42 · 106 3.27 · 104 1.04 · 108 SP>B3>B5>KD>BL

1013 2.01 · 108 2.22 · 108 3.99 · 107 3.27 · 104 5.41 · 108 SP>B3>B5>KD>BL

1014 9.77 · 108 7.41 · 108 1.61 · 108 2.10 · 106 3.66 · 109 SP>B3>B5>KD>BL

1015 4.29 · 109 4.27 · 109 7.03 · 108 2.10 · 106 2.18 · 1010 SP>B3>B5>KD>BL

1016 1.72 · 1010 1.61 · 1010 3.16 · 109 2.10 · 106 1.36 · 1011 SP>B3>B5>KD>BL

B5>B3 !!!

1017 6.87 · 1010 9.36 · 1010 1.50 · 1010 2.68 · 108 8.48 · 1011 SP>B5>B3>KD>BL

1018 2.75 · 1011 4.10 · 1011 7.60 · 1010 2.68 · 108 5.82 · 1012 SP>B5>B3>KD>BL

1019 1.10 · 1012 1.98 · 1012 4.27 · 1011 2.68 · 108 3.85 · 1013 SP>B5>B3>KD>BL

1020 4.40 · 1012 1.05 · 1013 2.31 · 1012 6.87 · 1010 2.41 · 1014 SP>B5>B3>KD>BL
Table 8
B3 vs. B5 vs. KD vs. BL vs. SP- The First Three Crossover Points

63

n B3 B5 KD BL SP ORDER

1021 1.92 · 1013 3.84 · 1013 5.55 · 1012 6.87 · 1010 1.65 · 1015 SP>B5>B3>KD>BL

1022 9.57 · 1013 2.10 · 1014 3.49 · 1013 6.87 · 1010 1.13 · 1016 SP>B5>B3>KD>BL

1023 4.22 · 1014 8.12 · 1014 2.36 · 1014 6.87 · 1010 7.68 · 1016 SP>B5>B3>KD>BL

1024 1.97 · 1015 4.70 · 1015 7.41 · 1014 3.52 · 1013 5.21 · 1017 SP>B5>B3>KD>BL

1025 9.01 · 1015 2.10 · 1016 4.43 · 1015 3.52 · 1013 3.69 · 1018 SP>B5>B3>KD>BL

1026 3.60 · 1016 1.01 · 1017 2.49 · 1016 3.52 · 1013 2.47 · 1019 SP>B5>B3>KD>BL

1027 1.44 · 1017 5.45 · 1017 1.04 · 1017 3.52 · 1013 1.76 · 1020 SP>B5>B3>KD>BL

KD>B3 !!!

1028 5.76 · 1017 2.13 · 1018 6.17 · 1017 3.60 · 1016 1.26 · 1021 SP>B5>KD>B3>BL

1029 2.31 · 1018 1.10 · 1019 2.60 · 1018 3.60 · 1016 8.93 · 1021 SP>B5>KD>B3>BL

1030 9.22 · 1018 4.21 · 1019 1.61 · 1019 3.60 · 1016 6.35 · 1022 SP>B5>KD>B3>BL

1031 3.69 · 1019 2.47 · 1020 8.88 · 1019 3.60 · 1016 4.68 · 1023 SP>B5>KD>B3>BL

1032 1.84 · 1020 1.10 · 1021 4.32 · 1020 7.38 · 1019 3.35 · 1024 SP>B5>KD>B3>BL

1033 8.85 · 1020 5.48 · 1021 2.54 · 1021 7.38 · 1019 2.41 · 1025 SP>B5>KD>B3>BL

1034 3.54 · 1021 2.88 · 1022 6.12 · 1021 7.38 · 1019 1.74 · 1026 SP>B5>KD>B3>BL

1035 1.77 · 1022 1.13 · 1023 4.79 · 1022 7.38 · 1019 1.29 · 1027 SP>B5>KD>B3>BL

1036 7.56 · 1022 6.30 · 1023 2.92 · 1023 7.38 · 1019 9.64 · 1027 SP>B5>KD>B3>BL

1037 3.02 · 1023 2.22 · 1024 1.78 · 1024 3.02 · 1023 7.10 · 1028 SP>B5>KD>B3=BL

1038 1.21 · 1024 1.31 · 1025 7.66 · 1024 3.02 · 1023 5.24 · 1029 SP>B5>KD>B3>BL

1039 4.84 · 1024 5.84 · 1025 2.88 · 1025 3.02 · 1023 3.92 · 1030 SP>B5>KD>B3>BL

1040 1.93 · 1025 3.09 · 1026 1.21 · 1026 3.02 · 1023 2.94 · 1031 SP>B5>KD>B3>BL
Table 9
B3 beats KD

64

1041 7.74 · 1025 1.54 · 1027 9.27 · 1026 2.48 · 1027 2.21 · 1032 SP>BL>B5>KD>B3

1042 3.48 · 1026 6.15 · 1027 5.53 · 1027 2.48 · 1027 1.66 · 1033 SP>B5>BL>KD>B3

1043 1.70 · 1027 3.61 · 1028 2.90 · 1028 2.48 · 1027 1.26 · 1034 SP>B5>KD>BL>B3

1044 7.43 · 1027 1.21 · 1029 1.41 · 1029 2.48 · 1027 9.63 · 1034 SP>KD>B5>B3>BL

1045 3.47 · 1028 7.15 · 1029 8.30 · 1029 2.48 · 1027 7.32 · 1035 SP>KD>B5>B3>BL

1046 1.58 · 1029 3.21 · 1030 4.59 · 1030 2.48 · 1027 5.59 · 1036 SP>KD>B5>B3>BL

1047 6.34 · 1029 1.78 · 1031 1.93 · 1031 4.06 · 1031 4.27 · 1037 SP>BL>KD>B5>B3

1048 2.54 · 1030 8.46 · 1031 1.11 · 1032 4.06 · 1031 3.27 · 1038 SP>KD>B5>BL>B3

1049 1.01 · 1031 3.35 · 1032 6.27 · 1032 4.06 · 1031 2.53 · 1039 SP>KD>B5>BL>B3

1050 4.06 · 1031 1.99 · 1033 2.89 · 1033 4.06 · 1031 1.96 · 1040 SP>KD>B5>BL=B3

1051 1.62 · 1032 6.67 · 1033 1.48 · 1034 4.06 · 1031 1.52 · 1041 SP>KD>B5>B3>BL

1052 6.49 · 1032 3.95 · 1034 1.12 · 1035 1.33 · 1036 1.18 · 1042 SP>BL>KD>B5>B3

1053 3.25 · 1033 1.76 · 1035 7.16 · 1035 1.33 · 1036 9.13 · 1042 SP>BL>KD>B5>B3

1054 1.56 · 1034 1.05 · 1036 3.95 · 1036 1.33 · 1036 7.15 · 1043 SP>BL>KD>B5>B3

1055 6.75 · 1034 4.67 · 1036 2.15 · 1037 1.33 · 1036 5.61 · 1044 SP>BL>KD>B5>B3

1056 3.32 · 1035 1.92 · 1037 1.20 · 1038 1.33 · 1036 4.39 · 1045 SP>KD>BL>B5>B3

1057 1.33 · 1036 1.14 · 1038 3.30 · 1038 1.33 · 1036 3.45 · 1046 SP>KD>BL>B5>B3

BL>B5 !!!

1058 5.32 · 1036 3.67 · 1038 1.75 · 1039 8.71 · 1040 2.71 · 1047 SP>BL>KD>B5>B3

1059 2.13 · 1037 2.18 · 1039 1.05 · 1040 8.71 · 1040 2.12 · 1048 SP>BL>KD>B5>B3

1060 8.51 · 1037 9.74 · 1039 7.46 · 1040 8.71 · 1040 1.69 · 1049 SP>BL>KD>B5>B3
Table 10
BL overcomes B5

65

n B3 B5 KD BL SP ORDER

1061 3.40 · 1038 5.80 · 1040 5.86 · 1041 8.71 · 1040 1.34 · 1050 SP>KD>BL>B5>B3

1062 1.36 · 1039 2.59 · 1041 3.41 · 1042 8.71 · 1040 1.07 · 1051 SP>KD>BL>B5>B3

1063 6.47 · 1039 1.12 · 1042 1.42 · 1043 8.71 · 1040 8.48 · 1051 SP>KD>BL>B5>B3

1064 3.20 · 1040 6.63 · 1042 8.38 · 1043 1.14 · 1046 6.73 · 1052 SP>BL>KD>B5>B3

1065 1.31 · 1041 2.06 · 1043 4.93 · 1044 1.14 · 1046 5.33 · 1053 SP>BL>KD>B5>B3

1066 6.10 · 1041 1.22 · 1044 3.07 · 1045 1.14 · 1046 SP>BL>KD>B5>B3

1067 2.79 · 1042 5.48 · 1044 1.06 · 1046 1.14 · 1046 SP>BL>KD>B5>B3

1068 1.12 · 1043 3.25 · 1045 5.71 · 1046 1.14 · 1046 SP>KD>BL>B5>B3

1069 4.46 · 1043 1.46 · 1046 3.42 · 1047 1.14 · 1046 SP>KD>BL>B5>B3

1070 1.78 · 1044 6.69 · 1046 2.39 · 1048 2.99 · 1051 SP>BL>KD>B5>B3

1071 7.14 · 1044 3.88 · 1047 1.23 · 1049 2.99 · 1051 SP>BL>KD>B5>B3

1072 2.85 · 1045 1.24 · 1048 6.21 · 1049 2.99 · 1051 SP>BL>KD>B5>B3

1073 1.16 · 1046 7.25 · 1048 3.63 · 1050 2.99 · 1051 SP>BL>KD>B5>B3

1074 5.78 · 1046 3.08 · 1049 2.27 · 1051 2.99 · 1051 SP>BL>KD>B5>B3

1075 2.74 · 1047 1.83 · 1050 1.82 · 1052 2.99 · 1051 SP>KD>BL>B5>B3

1076 1.21 · 1048 8.20 · 1050 1.05 · 1053 2.99 · 1051 SP>KD>BL>B5>B3

1077 5.85 · 1048 4.01 · 1051 5.60 · 1053 1.57 · 1057 SP>BL>KD>B5>B3

1078 2.34 · 1049 2.18 · 1052 1.45 · 1054 1.57 · 1057 SP>BL>KD>B5>B3

1079 9.35 · 1049 7.23 · 1052 5.78 · 1054 1.57 · 1057 SP>BL>KD>B5>B3

1080 3.74 · 1050 4.31 · 1053 7.06 · 1055 1.57 · 1057 SP>BL>KD>B5>B3
Table 11
BL gaining on KD

66

n B3 B5 KD BL SP ORDER

1081 1.50 · 1051 1.73 · 1054 3.89 · 1056 1.57 · 1057 SP>BL>KD>B5>B3

1082 5.99 · 1051 1.03 · 1055 2.55 · 1057 1.57 · 1057 SP>KD>BL>B5>B3

1083 2.39 · 1052 4.62 · 1055 1.58 · 1058 1.57 · 1057 SP>KD>BL>B5>B3

1084 1.20 · 1053 2.29 · 1056 8.40 · 1058 1.65 · 1063 SP>BL>KD>B5>B3

1085 5.75 · 1053 1.23 · 1057 4.37 · 1059 1.65 · 1063 SP>BL>KD>B5>B3

1086 2.30 · 1054 4.51 · 1057 2.38 · 1060 1.65 · 1063 SP>BL>KD>B5>B3

1087 1.13 · 1055 2.55 · 1058 2.09 · 1061 1.65 · 1063 SP>BL>KD>B5>B3

1088 4.90 · 1055 9.85 · 1058 1.13 · 1062 1.65 · 1063 SP>BL>KD>B5>B3

1089 1.96 · 1056 5.85 · 1059 6.80 · 1062 1.65 · 1063 SP>BL>KD>B5>B3

1090 7.85 · 1056 2.63 · 1060 2.24 · 1063 1.65 · 1063 SP>KD>BL>B5>B3

BL>KD !!!

1091 3.14 · 1057 1.30 · 1061 1.22 · 1064 3.45 · 1069 SP>BL>KD>B5>B3

1092 1.26 · 1058 7.02 · 1061 7.16 · 1064 3.45 · 1069 SP>BL>KD>B5>B3

1093 5.02 · 1058 2.66 · 1062 4.35 · 1065 3.45 · 1069 SP>BL>KD>B5>B3

1094 2.20 · 1059 1.46 · 1063 2.38 · 1066 3.45 · 1069 SP>BL>KD>B5>B3

1095 1.10 · 1060 5.60 · 1063 1.69 · 1067 3.45 · 1069 SP>BL>KD>B5>B3

1096 4.82 · 1060 3.34 · 1064 1.07 · 1068 3.45 · 1069 SP>BL>KD>B5>B3

1097 2.25 · 1061 1.50 · 1065 5.90 · 1068 3.45 · 1069 SP>BL>KD>B5>B3

1098 1.03 · 1062 7.42 · 1065 4.21 · 1069 1.45 · 1076 SP>BL>KD>B5>B3

1099 4.11 · 1062 4.00 · 1066 2.36 · 1070 1.45 · 1076 SP>BL>KD>B5>B3

10100 1.65 · 1063 1.59 · 1067 1.56 · 1071 1.45 · 1076 SP>BL>KD>B5>B3
Table 12
BL beats KD

67

n B3 B5 KD BL SP ORDER

10101 6.58 · 1063 8.70 · 1067 8.62 · 1071 1.45 · 1076 SP>BL>KD>B5>B3

10102 2.63 · 1064 3.18 · 1068 6.30 · 1072 1.45 · 1076 SP>BL>KD>B5>B3

10103 1.05 · 1065 1.90 · 1069 1.80 · 1073 1.45 · 1076 SP>BL>KD>B5>B3

10104 4.21 · 1065 8.51 · 1069 5.97 · 1073 1.45 · 1076 SP>BL>KD>B5>B3

10105 2.11 · 1066 4.51 · 1070 4.81 · 1074 1.45 · 1076 SP>BL>KD>B5>B3

10106 1.01 · 1067 2.27 · 1071 4.05 · 1075 1.21 · 1083 SP>BL>KD>B5>B3

10107 4.04 · 1067 9.10 · 1071 2.83 · 1076 1.21 · 1083 SP>BL>KD>B5>B3

10108 2.02 · 1068 5.25 · 1072 1.59 · 1077 1.21 · 1083 SP>BL>KD>B5>B3

10109 8.63 · 1068 1.82 · 1073 9.21 · 1077 1.21 · 1083 SP>BL>KD>B5>B3

10110 3.45 · 1069 1.09 · 1074 4.88 · 1078 1.21 · 1083 SP>BL>KD>B5>B3

10111 1.38 · 1070 4.88 · 1074 3.01 · 1079 1.21 · 1083 SP>BL>KD>B5>B3

10112 5.52 · 1070 2.74 · 1075 1.99 · 1080 1.21 · 1083 SP>BL>KD>B5>B3

10113 2.21 · 1071 1.31 · 1076 1.10 · 1081 1.21 · 1083 SP>BL>KD>B5>B3

10114 8.83 · 1071 5.20 · 1076 1.02 · 1082 2.40 · 1090 SP>BL>KD>B5>B3

10115 3.98 · 1072 3.10 · 1077 3.75 · 1082 2.40 · 1090 SP>BL>KD>B5>B3

10116 1.94 · 1073 1.04 · 1078 3.52 · 1083 2.40 · 1090 SP>BL>KD>B5>B3

10117 8.48 · 1073 6.23 · 1078 1.20 · 1084 2.40 · 1090 SP>BL>KD>B5>B3

10118 3.96 · 1074 2.79 · 1079 7.35 · 1084 2.40 · 1090 SP>BL>KD>B5>B3

10119 1.81 · 1075 1.64 · 1080 4.71 · 1085 2.40 · 1090 SP>BL>KD>B5>B3
Table 13
The order seems to have settled down

68

16 Appendix VIII: Roth’s Method used Numerically

N M ε Roth Elem Improvement

139570 120 0.001429 37111 37311 0.5%

143096 121 0.002144 37947 38253 0.8%

146767 122 0.002859 38815 39235 1.1%

150592 123 0.003573 39719 40257 1.3%

154577 125 0.004288 40660 41323 1.6%

158733 126 0.005003 41640 42434 1.9%

163071 127 0.005717 42661 43593 2.1%

167603 128 0.006432 43727 44805 2.4%

172342 129 0.007147 44840 46072 2.7%

177302 130 0.007861 46004 47398 2.9%

182493 132 0.008576 47220 48785 3.2%

187932 133 0.009290 48493 50239 3.5%

193639 134 0.010005 49828 51765 3.7%

199632 136 0.010720 51227 53367 4.0%

205926 137 0.011435 52695 55050 4.3%

212553 138 0.012149 54239 56821 4.5%

219524 140 0.012864 55861 58685 4.8%

226880 142 0.013578 57571 60651 5.1%

234636 143 0.014293 59371 62724 5.3%

242836 145 0.015008 61272 64917 5.6%

251513 146 0.015722 63282 67236 5.9%

260698 148 0.016437 65407 69692 6.1%

270443 150 0.017152 67658 72297 6.4%

280795 152 0.017866 70048 75064 6.7%

291808 154 0.018581 72586 78008 7.0%
Table 14
Upper Bounds for sz(N): Roth vs Elem Method N < 300, 000

69

N M ε Roth Elem Improvement

303541 156 0.019296 75288 81145 7.2%

316063 158 0.020010 78168 84492 7.5%

329450 160 0.020725 81244 88071 7.8%

343788 163 0.021440 84534 91904 8.0%

359168 165 0.022154 88059 96015 8.3%

375712 167 0.022869 91846 100438 8.6%

393531 170 0.023584 95921 105201 8.8%

412780 173 0.024298 100318 110347 9.1%

433620 176 0.025013 105073 115918 9.4%

456240 179 0.025728 110228 121965 9.6%

480858 182 0.026442 115832 128546 9.9%

507734 185 0.027157 121944 135731 10.2%

537169 189 0.027872 128629 143600 10.4%

569513 192 0.028586 135967 152246 10.7%

605183 196 0.029301 144051 161782 11.0%

644686 200 0.030015 152993 172342 11.2%

688608 205 0.030730 162924 184083 11.5%

737691 210 0.031445 174010 197205 11.8%

792812 215 0.032159 186446 211940 12.0%

855068 220 0.032874 200475 228583 12.3%

925817 226 0.033589 216401 247496 12.6%
Table 15
Upper Bounds for sz(N): Roth vs Elem Method 300, 000 < N < 1, 000, 000

70

N M ε Roth Elem Improvement

1006778 233 0.034303 234606 269139 12.8%

1100129 240 0.035018 255573 294094 13.1%

1208694 247 0.035733 279930 323116 13.4%

1336194 256 0.036447 308504 357200 13.6%

1487573 265 0.037162 342391 397668 13.9%

1669609 275 0.037877 383097 446331 14.2%

1891729 287 0.038591 432711 505710 14.4%

2167483 300 0.039306 494238 579426 14.7%

2516890 316 0.040021 572112 672832 15.0%

2970752 334 0.040735 673156 794161 15.2%

3578632 355 0.041450 808341 956664 15.5%

4425059 381 0.042165 996370 1182937 15.8%

5665145 414 0.042879 1271546 1514445 16.0%

7612893 457 0.043594 1703279 2035130 16.3%

10997854 516 0.044309 2452757 2940020 16.6%

17911305 607 0.045023 3981805 4788171 16.8%

37026906 774 0.045738 8204873 9898282 17.1%

178970459 999 0.046453 39530554 47843588 17.4%
Table 16
Upper Bounds for sz(N): Roth vs Elem Method 300, 000 < N < 1, 000, 000

71

