A Sane Proof that COL;, < COL;
By William Gasarch

1 Introduction

Let A < B mean that there is a polynomial-time computable function f such that x € A iff

f(x) € B.
Def 1.1 Let £ > 2. COLy is the set of all graphs that are k-colorable

The following are well known.
e Forall k > 2, COL, < SAT (this is by the Cook-Levin Theorem).
e Forall k > 2, Forall k > 3, SAT < COLy, hence COLy is N P-complete.

o If a < bthen COL, < COL, by an easy reduction (Take GG and add K;,_, and an edge from

every elements of K, to the original graph.)

The proof that COL3 < COLy is very easy: just add a vertex to G and connect it to all the

elements of G. Is COL, < COL3? Yes via

COLy < SAT < COLs.

This is true but unsatisfying. One of my students said
It’s counterintuitive and makes me sad.
So we asked informally: Is there a SANE reduction COL, < C'OLs. There is and we present
it here. In fact we show COL, < COLs.
A sane proof is already known. Let HC'OLy is the set of all hypergraphs that are k-colorable

Lovasz [?] showed



COL, < HCOLy < COLs.

Our proof does not use HC'O Ly or any HCO Ly,

Def 1.2 GAD(x,y, z) is the following graph. (The vertices that don’t have labels are never re-

ferred to so we don’t need to label them.)
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We leave the proof of the following easy lemma to the reader.
Lemma 1.3 If GAD(x,y, z) is three colored and x,y get the same color, then z also gets that

color.

Def 1.4 GAD(xy,...,xx, z) consists of GAD(xy1, xo,y1), GAD(y1, 3, y2), GAD (Yo, T4,Y3), - - -
GAD(yg_3, k-1, Yg—2), and GAD(yx_2, z, z). Note that, (1) notincluding x4, . . ., zg, 2, GAD(yg_2, Tk, 2)
has 3(k — 2) + 1 = 3k — 5 < 3k vertices, and (2) 5(k — 1) = 5k — 5 < 5k edges.

We leave the proof of the following easy lemma to the reader.



Lemma 1.5 Let k > 2. If GAD(x1, s, . .., %k, 2) is three colored and w1, . . ., x) get the same

color, then z also gets that color.

Theorem 1.6 Let k > 2. COL, < COLs by a simple reduction. Let | be the reduction. If G has

n vertices and e edges then f(G) = G’ has < 2k2n + 2ke vertices and < 3k*n + 2ke edges.

Proof: Let GG have vertices vy, ..., v, and edge set F. We construct G':

1. Vertices 7', F', R which will form a triangle. In any coloring they have different colors which

we call 7' F, R. This is 3 vertices and 3 edges. (We won’t count these in the end since our

crude upper bounds on the vertices and edges in G’ will clearly be over by at least 3.)

2. Forl1 <¢<mnand1l < j <k vertex v;;. All of these will be connected by an edge to vertex

R. This will be kn vertices and kn edges. Here is our intent and how we achieve it:

(a)

(b)

(c)

For all 1 < ¢ < n our intent is: v;; is colored 7" means that vertex v; in G is colored j;

v;; 1s colored F' means that vertex v; in GG is NOT colored j.

For all 1 < ¢ < n we need that at least one of v;q,...,v;, is colored 1. Hence we
need it to NOT be the case that v;1, v;9, . . ., v, are all colored F'. We place the gadget
G(vi1, - - ., Vin, T) in the graph. If v;, ..., v, are all colored F' then this gadget will

not be 3-colorable. This is < 3kn vertices and < 5kn edges.

For all 1 <1 < n we need that at most one of v;1, ..., v;, is colored T'. Hence we need
that for each pair at most one is colored 7". For each 1 < j; < jo < k we place the
gadget GAD(vy;,,vij,, F). Thisis n(5) x 2 < k?n vertices and n(5) x 5 < 2.5k%n

edges.

3. For each edge (v;, v;) in the original graph we want to make sure that v; and v; are not the

same color. Place the gadgets GAD(v;1,v;1, F'), GAD(vi2, vja, F),. .., GAD(vi, vk, F).

This is 2ke vertices and Hke edges.



Note that the number of vertices in G’ is < kn + 3kn + k?n + 2ke < 2k?n + 2ke vertices and
< kn + 5kn + 2.5k?n + 2ke < 3k*n + 2ke edges.
Clearly G is k-colorable iff G’ is 3-colorable.



