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1. Introduction

Beginning with Hoheisel [8], many authors have found shorter and shorter
intervals �xÿ x v; x� that must contain a prime number. The most recent result is
v � 0:535: see Baker and Harman [1], where the history of the problem is
discussed. In the present paper we prove:

Theorem 1. For all x > x0 , the interval �xÿ x0:525; x� contains prime numbers.

With enough effort, the value of x0 could be determined effectively.
The paper has much in common with [1]; in particular we use the sieve method

of Harman [4, 5]. We no longer use zero density estimates, however, but rather
mean value results on Dirichlet polynomials similar to those that give rise to such
estimates. Compare, for example, work of Iwaniec and Pintz [9] and Baker,
Harman and Pintz [2]. Much of the improvement over [1] arises from the use of
Watt's theorem [11] on a particular kind of mean value. More accurate estimates
for six-dimensional integrals are also used to good effect. There is in addition a
device which uses a two-dimensional sieve to get an asymptotic formula for a
`one-dimensionally sieved' set; see Lemmas 16, 17. Unfortunately, these lemmas,
which would be of great signi®cance for v � 0:53, are not very numerically
signi®cant when v drops to 0.525; the same applies to the `roÃle reversals'
discussed below.

Let us introduce enough notation to permit an outline of the proof. When E is a
®nite sequence of positive integers, counted with multiplicity, we write jEj for the
number of terms of E, and

Ed � fm: dm 2 Eg:
Let

P�z� �
Y
p< z

p;

where the symbol p is reserved for a prime variable; and let

S�E; z� � jfm 2 E: �m; P�z�� � 1gj:
Let v be a positive number,

0:524 < v < 0:535: �1:1�
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Let L � log x; y1 � x exp�ÿ3L1= 3�; y � x v�«,

A � �xÿ y; x�Ç Z and B � �xÿ y1; x�Ç Z;

where « is a suf®ciently small positive number.
Buchstab's identity is the equation

S�E; z� � S�E; w� ÿ
X

w < p< z

S�Ep ; p�;

where 2 < w < z; S�A; x1=2� counts the primes we are looking for. Our
philosophy is to use Buchstab's identity to produce parallel decompositions of

S�A; x1= 2� and S�B; x1= 2�:

S�A; x1=2� �
Xk

j�1

Sj ÿ
Xl

j� k�1

Sj ;

S�B; x1=2� �
Xk

j�1

S �j ÿ
Xl

j� k�1

S �j :

Here Sj > 0, S �j > 0 and for j < t < k or j > k we have

Sj �
y

y1

S �j �1� o�1��

as x! 1. Thus

S�A; x1=2�>
y

y1

�
S�B; x1 =2� ÿ

Xk

j� t�1

S �j

�
�1� o�1��:

We must thus ensure that not too many sums are discarded, that is, fall into the
category t < j < k.

Just as in [1] we use Buchstab's identity twice to reach the decomposition

S�A; x1=2� � S�A; x n�0�� ÿ
X

n�0�< a1 < 1 =2

S�Ap1
; x n�a1��

�
X

n�0�< a1 < 1=2

n�a1�< a 2 <min�a1; �1ÿa1�=2�

S�Ap1 p 2
; p2�

� S1 ÿ S2 � S3 ; say. �1:2�
(Here pj � xa j .) We give asymptotic formulae for S1 and S2 . The piecewise
linear function n� . . . � is larger (for given v) than its counterpart in [1]. From this
point on, roÃle reversals are employed. To illustrate this, note that

S�Ap1 p 2
; p2� � jf p1 p2 h 2A: p j h) p > p2gj:

If K is a region in which a1 > 1ÿ a1 ÿ a2 , we note thatX
�a 1 ;a 2� 2K

S�Ap1 p 2
; p2� � fhp2 h1 2A: �Lÿ1 log h1; L

ÿ1 log p2� 2 K;

p j h1 ) p > h1=2
1 ; p j h) p > p2g;
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leading readily to the formula (in which h � xb 3 )X
�a1;a 2� 2K

S�Ap1 p 2
; p2� � �1� o�1��

X
�1ÿa 2ÿb 3 ;a 2� 2K

p j h) p > p 2

S

�
Ah p 2

;

�
x

hp2

�1=2�

which we term a roÃle-reversal. The point here is that our asymptotic formulaeX
m , M

X
n , N

am bm S�Amn; x n� � y

y1

�1� o�1��
X

m , M

X
n , N

am bn S�Bmn ; x n� �1:3�

require certain upper bounds on M and N; see Lemmas 12 and 13. Here m , M
means M < m < 2M; m } M means Bÿ1M < m < BM; B is a positive absolute
constant, which need not have the same value at each occurrence.

It will generally be bene®cial to attempt as many decompositions as possible.
There are two reasons for this. First, if there are several variables, there should often
be a combination of variables which satisfy one of our criteria for obtaining an
asymptotic formula. Second, if there are many variables, the contribution is already
quite small. To see this, note that if � represents x n < pn < pnÿ1 < . . . < p1 < xl, thenX �

S�Bp1... pn
; pn�

� y1

L
�1� o�1��

Z l

a1� n

Z a1

a 2� n
. . .

Z anÿ 1

an � n
q

�
1ÿ a1 ÿ . . .ÿ an

an

�
da1 . . . dan

a1 . . . a2
n

(compare [1]). Moreover,

q

�
1ÿ a1 ÿ . . .ÿ an

an

�
< 1 and

Z
a1

. . .

Z
an

da1

a1

. . .
dan

a2
n

<
�log�l=n��n

n!n
:

For v � 0:525 we shall have n > 0:05. Hence the contribution from p1 < x1=10

(for which one can take n � 8) is at most

y

L

�log 2�8
8!0:05

�1� o�1�� < 0:000002yLÿ1:

(If `asymptotic formula regions', in the sense of (1.4) below, are not discarded, we
get a better estimate still.)

However, when roÃle-reversals are used it may not always be bene®cial to perform
as many decompositions as possible. The reason for this is that with roÃle-reversals, a
sum may be replaced by the difference of two sums, each substantially larger than
the original one. If not enough combinations of variables lie in `asymptotic formula
regions', we have made matters worse. For example, when decomposing in
straightforward fashion we count

p1 . . . pn m; p j m) p > pn :

When roÃle-reversals are used we may have

p1 . . . pn klm; p j k ) p > pr ; p j l) p > ps ; p j m) p > pn :

The ®rst expression gives rise to a term

q

�
1ÿ a1 ÿ . . .ÿ an

an

�
1

a1 . . . anÿ1a
2
n

;
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while the second leads to a term

q

�
f1

ar

�
q

�
f2

a s

�
q

�
f3

an

�
1

�a1 . . . an�ar as an

for certain expressions f1, f2 and f3 . The corresponding integral can then be larger
than the original term under consideration.

The ®nal decomposition of S2 , given in § 6, arises from Lemmas 12 and 13,
together with formulae of the typeX

�a1; ... ;ar� 2K

S�Ap1... pr
; pr� �

y

y1

�1� o�1��
X

�a1; ... ;ar� 2K

S�Bp1... pr
; pr� �1:4�

discussed in § 5.

2. Application of Watt's theorem

Let T � x1ÿ vÿ«=2 and T0 � exp�L 1=3�. In this section we seek a result of
the type Z 1=2� i T

1= 2� i T0

jM�s�N�s�K�s�j jdsjp x1=2LÿA �2:1�

where M�s� and N�s� are Dirichlet polynomials,

M�s� �
X

m , M

am mÿ s; N�s� �
X
n , N

bn nÿ s;

and K�s� is a `zeta factor', that is,

K�s� �
X
k , K

kÿ s or
X
k , K

�log k�kÿ s:

Note the convention of the same symbol for the polynomial and its `length'. Of
course, 1 is a Dirichlet polynomial of length 1. We shall assume without comment
that each Dirichlet polynomial that appears has length at most x and coef®cients
bounded by a power of the divisor function t: thus, whenever a sequence
�am�m , M is mentioned, we assume that

jam j< t�m�B:
(This property may be readily veri®ed for the particular polynomials employed
later.) The bound (2.1), and any bound in which A appears, is intended to hold for
every positive A; the constant implied by the `p' or `O' notation may depend on
A, B and «.

It is not a long step from (2.1) to a `fundamental lemma' of the typeX
m , M

am

X
n , N

bn S�Amn ; w� � y

y1

�1� o�1��
X

m , M

am

X
n , N

bn S�Bmn ; w� �2:2�

with

w � exp

�
L

logL

�
: �2:3�

This will be demonstrated in § 3.
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Lemma 1. Let

N�s� �
X

pi , Pi

� p1 . . . pu�ÿ s �2:4�

where u < B, Pi > w and P1 . . . Pu < x. Then, for Re s � 1
2

,

jN�s�j< g1�s� � . . .� gr�s�; with r < LB; �2:5�
where each gi is of the form

LB
Yh

i�1

jNi�s�j; with h < B; N1 . . . Nh < x; �2:6�

and among the Dirichlet polynomials N1; . . . ;Nh the only polynomials of length
greater than T 1=2 are zeta factors.

Proof. It clearly suf®ces to prove (2.5) for

N�s� �
X
n , N

L�n�nÿ s

where L is von Mangoldt's function. We now obtain the desired result by the
identity of Heath-Brown [6].

We shall refer to polynomials N�s� `of type (2.4)' to indicate that the
hypothesis of Lemma 1 holds for N�s�.

Lemma 2. If K�s� is a zeta factor, 1 < U < T, K < 4U and M < T, thenZ 1=2� iU

1=2� iU =2
jM�s�j2jK�s�j4jdsjp U 1�«�1�M 2U ÿ1=2�: �2:7�

Proof. For K < U 1=2 and M < U 1=2 this is proved in all essentials by Watt
[11] in the course of the proof of his main theorem. For K < U 1 =2 and M > U 1=2

we have Z 1=2� iU

1=2� iU =2
jM�s�j2jK�s�j4jdsjp kMk2

1
Z
jK�s�j4jdsj

p M 1�«U p M 2U 1=2�«:

Now suppose that U 1=2 < K < 4U. Using a re¯ection principle based on [10,
Theorem 4.13], we may replace K by a zeta factor of length K 0 < U 1=2 with
error E � O�1�. Thus jK j4 p jK 0 j4 � jE j4. SinceZ 1=2� iU

1=2� iU =2
jM�s�j2jEj4jdsjp

Z 1 =2� iU

1=2� iU =2
jM�s�j2jdsj

p �M � U�U «;

the general case of Lemma 2 now follows.
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Lemma 3. Let MN1 N2 K � x. Suppose that M, N1 and N2 are of type (2.4)

and K�s� is a zeta factor, K p x3 =4. Let M � xa and Nj � x b j and suppose that

a < v; �2:8�
b1 � 1

2
b2 < 1

2
�1� v� ÿ a 0: �2:9�

Here and subsequently a 0 � max�a; 1ÿ v�. Suppose further that

b2 < 1
4
�1� 3v� ÿ a 0; �2:10�

b1 � 3
2
b2 < 1

4
�3� v� ÿ a 0: �2:11�

Then for 1 < U < T,Z U

U =2
j�MN1N2 K �� 1

2
� it�j dt p x1=2LÿA: �2:12�

Proof. Suppose ®rst that 4U < K and write N � MN1 N2. Lemma 5 of [2]
yields kMk1 p M 1 =2LÿA if M > x« and similar results for N1 and N2 . By an
application of Lemmas 4.2 and 4.8 of [11] we obtain

kK k1 p
K 1=2

U
; kK N k1 p

K 1=2

U
M 1=2�N1 N2�1=2LÿA � x1=2

U
LÿA:

Hence the integral in (2.12) is

pUkKN k1 p x1=2LÿA:

Now suppose that K < 4U. The integral in (2.12) is�Z
jM j2

�1=2�Z
jN 2

1 N2j2
�1=4�Z

jK 2N2j2
�1=4

p x«=50�M � T �1=2�N 2
1 N2 � T �1=4 T 1=4�1� N 2

2 T ÿ1=2�1 =4

r xg

by Lemma 2 and the mean value theorem [2, (3.3)]. Here

g � 1
2
a 0 � 1

4
max�2b1 � b2 ; 1ÿ v� � 1

4
�1ÿ v�

�max�0; 1
2
b2 ÿ 1

8
�1ÿ v�� ÿ 1

25
«:

The conditions (2.8)±(2.11) guarantee that g < 1
2
ÿ 1

25
«.

Lemma 4. The conclusion of Lemma 3 holds if the hypotheses (2.9)±(2.11) are
replaced by:

either b1 < 1
2
�1ÿ v� or N1 is a zeta factor; �2:13�

b2 < 1
8
�1� 3v� ÿ 1

2
a 0: �2:14�

Proof. If either K > 4U , or N1 > 4U and N1 is a zeta factor, we may proceed
as at the beginning of the proof of Lemma 3. Thus we may suppose that these
cases are excluded. The integral in (2.12) is at most�Z

jM j2
�1=2�Z

jN1j4
�1=4�Z

jK N2j4
�1 =4

p x d;
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where

d � 1
2
a 0 � 1

2
�1ÿ v� ÿ 1

10
«� 1

4
max�0; 4b2 ÿ 1

2
�1ÿ v��:

(If b1 < 1
2
�1ÿ v�, the mean value theorem yields

R jN1j4 p T x«=4; if N1 is a zeta
factor and N1 < 4U, the same bound follows from (2.7).) The result now follows,
in view of (2.14).

Lemma 5. Let K�s� be a zeta factor, K p x3=4. Suppose that M � xa,
N � xb, a < v and

b < min� 1
2
�3v� 1ÿ 4a0 �; 1

5
�3� vÿ 4a 0 ��: �2:15�

Suppose further that M�s� and N�s� are Dirichlet polynomials of the type (2.4). ThenZ T

T 0

j�MNK�� 1
2
� it�j dt p x1=2LÿA: �2:16�

Proof. Let � 1
2

U; U � Ì �T0 ; T �. It suf®ces to get the above mean value bound

over � 1
2

U; U �.
Let

a � min�2vÿ 2a 0; 1
5
�1ÿ 3v� 2a 0 ��:

We may suppose that

b > 1
2
�1ÿ v�;

since otherwise the result follows from Lemma 4 with b2 � 0.
In view of Lemma 1, we may suppose that

N � N1 . . . Nt ;

where Nj � x d j ; d1 < . . . < dt and any Nj with dj >
1
2
�1ÿ v� is a zeta factor.

We now give two cases in which (2.16) is valid.

Case 1. There is a subproduct x d of N1 . . . Nt which is either a zeta factor or
has d < 1

2
�1ÿ v�. Moreover,

bÿ d < a:

If a 0 > 1
12
�13vÿ 1�, then

a < 2vÿ 2a 0 < 1
8
�1� 3v� ÿ 1

2
a 0;

while if a 0 < 1
12
�13vÿ 1�, then

a < 1
5
�1ÿ 3v� 2a 0 �< 1

8
�1� 3v� ÿ 1

2
a 0:

Now (2.16) follows on applying Lemma 4.

Case 2. There is a subproduct x d of N1 . . . Nt such that

a < d < bÿ a:

Let b2 � min�d; bÿ d�; then b2 2 �a; 1
2
b�. Let b1 � bÿ b2 . Then

b1 � 1
2
b2 � bÿ 1

2
b2 < bÿ 1

2
a < 1

2
�v� 1� ÿ a 0:

Moreover,

b2 < 1
2
� 1

2
�3v� 1ÿ 4a 0 �� � 1

4
�3v� 1� ÿ a 0
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and

b1 � 3
2
b2 < 5

4
b < 1

4
�3� vÿ 4a 0 �:

Now (2.16) follows from Lemma 3.
We may now complete the proof of the lemma. If dt < a, there is evidently a

subsum of d1 � . . .� dt in �a; 2a�. Now

2a < bÿ a;

since if a 0 > 1
12
�13vÿ 1�, then

3a < 6vÿ 6a 0 < 1
2
�1ÿ v� < b;

while if a 0 < 1
12
�13vÿ 1�, then

3a < 1
5
�3ÿ 9v� 6a 0 �< 1

2
�1ÿ v� < b:

Thus Case 2 holds when dt < a, and of course Case 2 also holds when
a < dt < bÿ a.

Finally suppose that dt > bÿ a; then we are in Case 1 with d � dt . This
completes the proof of Lemma 5.

3. Sieve asymptotic formulae

In this section we establish formulae of the type (2.2) and use them as a
stepping stone to formulae of type (1.3). In order to link (2.2) or (1.3) to the
behaviour of Dirichlet polynomials we use the following variant of [2, Lemma 11].

Lemma 6. Let F�s� �Pk } x ck kÿ s. IfZ T

T0

jF� 1
2
� it�j dt p x1=2LÿA; �3:1�

then X
k2A

ck �
y

y1

X
k2B

ck � O� yLÿA�: �3:2�

Lemma 7. Let a and u be positive numbers, w � x1= u and D � xa.
Suppose that

1=a < u < �log x�1ÿ«: �3:3�
Then X

d j P�w�
d >D

1

d
p exp�log log w� 2uaÿ ua log ua�: �3:4�

The implied constant is absolute.

Proof. Let r � �u log ua�=L. We use the simple inequality

exp�cy� ÿ 1 < �exp�c� ÿ 1�y �3:5�
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for c > 0 and 0 < y < 1. NowX
d j P�w�
d >D

1

d
<

1

D r

X
d j P�w�

d r

d
� 1

D r

Y
p<w

�1� prÿ1�

� 1

D r
exp

�X
p<w

log�1� prÿ1�
�

<
1

D r
exp

�X
p< w

pr ÿ 1

p
�
X
p<w

1

p

�
: �3:6�

We apply (3.5) with y � log p= log w and c � log ua. The last expression in (3.6)
is at most

1

D r
exp

�
exp�log ua� ÿ 1

log w

X
p< w

log p

p
�
X
p< w

1

p

�

� exp

�
ÿ ua log ua� ua

�
1� O

�
1

log w

��
� log log w� O�1�

�
by Mertens' theorems for

P
pÿ1 log p and

P
pÿ1. This completes the proof.

Lemma 8. Let M�s� �Pm , M am mÿ s, N�s� �Pn , N bn nÿ s, M � xa and
N � x b, with a < vÿ « and

b < min� 1
2
�3v� 1ÿ 4a 0 �; 1

5
�3� vÿ 4a 0 �� ÿ 2«: �3:7�

Suppose further that M�s� and N�s� are of type (2.4). Then (2.2) holds.

Proof. We follow the proof of [2, Lemma 12]. We must prove (3.2) with

ck �
X
m;n

X
d j l; d j P�w�

mnl� k

am bn m�d �:

According to Lemma 15 of Heath-Brown [7],X
d j l; d j P�w�

m�d � �
X

d j l; d j P�w�
d < g

m�d � � O

 X
d j l; d j P�w�
g < d < gw

1

!

where g � x«=2. Let

c 0k �
X

m; n; d j P�w�; d < g
l� 0 �mod d �;mnl� k

am bn m�d �; c 00k �
X

m; n; d j P�w�
g < d < wg; l� 0 �mod d �

mnl� k

jam bnj:

Then X
k2A

ck �
X
k2A

c 0k � O

�X
k2A

c 00k

�
:

Suppose for the moment that MND > x1=4. We now apply Lemma 5 to
M1�s�N�s�K�s�, where

M1�s� �
X

m; d , D

am m�d �
�md �s ; N�s� �

X
n

bn

ns
; K�s� �

X
k MN D } x

kÿ s;
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and then sum over D � g2ÿ j 2 � 1
2
; 1

2
g�. In each case M1 has length at most M x«

and Lemma 5 is applicable. We conclude thatX
k2A

c 0k �
y

y1

X
k2B

c 0k � O� yLÿA�: �3:8�

We reach the same conclusion with c 00k in place of c 0k by modifying M1�s� in an
obvious fashion. Finally we bound

P
k2A c 00k by

p
y

y1

X
k2B

c 00k p y
X
m; n

jan j jbnj
mn

X
d j P�w�

g < d < wg

1

d

p y
X
m; n

jamj
m

jbn j
n

exp�ÿ 1
2

u« log u«�p yLÿA;

from Lemma 7. Here w � x1=u, so that u � logL. Now (3.2) follows on
assembling this together with (3.8).

Now suppose that MND < x1=4, so that (3.8) and its analogue for c 00k take
the form X

nl2A
np x 1 = 4

an ÿ
y

y1

X
nl2B

np x 1 = 4

an p yLÿA:

This bound is easily established, because the left-hand side isX
n

an

�
y

n
� O�1�

�
ÿ y

y1

X
n , N

an

�
y1

n
� O�1�

�
p
X

n

janjp x1=4�«:

The proof may now be carried through as in the case MND > x1=4.

Lemma 9. Let LMN � x. Let g be a natural number, g < B. Suppose that

M � xj1 ; N � xj 2 ;

jj1 ÿ j 2 j < 2vÿ 1� 1
8

«; �3:9�

1ÿ �j1 � j 2� < min

�
4vÿ 2;

�8gÿ 4�vÿ �4gÿ 3�
4gÿ 1

;
24gvÿ �12g� 1�

4gÿ 1

�
: �3:10�

Suppose further that the Dirichlet polynomial L�s� satis®es

sup
t2 �To ;T �

jL� 1
2
� it�jp L1=2LÿA: �3:11�

Then F�s� � L�s�M�s�N�s� satis®es (3.1).

Proof. This is a variant of Theorem 4 of [2]. The only modi®cation needed to
the argument in [2] comes in Case 2(ii), where the expressions I1 and I2 must be
replaced by

I 01 � �TM f �j1��1=2ÿ1=4 g�T N f �j 2 ��1=2ÿ1=4 g

´ �L2 gÿ2 gj 3�1=2 gM j1ÿ1=2N j 2ÿ1=2Lj 3ÿ1=2;
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and

I 02 � �T M f �j1��1= 2ÿ1=12 g�T N f �j 2��1=2ÿ1= 12 g

´ �TL4 gÿ6 gj 3�1=6 gM j1ÿ1=2N j 2ÿ1=2Lj 3ÿ1=2:

Here

f �j� � min�1ÿ 2j; 4ÿ 6j�; �3:12�
a function which has the simple property

a f �j� � j ÿ 1
2

< a f � 3
4
� � 1

4
� 1

4
�1ÿ 2a� �3:13�

for any a 2 � 1
6
; 1

2
�. Thus

I 01 < T 1ÿ1=2 g�MN �1=8 gL1=2 � T 1ÿ1 =2 gx1=8 gL1=2ÿ1= 8 g p x1 =2LÿA

by (3.10). Similarly

I 02 < T�MN �1=24 gL1=6 � T x1 =24 gL1=6ÿ1=24 g p x1=2LÿA:

The desired result follows just as in [2].

We now require combinatorial lemmas designed to bring Lemma 9 into play
after a number of `Buchstab decompositions' of the left-hand side of (2.2).

Lemma 10. Let 0 < a < 1
2
� « and let h be the least positive integer with

a > 1
2
ÿ 2h�vÿ 1

2
�:

Let k > 0,

2�vÿ a�
2hÿ 1

> a1 > . . . > ak > 0; �3:14�
and suppose that

a� a1 � . . .� akÿ1 � 1
2
ak < 1ÿ v if k > 0: �3:15�

Then, writing

a� � max

�
2h�1ÿ v� ÿ a

2hÿ 1
;

2�hÿ 1�v� a

2hÿ 1

�
�3:16�

we have

a� a1 � . . .� ak < a�: �3:17�

Proof. Suppose ®rst that k > h. Since the aj are decreasing, (3.15) yields

a� �hÿ 1
2
�ak < 1ÿ v; �3:18�

ak < �1ÿ vÿ a�=�hÿ 1
2
�; �3:19�

so that

a� a1 � . . .� ak < 1ÿ v� 1
2
ak

< 1ÿ v� 1ÿ vÿ a

2hÿ 1
� 2h�1ÿ v� ÿ a

2hÿ 1
:

Now suppose that k < h. We apply (3.14) to obtain

a� a1 � . . .� ak < a� �hÿ 1� 2�vÿ a�
2hÿ 1

� 2�hÿ 1�v� a

2hÿ 1
:

This completes the proof of Lemma 10.
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Note that the function a� of a satis®es

1ÿ v <
hÿ v

2hÿ 1
< a� < 1

2
� «: �3:20�

Lemma 11. Make the hypotheses of Lemma 10, and suppose further that

a� a1 � . . .� ak � 1
2
ak�1 > 1ÿ v: �3:21�

Then the numbers

g1 � a� a1 � . . .� ak

and

g2 � 1ÿ �a� a1 � . . .� ak�1�
satisfy

jg1 ÿ g2j< 2vÿ 1: �3:22�
Proof. We have

g1 ÿ g2 � 2�a� a1 � . . .� ak� � ak�1 ÿ 1

> 2�1ÿ v� ÿ 1 � ÿ�2vÿ 1� �3:23�
from (3.21). If k > h, then we have (3.19) from the previous proof. Since
a > 1

2
ÿ 2h�vÿ 1

2
�,
ak <

1ÿ vÿ a

hÿ 1
2

<
1
2
ÿ v� 2h�vÿ 1

2
�

hÿ 1
2

� 2vÿ 1:

Since the aj are decreasing,

g1 ÿ g2 � 2�a� a1 � . . .� akÿ1 � 1
2
ak� � ak � ak�1 ÿ 1

< 2�1ÿ v� � 2�2vÿ 1� ÿ 1 � 2vÿ 1:

If k < h, then (3.14) yields

g1 ÿ g2 < 2aÿ 1� �2hÿ 1� 2�vÿ a�
2hÿ 1

� 2vÿ 1:

This completes the proof of Lemma 11.

Lemma 12. Let a 2 �0; 1
2
�,

0 < b < min� 1
2
�3v� 1ÿ 4a��; 1

5
�3� vÿ 4a��� ÿ 2«:

Let M�s� �Pm , M am mÿ s, N�s� �Pn , N bn nÿ s; 2M � xa and N � xb, where
M�s� and N�s� are of type (2.4). Let

Ih � � 12ÿ 2h�vÿ 1
2
�; 1

2
ÿ �2hÿ 2��vÿ 1

2
��;

and write

n�a� � min

�
2

2hÿ 1
�vÿ a�; 36vÿ 17

19

�
�a 2 Ih ; h > 1�:

Then (1.3) holds for every n < n�a�.
This result sharpens Lemmas 5 and 6 of [1]. It is clear that n�a�> 2vÿ 1. The

upper bound on b never falls below 1
2
�3vÿ 1� ÿ 2«.
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Proof of Lemma 12. The summation conditions m , M and n , N will be
omitted. Let

w�l; z� � 1 if �l; P�z�� � 1;

0 otherwise.

�
From Buchstab's identity,

w�l; z� � w�l; w� ÿ
X
ph� l

w < p< z

w�h; p�: �3:24�

Here w is given by (2.3).
We must prove that, taking z � x n,

ck�0� �
X

mnl� k

am bn w�l; z�

satis®es (3.2). From (3.24),

ck�0� � c 0k�0� ÿ c 00k�0� ÿ ck�1�
where

c 0k�0� �
X

mnl� k

am bn w�l; w�;

c 00k�0� �
X

mnp1 h1 � k
w < p1 < z

mp 1 = 2
1

> x 1ÿ v

am bnw�h1; p1�;

ck�1� �
X

mnp1 h1 � k
w < p1 < z

mp 1 = 2
1

< x 1ÿ v

am bnw�h1; p1�:

We continue the process by applying (3.24) to ck�1�. In general, let

ck� j� �
X

mp1... pj hj � k
w < pj < ...< p1 < z

mp1... pjÿ 1 p 1 = 2
j < x 1ÿ v

am bn w�hj ; pj�;

then (3.24) gives

ck� j� � c 0k� j� ÿ c 00k � j� ÿ ck� j� 1�
where c 0k� j� is obtained from ck� j� by replacing w�hj ; pj� by w�hj ; w�, and

c 00k� j� �
X

mp1... pj pj� 1 hj� 1 � k
w < pj� 1 < ...< p1 < z

mp1... pjÿ 1 p 1 = 2
j < x 1ÿ v <mp1... pj p 1 = 2

j� 1

am bnw�hj�1; pj�1�:

For j > L= log w � logL, the sum ck� j� is empty and decomposition ceases.
Each c 0k� j� satis®es (3.2). To see this, we write pi � xa i . Then since m < xa,

where a 2 Ih, we have

mp1 . . . pj < xa � �3:25�
in the sum c 0k� j�, by Lemma 10. We now obtain (3.2) by an appeal to Lemmas 6
and 8, taking

M�s� �
X

mp1... pjÿ 1 p 1 = 2
j

< x 1ÿ v

w < pj < ...< p1 < z

am�mp1 . . . pj�ÿ s:
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Each c 00k� j� satis®es (3.2). For in c 00k� j�, we may write

hj�1 � p 01 . . . p 0u
where u < logL. It suf®ces to prove (3.2) for the portion c 00k� j; u� of c 00k� j�
arising from a ®xed value of u.

As in the proof of Lemma 1 of [3], we may remove the conditions of

summation, x1ÿ v < mp1 . . . pj p1=2
j�1 ; pj�1 < pj and pj�1 < p 01, by the use of

Perron's formula, which modi®es the coef®cients of the Dirichlet polynomials in
an acceptable way. (The same process is implicit several times in the rest of the
paper.) We apply Lemmas 6 and 9 with g � 5, with M�s� produced by grouping
m; p1; . . . ; pj , L�s� corresponding to pj�1, and N�s� produced by grouping the
remaining variables. The restriction to dyadic ranges presents no problem, and we
have only to verify (3.9)±(3.11). For (3.9) we appeal to Lemma 11; the condition
(3.21) derives from one of the summation conditions for c 00k� j�. For (3.10) we
note that

1ÿ �j1 � j 2�< n�a�;
and n�a� is de®ned in such a way that (3.10) holds. We complete the proof of
(3.2) for c 00k� j� by noting that (3.11) follows from [2, Lemma 5]. We now obtain
(3.4) for ck�0� on combining the results for the O�logL� expressions into which
we have decomposed it.

Lemma 13. Let M � xa, N1 � x b and N2 � xg, where M�s�, N1�s� and N2�s�
are of type (2.4) and suppose that a < 1

2
and either

2b� g < 1� vÿ 2a� ÿ 2«;(i)

g < 1
4
�1� 3v� ÿ a� ÿ «;

2b� 3g < 1
2
�3� v� ÿ 2a� ÿ 2«;

or

b < 1
2
�1ÿ v�; g < 1

8
�1� 3vÿ 4a�� ÿ «:(ii)

Let

bn �
X

n1 n 2 � n
n1 , N1; n 2 , N 2

An1
Bn 2

:

Then (1.3) holds whenever n < n�a�.
Proof. We follow the proof of Lemma 12, altering only the discussion of

c 0k� j�, where N�s� no longer satis®es the requirements of Lemma 8. However,
N�s� � N1�s�N2�s�, and at the point in the proof of Lemma 8 where we appeal to
Lemma 5, we may substitute an appeal to Lemma 3 in Case (i), or to Lemma 4
in Case (ii). Modi®ed in this way, the proof of the necessary variant of Lemma 8
goes through, and we obtain the desired result.

4. The two-dimensional sieve

For a given positive integer m let us write, suppressing dependence on R,

Em � frl: mrl 2A; r , Rg
and de®ne Fm similarly with A replaced by B.
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Lemma 14. Let x1=4 < M < x1=2 and MN 2R < x1ÿ2 «, and suppose M�s� is of
type (2.4). ThenX

m , M

X
n , N

am bn S�Emn 2

; w� � y

y1

X
m , M

X
n , N

am bn S�Fmn 2

; w� � O� yLÿA�: �4:1�

Proof. As in the proof of Lemma 8, the left-hand side of (4.1) isX
m; n

am bn

X
d j P�w�
d < g

m�d �jEmn 2

d j � O

�X
m; n

jam bn j
X

g < d < gw

jEmn 2

d j
�
: �4:2�

Let L � x=MN 2R. For given d j P�w�,
jEmn 2

d j �
X

eh� d

X
r , R
e j r

�r ; h�� 1

X
l } L
h j l

mn 2rl2A

1

�
X

eh� d

X
r 0, R= e

 X
f j h

f j r 0

m� f �
! X

l 0} L hÿ 1

mn 2er 0hl 0 2A

1

�
X

ef g� d

m� f �
X

r 00, R = e f

mn 2ef 2gr 00l 0 2A

X
l 0} L= f g

1: �4:3�

Thus, given any coef®cients ld , with jldj< 1,X
m; n

am bn

X
d < gw
d j P�w�

ldjEmn 2

d j �
X
k2A

ck �4:4�

with

ck �
X

ef g< gw
ef g j P�w�

l ef g m� f �
X
m; n

mn 2e f 2grl� k

am bn

X
r , R = e f

X
l } L= f g

1:

Let E > 1, F > 1, G > 1, EFG p gw, R1 � R=EF, L1 � L=FG,

M�s� �
X

m , M

am mÿ s
X

e , E ; f , F
g , G

l ef g m� f ��ef 2g�ÿ s;

L1�s� �
X

l } L 1

lÿ s and R1�s� �
X

r } R1

rÿ s:

Lemma 2 and the mean value theorem yield, for T0 < U < T and
max�R1; L1�< 4U,Z U

U =2
jMR1 L1� 1

2
� it�j dt <

�Z
jM j2

�1=2�Z
jR1j4

�1=4�Z
jL1j4

�1=4

p x1=4��1ÿ v�=2�« p x1= 2ÿ«LÿA:
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If R1 or L1 is greater than 4U, we get the boundZ U

U =2
jMR1L1� 1

2
� it�j dt p x1=2LÿA

by arguing as at the start of the proof of Lemma 3. Consequently,

F�s� �
X
k } x

ck kÿ s � M�s�R1�s�L1�s�
X

n

bn

n2 s

satis®es Z T

T 0

jF� 1
2
� it�j dt p x1=2Lÿ2 A

X
n

jbnj
n

p x1=2LÿA

and (3.2) holds. In particular, the ®rst summand in (4.2) is

y

y1

X
m; n

am bn

X
d j P�w�
d < g

m�d �jFmn 2

d j � O� yLÿA� �4:5�

and the second is

O

�
y

y1

X
m; n

jamj jbnj
X

g < d < gw

jFmn 2

d j
�
� O� yLÿA�: �4:6�

Moreover,X
m; n

jam bnj
X

g < d < gw

jFmn 2

d jp
X
m; n

jam bnj
X

r , R= ef

mn 2ef 2grl2B

X
l } L= f g

1

p
X
m; n

jam bnj
X

g < ef g< gw

X
r , R= ef

y1

mn2ef 2gr
:

Consider, for example, the part of the last sum with e > g1= 3; this is

p y1L
B

X
g 1 = 3 < e< gw

e j P�w�

1

e
p y1L

ÿA

by Lemma 7. It is now easy to complete the proof on combining this estimate
with the formulas (4.5) and (4.6).

Lemma 15. Let M } xa with 1
4
< a < 1

2
; let R p x1= 2ÿ2 «. Suppose that M�s�

is of type (2.4). ThenX
m , M

am S�Em; x n� � y

y1

X
m , M

am S�Fm; x n� � O� yLÿA�

for all n < n�a�.

Proof. We must show that

ck�0� �
X

m , M

am

X
r , R

mrl� k

X
l

w�rl; z�
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satis®es (3.2), where z � x n. Imitating the proof of Lemma 12, we ®nd that this

reduces to proving (3.2) for c 0k� j� , c 00k� j�, where

c 0k� j� �
X

mrl� k

am

X
w < pj < ...< p1 < z

p1... pj j r l

mp1... pjÿ 1 p 1 = 2
j

< x 1ÿ v

w

�
rl

p1 . . . pj

; w

�
;

c 00k� j� �
X

mrl� k

am

X
w < pj < ...< p1 < z

p 1... pj� 1 j r l

mp1... pjÿ 1 p 1 = 2
j < x 1ÿ v <mp1... pj p 1 = 2

j� 1

w

�
rl

p1 . . . pj�1

; pj�1

�

(with obvious modi®cations when j � 0).
Let

P
H denote a sum over all subsets H of f1; . . . ; jg; write u�H� � Q i2H pi

and v�H � � Q i 62H ; i < j pi . For p1 . . . pj counted in c 0k� j� there is an H such that

u�H� j r and �r; v�H �� � 1. Thus, writing r 0 � r=u�H � and l 0 � l=v�H�, we have

c 0k� j� �
X

H

X
m

am

X
p1;...; pj

X
r 0, R=u�H �; �r 0;v�H ��� 1

X
l 0

mr 0p1... pj l 0 � k

w�r 0l 0; w�:

Inserting the factor
P

K Ç H� 0= �ÿ1�jK jPu�K � j r 0 1 in place of the condition
�r 0; v�H �� � 1, we arrive at

c 0k� j� �
X

H

X
K Ç H� 0=

�ÿ1�jK j
X

m

am

X
p1;...; pj

mr 00u�K �p1... pj l 0 � k

X
r 00, R=u�H �u�K �

X
l 0

w�r 00l 0; w�

�
X

H

X
K Ç H� 0=

�ÿ1�jK j
X
m 0

Am 0
X

n
m 0n 2r 00l 0 � k

bn

X
r 00

X
l 0

w�r 00l 0; w�:

Here

Am 0 �
X

m

X
pi �i 62K �

m
Q

i 62K
pi �m 0

am ; bn �
X

pi �i2K �
u�K �� n

1: �4:7�

Note that, recalling (3.25),

m 0n < x1=2; nr 00p R p x1=2ÿ2 «; �4:8�
hence m 0 < x1=2 and m 0n2r 00p x1ÿ2 « in the last expression for c 0k� j�. Since
there are fewer than 22 j < L 2 possibilities for H and K, Lemma 14 yields (3.2)
for c 0k� j�.

We may proceed similarly to obtain

c 00k� jÿ 1� �
X

H

X
K Ç H� 0=

�ÿ1�jK j

X
m

X
w < pj < ... < p1 < z

mp1... p 1 = 2
jÿ 1

< x 1ÿ v<mp1... p 1 = 2
j

mr 00u�K �p1... pj l 0 � k

X
r 00 , R=u�H �u�K �

X
l 0

w�r 00l 0; pj�:
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We approximate this expression by the contribution from K � 0= ,

ck �
X

H

X
m

X
p1;...; pj

X
r 00

X
l 0

mr 00p1... pj l 0 � k

w�r 00l 0; pj�

where the summation conditions for m , p1; . . . ; pj , r 00, l 0 are as in the preceding
sum. We have

jc 00k� jÿ 1� ÿ ck j<
X

H

X
K Ç H� 0=

K 6� 0=

X
m 0
jAm 0 j

X
n

m 0n 2r 00l 0 � k

bn

X
r 00, R=u�H �u�K �

X
l 0

w�r 00l 0; w� � Ck ;

say. Here Am 0 and bn are as in (4.7) and we see thatX
k2A

Ck �
y

y1

X
k2B

Ck � O� yLÿA�;

while, for some H and K ,X
k2B

Ck p y1L
2
X
m 0

jAm 0 j
m 0

X
r 00 < x

1

r 00
X
l 0 < x

1

l 0
X
n>w

1

n2
p y1L

ÿA:

Obviously, then, it suf®ces to prove (3.2) for ck in place of c 00k� jÿ 1�. The
argument is now essentially the same as the discussion of c 00k� j� at the end of the
proof of Lemma 12 and we omit it. This completes the proof of Lemma 15.

In the next lemma we use Lemma 15 to obtain a formula of the shapeX
p1 , M

X
p 2 , R

S�Ap1 p 2
; x n� � y

y1

X
p1 , M

X
p 2 , R

S�Bp1 p 2
; x n� � O� yLÿA� �4:9�

that would be inaccessible by the method of § 3.

Lemma 16. Suppose that M � xa,

R < M and M 2R < x:

Then (4.9) holds for n � 2vÿ 1.

Proof. In view of Lemma 12 we may suppose that R > x�3vÿ1�=2ÿ2«. Lemma
15 yields X

p 1 , M

S�E p1 ; x n� � y

y1

X
p1 , M

S�F p1 ; x n� � O� yLÿA�:

Here

E p1 � frl: r , R; p1rl 2Ag
and F p1 is de®ned similarly with B in place of A.
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We haveX
p1 , M

S�E p1 ; x n� �
X

p1 , M

jf p 01 . . . p 0u l: p 01 . . . p 0u , R; p1 p 01 . . . p 0u l 2A;

x n < p 01 < . . . < p 0u ; �l; P�x n�� � 1gj
�
X

p 1 , M

X
x n < p 01 < ... < p 0u ;

p 01... p 0u , R

S�Ap1 p 0
1
... p 0u ; x n�

�
X

p 1 , M

X
p 0

1
, R

S�Ap1 p 0
1
; x n�

�
X

p1 , M

x n < p 01 < �2 R�1 = 2

X
p 01 < p 02 < ... < p 0u
p 02... p 0u , R=p 01

S�Ap1 p 0
1

p 0
2

... p 0u ; x n�: �4:10�

The second sum in the last expression is

S � y

y1

X
p1 , M

x n < p 01 < �2 R�1 = 2

X
p 0

1
< p 0

2
< ... < p 0u

p 02 ... p 0u , R= p 01

S�Bp1 p 0
1
... p 0u ; x n� � O� yLÿA�

by an application of Lemma 12. For this it suf®ces to note that MR1=2 p x1=2,
and

R=p1 p x1=3pÿ1
1 p x1=3ÿ�2 vÿ1�p x �3 vÿ1�=2ÿ2 «

since v > 0:524. (Removal of the condition p 01 < p 02 is covered in [3], as pointed
out earlier.) NowX

p1 , M

X
p 0

1
, R

S�Ap1 p 0
1
; x n� � y

y1

� X
p1 , M

S�F p1 ; x n� ÿ S

�
� O� yLÿA�

� y

y1

X
p1 , M

X
p 0

1
, R

S�Bp1 p 0
1
; x n� � O� yLÿA�

by an obvious variant of (4.10). This completes the proof of Lemma 16.

Lemma 17. Let M1 < M2 < M3 , M1M2 M 2
3 < x and M1 > x2vÿ1, and suppose

M1�s� and M3�s� are of type (2.4). Then, for 0 < n < 2vÿ 1,X
m1 , M1

X
p 2 , M 2

X
m 3 , M 3

am 1
bm 3

S�Am1 p 2 m 3
; x n�

� y

y1

X
m1 , M1

X
p 2 , M 2

X
m 3 , M 3

am1
bm 3

S�Bm1 p 2 m 3
; x n� � O� yLÿA�:

Proof. We have

M1 M3 < �M1 M2 M 2
3 �1=2 < x1=2; M 3

2 p xMÿ1
1 p x2ÿ2v:

If M2 < x�3vÿ1�=2ÿ2 «, the result follows from Lemma 12. Suppose now that

M2 > x�3vÿ1�=2ÿ2 «:
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Then M1 M3 > M2 > x1= 4. Lemma 15 yields an asymptotic formula forX
m 1 , M 1

X
m 3 , M 3

am1
bm 3

S�Em1m 3 ; x n�:

(Here R � M2.)
In analogy with (4.10),X

m1;m 3

am1
bm 3

S�Em1m 3 ; x n�

�
X

m1;m 3

am1
bm 3

X
x n < p 01 < ... < p 0u

p 01... p 0u , M 2

S�Am1m 2 p 0
1
... p 0u ; x n�

�
X

m1;m 3

am1
bm 3

X
p 0

1
, M 2

S�Am1 m 3 p 0
1
; x n�

�
X

m1;m 3

x n < p 01 < �2 M 2�1 = 2

X
p 01 < p 02 < ... < p 0u
p 02 ... p 0u , M 2 =p 01

S�Am1 m 3 p 0
1
... p 0u ; x n�:

The second sum in the last expression is

y

y1

X
m1;m 3

x n < p 01 < �2 M 2�1 = 2

X
p 01 < p 02 < ... < p 0u
p 02... p 0u , M 2 =p 01

S�Bm1 m 3 p 0
1
... p 0u ; x n� � O� yLÿA�:

To see this we divide it into two subsums de®ned by

(i) m1m3 p 01 < x1=2,

(ii) m1m3 p 01 > x1=2.

If condition (i) holds, then

p 02 . . . p 0u p M2 xÿ�2vÿ1�p x �2ÿ2v�= 3ÿ�2vÿ1�p x�3vÿ1�=2ÿ2 «

since v > 0:524. We now get the desired result from Lemma 12, with variables
regrouped as m � m1m3 p 01 and n � p 02 . . . p 0u .

If condition (ii) holds, then we regroup the variables differently, taking

m � m3 p 02 . . . p 0u p m3 M2 =p 01 p m2
3 m1 M2 xÿ1=2 p x1=2;

and

n � m1 p 01 p m1M 1=2
2 p xMÿ5=2

2 p x1ÿ5�3vÿ1�=4�6 « p x�3vÿ1�=2ÿ2 «:

Once again, the desired result follows from Lemma 12. We may now complete
the proof in exactly the same way as the previous lemma.

5. Further asymptotic formulae

Let L1 . . . Ll � x, l > 3, Lj � xa j and aj > «. We shall ®nd a region of
�a1; . . . ;al� in whichZ T

T 0

jL1� 1
2
� it� . . . Ll� 1

2
� it�jh dt p xh=2LÿA �5:1�

for every A > 0. Here h � 1 or 2. The case h � 2 is needed for application to
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primes in almost all short intervals, which we shall consider in another paper. For
h � 1, (5.1) permits us to evaluateX

p1 , L 1

. . .
X

plÿ 1 , L lÿ 1

S�Ap1... plÿ 1
; plÿ1�:

This is essentially an application of Lemma 6. We have already discussed the
removal of the condition �bl ; P� plÿ1�� � 1 in counting p1 . . . plÿ1bl in the last sum.

In order to prove (5.1) we need only proveX
j

jL1� 1
2
� itj� . . . Ll� 1

2
� itj�jh p xh=2LÿA �5:2�

for any set S � ft1; t2 ; . . . g in �T0; T � with j ti ÿ tj j> 1 �i 6� j�. By a simple
dyadic decomposition we may assume that

L
j jÿ1=2

j < jLj� 1
2
� it�j< 2L

j jÿ1=2

j

where 1
2

< j j < 1� « and the left-hand inequality is to be deleted when j j � 1
2

.
We recall that the Dirichlet polynomials Lj have L

j jÿ1

j < LB. For j � 3 we need
to hypothesize the stronger inequality

L
j 3ÿ1
3 pLÿA �5:3�

for every A > 0.
Now (5.2) will follow if we show that

S :� jS jLÿB
Y

j

L
h�j jÿ1�
j pLÿA �5:4�

(the product
Q

j runs over j � 1; . . . ; l unless otherwise stated). We have at our
disposal the bounds ( f as in (3.12)):

jS jLÿB p max�Lg j �2ÿ2j j�
j L

k j �2ÿ2j 3�
3 ; T L

g j f �j j�
j L

kj f �j 3�
3 �

where k1 and k2 are 0 or 1, and kj is 0 for j > 2. To see this, apply Lemma 1 of

[2] to L
g j

j L
k j

3 . We write �I �j as an abbreviation for

jS jLÿB p L
g j �2ÿ2j j �
j L

kj �2ÿ2j 3�
3

and �I I �j for

jSjLÿB p T L
g j f �j j �
j L

kj f �j 3�
3 :

Lemma 18. With the above notation, suppose that

h

2g1

� h

2g2

< 1; v :� 1ÿ
�

k1

g1

� k2

g2

�
> 0;

X
i 6� 3

h

2gi

� hv

2g3

> 1: �5:5�

Let u � 1ÿP i > 3 h=2gi and suppose that

1
6

hv < g3

�
uÿ h

2g1

ÿ h

2g2

�
< 1

2
hv:

Let b1; c1; a2 ; c2 ; b3 ; c3 ; a4 ; c4 ; a5 ; b5 ; c5 ; a6 ; b6 ; c6 be non-negative numbers,
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aj 2 �h=6g1; h=2g1�, bj 2 �h=6g2 ; h=2g2 �,
u � h

2g1

� b1 � c1 � a2 �
h

2g2

� c2 �
h

2g1

� b3 � c3

� a4 �
h

2g2

� c4 � ar � br � cr �r > 5�;

1
6

�
ÿ 2g3 c1 � hÿ hk1

g1

�
< k2 b1 < 1

2

�
ÿ 2g3 c1 � hÿ hk1

g1

�
;

1
6

�
ÿ 2g3 c2 � hÿ hk2

g2

�
< k1 a2 < 1

2

�
ÿ 2g3 c2 � hÿ hk2

g2

�
;

1
6

�
hÿ hk1

g1

�
< k2 b3 � g3 c3 < 1

2

�
hÿ hk1

g1

�
;

1
6

�
hÿ hk2

g2

�
< k1 a4 � g3 c4 < 1

2

�
hÿ hk2

g2

�
;

1
6
�ÿ2g3 c5 � h�< k1 a5 � k2 b5 < 1

2
�ÿ2g3 c5 � h�;

1
6

h < k1a6 � k2 b6 � g3 c6 < 1
2

h:

Then (5.1) holds whenever aj > gÿ1
j �1ÿ v� � j > 3�,

a2� 1
4

h� 1
2

g2 b1� � a3

�
ÿ 1

2
g3 c1 � 1

4
hÿ hk1

4g1

� 1
2

k2 b1

�
> �b1 � «��1ÿ v�; �5:6�

a1� 1
4

h� 1
2

g1 a2� � a3

�
ÿ 1

2
g3 c2 � 1

4
hÿ hk2

4g2

� 1
2

k1 a2

�
> �a2 � «��1ÿ v�; �5:7�

a2� 1
4

h� 1
2

g2 b3� � a3

�
1
2

g3 c3 � 1
4

hÿ hk1

4g1

� 1
2

k2 b3

�
>

�
uÿ h

2g1

� «

�
�1ÿ v�;

�5:8�

a1� 1
4

h� 1
2

g1 a4� � a3

�
1
2

g3 c4 � 1
4

hÿ hk2

4g2

� 1
2

k1 a4

�
>

�
uÿ h

2g2

� «

�
�1ÿ v�;

�5:9�

a1� 1
4

h� 1
2

g1 a5� � a2� 1
4

h� 1
2

g2 b5� � a3�ÿ 1
2

g3 c5 � 1
4

h� 1
2

k1 a5 � 1
2

k2 b5�

>�a5 � b5 � «��1ÿ v�; �5:10�

a1� 1
4

h� 1
2

g1 a6� � a2� 1
4

h� 1
2

g2 b6� � a3� 1
2

g3 c6 � 1
4

h� 1
2

k1a6 � 1
2

k2 b6�

>�u� «��1ÿ v� �5:11�
and

a3

�
1
2

g3

�
uÿ h

2g1

ÿ h

2g2

�
� 1

4
hv

�
>

�
uÿ h

2g1

ÿ h

2g2

� «

�
�1ÿ v�: �5:12�
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Proof. Since aj > gÿ1
j �1ÿ v� for j > 3, we have �I �j for j > 3. There are thus

eight cases to consider.

Case �I �1, �I �2 , �I �3 . De®ne l by

h

2g1

� h

2g2

� l

�
v

2g3

�
X
j > 3

1

2gj

�
� 1

so that 0 < l < h from (5.5). Then

S p
Y2

j�1

�L2 g jÿ2 g j j j

j L
2 k jÿ2 k j j 3

3 �h =2 g j�L2 g 3ÿ2 g 3 j 3

3 �lv =2 g 3

´
Y
j > 3

�L2 g jÿ2 g j j j

j �l=2 g j

Y
j

L
h�j jÿ1�
j :

Every L
j jÿ1

j in the above product has non-negative exponent: the exponent is 0

for j < 2;

h

�
ÿ k1

g1

ÿ k2

g2

� 1

�
ÿ lv � �hÿ l�v

for j � 3; and hÿ l for j > 3. Since �hÿ l�v > 0, (5.4) now follows from (5.3).

Case �I �1, �II�2 , �I�3. Since b1 � c1 � uÿ h=2g1, we have

S p �L2 g1�1ÿj1�
1 L

2 k1�1ÿj 3�
3 �h= 2 g1�T L

g 2 f �j 2�
2 L

k 2 f �j 3�
3 �b1

´ �L2 g 3ÿ2 g 3 j 3

3 �c1

Y
j > 3

�L2 g jÿ2 g j j j

j �h=2 g j

Y
j

L
h�j jÿ1�
j :

The monomials in L
j jÿ1

j � j 6� 2, j 6� 3� have product 1 and can be omitted; the

corresponding step will be implicit in subsequent cases. Thus S p S1�j 2 ; j 3�, where

S1�j 2 ; j 3� � T b1L
h�j 2ÿ1��g 2 b1 f �j 2�
2 L

�ÿ2 g 3 c1�hÿhk1 = g1��j 3ÿ1�� k 2 b1 f �j 3�
3

< S1� 3
4
; 3

4
�:

For the last inequality, we appeal to (3.13), using

1
6

h < g2 b1 < 1
2

h �5:13�
and

1
6

�
ÿ 2g3 c1 � hÿ hk1

g1

�
< k2 b1 < 1

2

�
ÿ 2g3 c1 � hÿ hk1

g1

�
: �5:14�

In subsequent cases, we leave the appeal to (3.13) implicit but mention the
inequalities corresponding to (5.13) and (5.14).

Finally, (5.6) yields

S1� 3
4
; 3

4
� � T b1L

ÿh=4ÿg 2 b1 = 2
2 L

g 3 c1 =2ÿh=4�hk1 =4 g1ÿ k 2 b1 =2
3 pLÿA:

Case �I I�1, �I�2, �I �3. This is similar to the previous case, with L1 and L2

interchanged.
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Case �I�1, �I I�2, �II�3. Since b3 � c3 � uÿ h=2g1, we have

S p �L2 g1�1ÿj 1�
1 L

2 k1�1ÿj 3�
3 �h=2 g1�TL

g 2 f �j 2�
2 L

k 2 f �j 3�
3 �b 3�TL

g 3 f �j 3�
3 �c 3

´
Y
j > 3

�L2 g jÿ2 g j j j

j �h =2 g j

Y
j

L
h�j jÿ1�
j :

Thus S p S2�j 2 ; j 3� where

S2�j 2 ; j 3� � T uÿh=2 g1 L
h�j 2ÿ1��g 2 b 3 f �j 2�
2 L

�hÿhk1 =g 1��j 3ÿ1���k 2 b 3�g 3 c 3� f �j 3�
3

< S2� 3
4
; 3

4
�;

since
1
6

h < g2 b3 < 1
2

h;

1
6

�
hÿ hk1

g1

�
< k2 b3 � g3 c3 < 1

2

�
hÿ hk1

g1

�
:

Finally, (5.8) yields

S2� 3
4
; 3

4
� � T uÿh=2 g1L

ÿh=4ÿg 2 b 3 =2
2 L

ÿh=4�hk1 = 4 g1ÿ k 2 b 3 =2ÿg 3 c 3 =2
3 pLÿA:

Case �II�1, �I�2, �II�3. This is similar to the previous case, with L1 and L2

interchanged.

Case �I I�1, �II�2, �I�3. Since a5 � b5 � c5 � u, we have

S p �TL
g1 f �j1�
1 L

k1 f �j 3�
3 �a 5�TL

g 2 f �j 2�
2 L

k 2 f �j 3�
3 �b 5

´ �L2 g 3ÿ2 g 3 j 3

3 �c 5

Y
j > 3

�L2 g jÿ2 g j j j

j �h=2 g j

Y
j

L
h�j jÿ1�
j :

Thus S p S3�j1; j 2 ; j 3�, where

S3�j1; j 2 ; j 3� � T a 5�b 5 L
h�j1ÿ1��g1 a 5 f �j 1�
1 L

h�j 2ÿ1��g 2 b5 f �j 2 �
2

´ L
�hÿ2 g 3 c 5 ��j 3ÿ1���k1 a 5� k 2 b 5� f �j 3�
3

< S3� 3
4
; 3

4
; 3

4
�:

Here we use
1
6

h < g1 a5 < 1
2

h; 1
6

h < g2 b5 < 1
2

h;

1
6
�hÿ 2g3 c5�< k1 a5 � k2 b5 < 1

2
�hÿ 2g3 c5�:

Finally, (5.10) yields

S3� 3
4
; 3

4
; 3

4
� � T a 5�b 5L

ÿh=4ÿg1 a 5 =2
1 L

ÿh=4ÿg 2 b 5 =2
2 L

ÿh=4�g 3 c 5 =2ÿ k1 a 5 = 2ÿ k 2 b 5 =2
3

pLÿA:

Case �I I�1, �II�2 , �I I�3. Since a6 � b6 � c6 � u, we have

S p �TL
g1 f �j 1�
1 L

k1 f �j 3�
3 �a 6�TL

g 2 f �j 2�
2 L

k 2 f �j 3�
3 �b6�TL

g 3 f �j 3�
3 �c 6

´
Y
j > 3

�L2 g jÿ2 g j j j

j �h=2 g j

Y
j

L
h�j jÿ1�
j :
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Thus S p S4�j1; j 2 ; j 3�, where

S4�j1; j 2 ; j 3� � T uL
h�j1ÿ1��g1a 6 f �j1�
1 L

h�j 2ÿ1��g 2 b 6 f �j 2�
2

´ L
h�j 3ÿ1���k1 a 6� k 2 b 6�g 3 c 6 � f �j 3�
3

< S4� 3
4
; 3

4
; 3

4
�:

Here we use
1
6

h < g1 a6 < 1
2

h; 1
6

h < g2 b6 < 1
2

h;

1
6

h < k1 a6 � k2 b6 � g3 c6 < 1
2

h:

Finally, (5.11) yields

S4� 3
4
; 3

4
; 3

4
� � T uL

ÿh=4ÿg1 a 6 =2
1 L

ÿh=4ÿg 2 b 6 =2
2 L

ÿh=4ÿ�k 1 a 6� k 2 b 6�g 3 c 6 �=2
3

pLÿA:

Case �I�1, �I�2, �I I�3. Let c � uÿ h=2g1 ÿ h=2g2 . Then

S p �L2 g1ÿ2 g1 j1

1 L
2 k1ÿ2 k1 j 3

3 �h=2 g1�L2 g 2ÿ2 g 2 j 2

2 L
2 k 2ÿ2 k 2 j 3

3 �h=2 g 2

´ �TL
g 3 f �j 3�
3 �c

Y
j

L
h�j jÿ1�
j :

Thus S p S5�j 3�, where

S5�j 3� � T cL
hv�j 3ÿ1�� cg 3 f �j 3�
3 < S5� 3

4
�:

Here we use
1
6

hv < g3 c < 1
2

hv:

Finally, (5.12) yields

S5� 3
4
� � T cLÿhv =4ÿ cg 3 =2 pLÿA:

This completes the proof of Lemma 18.

The cases that are helpful in the present paper, where h � 1, are
�g1; g2 ; g3 ; g4� � �1; 2; 3; d � where d � 4 or 5. We take k1 � k2 � 0. Thus

u � 1ÿ 1
2d
; b1 � c1 � 1

2
ÿ 1

2d
; c1 � 1

6
; 1

12
< b1 < 1

4
:

This is satis®ed for �b1; c1� � � 1
3
ÿ 1

2d
; 1

6
�. Similarly �a2 ; c2� � � 7

12
ÿ 1

2d
; 1

6
�.

Next,

b3 � c3 � 1
2
ÿ 1

2d
; 1

12
< b3 < 1

4
; 1

18
< c3 < 1

6
:

This is satis®ed for �b3 ; c3� equal to either � 1
3
ÿ 1

2d
; 1

6
� or � 1

4
; 1

4
ÿ 1

2d
� (it is obvious

that b3 or c3 should be chosen as an endpoint of its permitted interval). Next,

a4 � c4 � 3
4
ÿ 1

2d
; 1

6
< a4 < 1

2
; 1

18
< c4 < 1

6

is satis®ed for �a4 ; c4� equal to either � 1
2
; 1

4
ÿ 1

2d
� or � 7

12
ÿ 1

2d
; 1

6
�. Next,

c5 � 1
6
; a5 � b5 � 5

6
ÿ 1

2d
; 1

6
< a5 < 1

2
; 1

12
< b5 < 1

4
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is satis®ed for �a5 ; b5� equal to either � 1
2
; 1

3
ÿ 1

2d
� or � 7

12
ÿ 1

2d
; 1

4
�. Finally,

a6 � b6 � c6 � 1ÿ 1
2d
; 1

6
< a6 < 1

2
; 1

12
< b6 < 1

4
; 1

18
< c6 < 1

6
:

This is satis®ed for �a6 ; b6 ; c6� equal to � 1
2
; 1

4
; 1

4
ÿ 1

2d
� or � 7

12
ÿ 1

2d
; 1

4
; 1

6
� or

� 1
2
; 1

3
ÿ 1

2d
; 1

6
�.

The region of �a1; a2 ; a3 ; a4� for which (5.1) holds via Lemma 18 is thus a
union of polytopes obtained from various choices of �b3 ; c3�, �a4 ; c4�, �a5 ; b5�
and �a6 ; b6 ; c6�.

6. The ®nal decomposition

In what follows, we ignore the presence of « for brevity. Let v � 0:525. We
begin with some further notation needed to describe the further decomposition of
S3 in (1.2). Write

Un � f�a1; . . . ;an�: 0 < an < anÿ1 < . . . < a1; 2an < 1ÿ a1 ÿ . . .ÿ anÿ1g:
Let

G �
[1
n�2

Gn

where

Gn � f�a1; . . . ;an� 2 Rn: an asymptotic formula can be obtained for

p1 . . . pn r 2A; pj , xa j ; �r; P� pn�� � 1g:
(The means of obtaining the asymptotic formula is, of course, Lemma 9 or
Lemma 18.) Put

D0 � f�a; b�: 0 < a < 1
2
; 0 < b < min� 1

2
�3v� 1ÿ 4a��; 1

2
�3� vÿ 4a���g

with a� as in § 3,

D1 � f�a; b; g�: 0 < a < 1
2
; g < 1

4
�1� 3v� ÿ a�;

b� 1
2
g < 1

2
�1� v� ÿ a�; b� 3

2
g < 1

4
�3� v� ÿ a�g;

D2 � f�a; b; g�: 0 < a < 1
2
; b < 1

2
�1ÿ v�; g < 1

8
�1� 3v� ÿ 1

2
a�g;

D� � f�a; b; g; d�: �a; b; g; d; d� can be partitioned into

�h; z� 2 D0 or �h; z ; l� 2 D1 È D2g;
R � f�a; b; g�: �a; b; g� 62 D1 È D2 ; �a; b; g� cannot be partitioned into

�h; z� 2 D0g:
In case the language is unclear, �a; b; g; d; d� can be partitioned into
�h; z� 2 D0 if, for example, �a� 2d; b� g� or �a� d� g; b� d� is in D0 .

Note that D0 , D1 and D2 correspond to conditions on variables which allow a
further decomposition via Lemma 12 or 13; while D� allows two further
decompositions. In regions corresponding to R, roÃle-reversals will be needed to
perform further decompositions.
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Presented with a sum such as X
p; q

S�Apq ; q�;

we may be able to give an asymptotic formula for some of the almost-primes
counted. We can make these visible by writing, for example,X

p; q

S�Apq ; q� �
X
p; q

S

�
Apq ;

�
x

pq

�1 =2�
�

X
p; q

q< r < �x =pq�1 = 2

S�Apqr ; r�

(the Buchstab identity in reverse). We de®ne a new function to take into account
the possible savings introduced by this technique.

Given a 2 Un , write

u �
�

1ÿ a1 ÿ . . .ÿ an

an

�
:

Then u > 1 by de®nition of Un , and S�Ap1... pn
; pn� counts numbers with up to u

prime factors. Now write

w�a; 1� � 1

an�1

where an�1 � 1ÿ a1 ÿ . . .ÿ an :

De®ne w�a; k� inductively by

w�a; k � 1� � w�a; k� �
Z � db1 . . . dbk

b1 b2 . . . bk�ak�1 ÿ b1 ÿ . . .ÿ bk�
where � denotes the region

an < b1 < b2 < . . . < bk < 1
2
�an�1 ÿ b1 ÿ . . .ÿ bkÿ1�;

�a1; . . . ;an ; b1; . . . ; bk� 62 G:

Finally we write

w�a� � w�a; u�:
We then have

w�a�<
q�an�1 =an�

an

and, for 1 < k < u ,

w�a�< w�a; k� �
Z �

q

�
an�1 ÿ b1 ÿ . . .ÿ bk

bk

�
db1

b1

. . .
dbkÿ1

bkÿ1

dbk

b 2
k

: �6:1�

This is a translation into integrals of the following fact. If we apply the Buchstab
identity in reverse u times to X

p1;...; pn

S�Ap1;...; pn
; pn�;

the loss from regions for which we cannot give an asymptotic formula is less
than the corresponding loss, if we only apply the identity k times and discard
all p1 . . . pn q1 . . . qk hk�1 with �hk�1; P�qk�� � 1 for which an asymptotic formula
cannot be given. We use (6.1) in some numerical calculations with k � 2 or 3. We
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shall also use

q�u� �
1=u for 1 < u < 2;

�1� log�uÿ 1��=u for 2 < u < 3;

(
q�u�< 1

3
�1� log 2� if u > 3:

We require a development of the above notation to take into account roÃle-
reversals. Let a3 2 U3 . Put a4 � �a1; a2 ; a3 ; a4� with n < a4 < 1

2
a1. We write

u 0 �
�

a1 ÿ a4

a4

�
:

De®ne w��a4 ; j� and Y�a4 ; j� by

w��a4 ; 1� � w�a3�
1

a1 ÿ a4

; w��a4 ; j� � w�a3�Y�a4 ; j�;

w��a4 ; j� 1� � w�a3�
�

Y�a4 ; j� �
Z ² dg1 . . . dg j

g1 . . . g j�a1 ÿ a4 ÿ g1 ÿ . . .ÿ g j�
�
:

Here the last expression is to be interpreted as a sum of multiple integrals
(including those counted by w�a3�) with the integration condition ² dependent on
which multiple integral from w�a3� is multiplying it. If, for example, one takes
the term Z

db1 . . . dbk

b1 . . . bk�1ÿ a1 ÿ a2 ÿ a3 ÿ b1 ÿ . . .ÿ bk�
from w�a3�, then the conditions on g1; . . . ; g j are

a4 < g1 < . . . < g j < 1
2
�a1 ÿ a4 ÿ g1 ÿ . . .ÿ g jÿ1�;

�a2 ; a3 ; a4 ; g1; . . . ; g j ; b1; . . . ; bk ; 1ÿ a1 ÿ a2 ÿ a3 ÿ b1 ÿ . . .ÿ bk� 62 G:

Let

w��a4� � w��a4 ; u 0 �:
Of course, we have

w��a4�<
w�a3�q��a1 ÿ a4�=a4�

a4

;

and various other upper bounds could be derived using small numbers of
integration variables.

Now de®ne non-overlapping polygons A, B, C, D, E, F, whose union is
f�a1; a2� 2 U2: n�0�< a1 < 1

2
; n�a1�< a2g, by the following sets of inequalities:

A: 1
4

< a1 < 2
5
; 1

3
�1ÿ a1�< a2 < min�a1;

1
2
�3vÿ 1�; 1ÿ 2a1�;

B: 1
4
�3ÿ 3v�< a1 < 1

2
;

max� 1
2
a1; 1ÿ 2a1�< a2 < min� 1

2
�3vÿ 1�; 1

2
�1ÿ a1��;

C: n�0�< a1 < 1
3
; n�a1�< a2 < min�a1;

1
3
�1ÿ a1��;

D: 1
3

< a1 < 1
2
; n�a1�< a2 < max� 1

3
�1ÿ a1�; 1

2
a1�;
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E: 1
2
�3vÿ 1�< a1 < 1

4
�3ÿ 3v�; 1

2
�3vÿ 1�< a2 < min�a1; 1ÿ 2a1�;

F: 1
3

< a1 < 2ÿ 3v; max�1ÿ 2a1;
1
2
�3vÿ 1��< a2 < 1

2
�1ÿ a1�:

Note that

�a1; a2� 2 A () �1ÿ a1 ÿ a2 ; a2� 2 B

and a similar relation holds between E and F. Moreover, in A È B È E È F only
products of three primes are counted. SoX

�a1;a 2� 2B

S�Ap1 p 2
; p2� �

X
�a1;a 2� 2A

S�Ap1 p 2
; p2�;

X
�a1;a 2� 2F

S�Ap1 p 2
; p2� �

X
�a1;a 2� 2E

S�Ap1 p 2
; p2�;

and

S3 � 2
X

�a1;a 2� 2A

S�Ap1 p 2
; p2� � 2

X
�a1;a 2 � 2E

S�Ap1 p 2
; p2�

�
X

�a1;a 2 � 2C

S�Ap1 p 2
; p2� �

X
�a1;a 2 � 2D

S�Ap1 p 2
; p2�:

Now we consider A in more detail. If we discarded the sum over A , our `loss'
would be <0:1971. In fact we shall make only a small saving when the exponent
is 0.525; we would have much greater success when v � 0:53. We apply
Buchstab's identity to getX
�a1;a 2 � 2A

S�Ap1 p 2
; p2� �

X
�a1;a 2 � 2A

S�Ap1 p 2
; x n�a1�� ÿ

X
�a1;a 2 ;a 3� 2 A0

S�Ap1 p 2 p 3
; p3�:

We can give an asymptotic formula for the ®rst sum on the right-hand side. If
�a1; a2 ; a3� 2 D1 È D2 or �a1 � a3 ; a2� 2 D0 , or �a2 � a3 ; a1� 2 D0 , then a
further straightforward decomposition of the ®nal sum is possible. In the
remaining part of A0 we note that a1 � a2 > 1

2
. Writing h for a number counted

by S�Ap1 p 2 p 3
; p3�, we have h , xa 4 with

a4 � a3 < 1
2
; a2 < 1

2
�3vÿ 1�:

A roÃle-reversal yieldsX
p1; p 2 ; p 3

S�Ap1 p 2 p 3
; p3� �

X
h; p 2 ; p 3

S

�
Ahp 2 p 3

;

�
x

hp2 p3

�1=2�
�

X
h; p 2 ; p 3

S�Ahp 2 p 3
; x n�a 4�a 3�� ÿ

X
h; p 2 ; p 3 ; q

S�Ahp 2 p 3 q ; q�:

We omit the conditions of summation for brevity. On the left-hand side we had to
count numbers hp2 p3 p1, and in the last sum on the right we count numbers
hp2 p3 qr, so we speak of this step as `decomposition of p1'. Further decompositions
may be possible in either the straightforward decomposition or the decomposition
of p1.

Altogether we get a `loss' from region A ofZ
�a1;a 2� 2A

min

�
1

a1a2�1ÿ a1 ÿ a2�
;

1

a1a2

�I1 � I2� �
1

a2

I3

�
da1 da2
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with

I1 �
Z

a 3 2U 3n R
a 4 62D � È G

w�a4�
a3 a4

da3 da4 ;

I2 �
Z

a 3 2U 3n R
a 4 2D � nG

1

a3 a4

min

�
w�a4�;

Z
a 6 2U 6

a 6 62G

w�a6�
a5 a6

da5 da6

�
da3 da4 ;

I3 �
Z

a 3 2R

1

a3

q

�
1ÿ a1 ÿ a2 ÿ a3

a3

�Z a1 =2

n
a 4 62G

w��a4�
a4

da4 da3 :

Here, for the sake of clarity, we have omitted further decompositions after a roÃle-
reversal, and not considered the six-dimensional region where two further
decompositions are possible. In this way we obtain a loss less than 0.15, and so
a loss from regions A and B less than 0.3.

For region E we perform two further decompositions; Lemma 16 coversX
p1; p 2

S�Ap1 p 2
; x n�:

There may now be a roÃle-reversal preceding the next decomposition; whether or
not this is the case, it is easy to see that Lemma 17 coversX

h; p 2 ; p 3

S�Ahp 2 p 3
; x n�

where h runs either over primes or over integers coprime to P� p3�. The loss from
this region is less than 0.03 (and so less than 0.06 from E È F ). Without using
the two-dimensional sieve we would have had to discard all of this region with a
loss from E È F of <0:0864, so the saving with v � 0:525 is quite small.

For region C it is only necessary to reverse the roÃles of variables for a small
part of the sum X

�a1;a 2 � 2C
a 3 2U 3

S�Ap1 p 2 p 3
; p3�:

For example, we can perform a further decomposition in a straightforward manner
whenever a1 < 0:2875 since

a2 � a3 < 1
2
�a1 � a2 � 2a3�< 1

2
:

Again, if a1 � a3 < 1
2

, we have �a1 � a3 ; a2� 2 D0 . Otherwise,

�1ÿ a1 ÿ a2 ÿ a3� � a2 < 1
2

and we can reverse roÃles to decompose a1. Altogether, the loss from region C is
less than 0.21, while if C were discarded, we would loseZ

C
q

�
1ÿ a1 ÿ a2

a2

�
da1

a1

da2

a2
2

> 1:

Finally, region D can be tackled by analysing when straightforward decomposi-
tions are possible and when a roÃle-reversal is essential. In this region p1 is often
the largest variable. The loss from region D is less than 0.34, again a great saving
on the trivial estimate.
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Combining all our estimates we conclude that, for all large x,

p�x� x0:525� ÿ p�x�>
x0:525

log x
�1ÿ 0:3ÿ 0:06ÿ 0:21ÿ 0:34�

� 9

100

x0:525

log x
:

As the exponent decreases further, the savings over the trivial bounds from
regions A, B, E and F become negligible and the contributions from regions C
and D rise fairly rapidly, leading to a trivial lower bound.
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