
Storing a Sparse Table with O(1) Worst Case Access
Time

MICHAEL L. FREDMAN AND J/~NOS KOMLOS

University of Califorma, San Dtego, La Jolla, Cahforma

AND

ENDRE SZEMERI3DI

Untverstty of South Carohna

Abstract. A data structure for representing a set of n items from a umverse of m items, which uses space
n + o(n) and accommodates membership queries m constant time is described. Both the data structure
and the query algorithm are easy to ~mplement.

Categories and Subject Descriptors: E. 1 IData Strncturesl: Tables; F.2.2 [Analysis of Algorithms and
Problem ComplexitYl: Nonnumerical Algorithms and Problems--sortmg and searchmg

General Terms: Algorithms, Theory

Additzonal Key Words and Phrases: Hashing, complexity, sparse tables.

1. Introduction

The following searching problem is considered. A set S of n distinct names from a
universe U of m possible names (m > n) is to be stored in a memory T i n a manner
permitting efficient processing of membership queries of the form, "Is q in S, and
if so, then where can it be found in T?." We assume that the set S is static, so that
our main concerns are the storage required for S and the time required for
processing queries. Hashing schemes provide a solution to this problem utilizing
O(n) storage and permitting queries in (9(1) average time per query. In this paper,
we concentrate on the worst case time required for a query, while retaining an
O(n) bound on storage. This question has been considered in various papers, for
example, [1]-[4]. Yao [4] proposes an interesting complexity model for this
problem. In Yao's framework, S is a subset of U = { l, 2 mt of cardinality n.
The memory T stores an item from U in each of its cells, and these cells can be
randomly accessed by address. A query for an element q in U is processed by
probing a sequence of cells in T. This sequence of probes can be adaptive: The

This material is based upon work supported in part by National Soence Foundation Grants MCS 76-
08543, MCS 82-0403 l, and MCS 79-06228.

Authors' Addresses: M. L. Fredman and J. Komlrs, Department of Electrical Engineering and
Computer Science, Umverslty of Cahfornia, San Diego, Mall Code C-014, La Jolla, CA 92093; E.
Szemerrdi, Mathematical Institute, PF428, 1395 Budapest, Hungary.

Permission to copy without fee all or part of this material Is granted provided that the copies are not
made or distributed for direct commeroal advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0004-5411/84/0700-0538 $00.75

Journal of the Assooauon for Computing Machinery, Vol 31, No 3, July 1984, pp. 538-544

Storing a Sparse Table with 0(1) Worst Case Access Time 539

next cell to be probed is determined precisely by q and the contents of the cells
previously probed. Query time is measured in terms of the number of cells probed,
and storage is defined to be the size of T (total number of cells). Yao [4] shows
that storage n + 1 and worst case query time 2 can be simultaneously attained
provided that m grows at least exponentially in n (m ___ e 2n suffices). Yao and
Tarjan [3] show that O(n) storage and worst case query time O(log m/log n) can
generally be attained. Therefore, if m is polynomially bounded in n, or grows at
least exponentially in n, then linear storage and constant query time can be
simultaneously achieved. However, as Yao [4] points out, there is an intermediate
range for m, for example, m -- 2 "~, for which the possibility of linear storage and
constant query time is not settled by the results quoted above.

In the next section we describe a storage technique achieving linear storage and
constant worst case query time for all m and n. The query algorithm is especially
easy to implement and the relative magnitudes of m and n play no role in the
proofs. Section 3 discusses a general framework that motivates our construction.
In Section 4 we describe a refinement that attains space n + o(n), while retaining
constant query time. Section 5 describes some variations of our method.

2. Basic Representation and Query Algorithm

In this section we illustrate the main idea behind our set representation method
with a technique achieving linear storage and constant query time. Let U -
{1, . . . , m}. To simplify the discussion we assume that p --- m + 1 is a prime
number. We use the notation a mod b to denote the unique integer x, 1 < x < b,
such that x - a(mod b). We need the following lemma.

LEMMA 1. Given W C U with I WI = r, and given k ~ U and s >- r, let
B(s, W, k, j) = I l x lx ~ W and (kx mod p)mod s = J}l for 1 <_ j < s. In words,
B(s, W, k, j) is the number of times the value j is attained by the function x --->
(kx mod p)mod s when x is restricted to IV. Then there exists a k E U such that

~ () r2 B(s, W, k, j) < - - .

J~l 2 S

PROOF. We show that

) y~ B(s, W, k,j) < (P -- 1)r 2 (1)
~_~ j=~ 2 s

from which the Lemma follows immediately. The sum in (1) is the number of
pairs (k, {x, y}), with x, y E W, x # y, 1 ___ k < p, such that

(kx mod p)mod s = (ky mod p)mod s.

The contribution of {x, y}, x # y, to this quantity is at most the number of k such
that

k(x - y)mod p E {s, 2s, 3s, . . . , p - s, p - 2s, p - 3s]. (2)

Because x - y has a multiplicative inverse mod p, the number of k satisfying (2) is
_< 2(p - l)/s. Summing over the (~) possible choices for Ix, y], we conclude that
the sum in (1) is indeed bounded by (p - l)rZ/s, completing the proof. []

COROLLARY 1. There exists a k E U such that ,~L., B(r, W, k, j) 2 < 3r.

PROOF. Combine Lemma l with the observation that ~ , B(r, W, k, j) - -
IWI = r. []

540 M.L. FREDMAN, J. KOMLOS, AND E. SZEMERI~DI

COROLLARY 2. There exists a k' E U, such that the mapping x ~ (k 'x mod
p)mod r 2 is one-to-one when restrtcted to W.

PROOF. Choosing s --- r 2, Lemma 1 provides a k' such that B(r 2, W, k', j) <- 1
for all j. I"!

Given S c U, [S I = n, our technique for representing the set S works as follows.
The content k of cell 710] is used to partition S into n blocks Wj, 1 ___ j _< n, as
determined by the value of the function f(x) = (kx mod p)mod n; pointers to
corresponding blocks Tj in the memory T are provided in locations T[j], 1 <_ j <_
n. More specifically, a k is chosen satisfying Corollary 1 (with W = S and r = n),
so that Y~ I W~ 12 < 3n. The amount of space allocated to the block Tj for Wj is
I Wj 12 + 2. The subset Wj is resolved within this space by using the perfect hash
function provided by Corollary 2 (setting W = Wj and r -- I W~I). In the first
location of Tj we store I W~I, and in the second location we store the value k'
provided by Corollary 2; each x ~ Wj is stored in location [(k'x mod p)mod I Wj 12]
+ 2 of block Tj.

A membership query for q is executed as follows:

1. Set k = T[0] and setj = (kq mod p)mod n.
2. Access in T[j] the pointer to block Tj of T and use this pointer to access the

quantities [I11::1 and k' in the first two locations of block Tj.
3. Access cell ((k'q mod p)mod I Wj [2) + 2 of block T~; q is in S if and only if q

lies in this cell.

A query requires five probes, and our choice of k in Corollary 1 implies that the
size of T is at most 6n. An example is provided below.

Example

m - - 3 0 , p = 3 1 , n = 6 , S = { 2 , 4 , 5 , 1 5 , 1 8 , 3 0 1

0 1 2 3 4 5 6

12 13 14 15 16 17 18 19 20 21 22
1111141 1211 1 5 1 2 1 I I 1 2 1 3 1 I 1181301
I W21k' I W4I k ' I WsI k '

23 24
I l l 1 1151
I W61 k '

A query for 30 is processed as follows:

1. k = T[0] = 2 , j = (30.2 mod 31)mod 6 = 5.
2. T[5] = 16, and from cells T[16] and 7117] we learn that block 5 has two

elements and that k' --- 3.
3. (30 k' mod 3 l)mod 22 --- 4. Hence, we check the 4 + 2 = 6th cell of block 5

and find that 30 is indeed present.

The time required to construct the representation for S might be as bad as O(mn)
in the worst case; finding k may require testing many possible values before a
suitable one is found. However, by increasing the size of T by a constant factor,

Storing a Sparse Table with 0(1) Worst Case Access Time 541

we can show that the representation can be constructed in random expected time
O(n), independently of m and S. Namely, we use the following variants of Cor-
ollaries 1 and 2.

COROLLARY 3. For at least one-half of the values k in U,

B(r, W, k, j)z < 5r.
I~1

PROOF. We use eq. (1) and the fact that at most one-half of the terms in a
sequence can exceed twice the average value of the sequence to conclude that

~ (B(r ,W,k ,J))<2r
J=l 2

for at least one-half of the values k in U, from which the corollary follows easily. []

COROLLARY 4. The mapping x ~ (k 'x mod p)mod 2r 2 is one-to-one when
restricted to W for at least one-half of the values k' in U.

PROOF. We set s = 2r 2 in eq. (1) and conclude that

~ B(2r 2, W,k',l) < 1
j r | 2

for at least one-half of the values k' in U, which implies the corollary. []

Using Corollaries 3 and 4, we represent a set S of size n as before, except that
now we allocate space 2 I ~ [2 + 2 in storing a block Wj of S. What we gain is the
fact that the probability that a particular choice for k (or k') is suitable, exceeds ½.
The choices for k (or k') are selected at random until suitable values are found.

By modifying our methods slightly, we can guarantee a worst case construction
time of O(n31og m).

LEMMA 2. There exists a prime q < nElog m that does not divide any o f
the elements in & and that separates these elements into distinct residue classes
rood q.

PROOF. For S = {x~ xn} let t = l-I,<j (x, - xj) I], x,. Clearly, log I tl -<
(n~l)log m. Since the prime number theorem gives log(I'Iq<x, qpnme q) -- x + o(x),
we conclude that some prime q < n210g m cannot divide t. This prime q satisfies
the lemma. []

We proceed as follows. If m < n210g n, then O(nm) - O(n310g m). If m >
n210g n, then in time O(nq) we produce a prime q satisfying Lemma 2 and store it
in location T[- 1]. The remainder of Tis specified as before, except that the location
where x E S gets stored is determined by using the hash value x mod q in place of
x, in effect replacing U with a smaller universe, U' = {1 , q - 1}, with q ___
n210g m. The total construction time is bounded by O(nq) --- O(n310g m).

3. Discussion

The scheme described above can be couched in the following general framework.
The value k in T[O] induces a coloring of U with n colors, namely x ---,
(kx mod p)mod n. Yao's two-probe method is likewise based on an indexed family
x = {Ck}, I × I <-- m, of n-colorings having the property that for each S C_ U, I S I =

542 M.L. FREDMAN, J. KOML0S, AND E. SZEMERI~DI

n, there exists a Ck in X that is one-to-one when restricted to S. Yao refers to such
a family X as a separating system. With Yao's method, the set S is stored in T by
placing k in T[0], to invoke the coloring Ck, and placing x E S in T[j] where j is
the color of x under Ck. This approach works provided that such a × exists. The
restriction [x[-< m arises from the fact that its elements are indexed by the
permissible range of T[0]. A simple counting argument shows that at least
(m)/(m/n)" colorings are required for a separating system, from which we deduce
that m > n'/n!. R. Graham uses a probabilistic argument to show that if m >~ n'+2/
n! ~. e" then a separating system x exists.

To extend Yao's method when m = exp(o(n)), we resign ourselves to the fact
that collisions are inevitable under the coloring induced by T[0]. Referring to the
monochromatic blocks of S as bins, we attempt to use secondary colorings to
separate the elements within bins. If a bin size b is sufficiently small; that is, b _<
log m, then that bin can be resolved by choosing a b-coloring from a family x ' that
comprises a separating system for subsets of size b.

Now a probabilistic argument shows that for all m _> n, there exists a family of
n-colorings X, [× [-< m, such that for each S C_ U, [S [= n, there exists a coloring
C E x that partitions S into bins of size < log n _ log m. Therefore, we conclude
from this reasoning that there exist table storage schemes under Yao's model with
O(l) query time and O(n) storage. However, we have not been able to explicitly
construct a class of storage schemes for all m >__ n along these lines. We refer to
storage schemes of this kind, where bin sizes are uniformly bounded by log m, as
L ® schemes.

Returning again to Yao's two-probe method, we consider the possibility of
utilizing more table space, in effect using t-colorings with t _ n to completely
resolve the elements of an n set S. Again, using counting and probabilistic
arguments, we can show that a family X oft-colorings exists,] x I -< m, that resolves
all S of size n, provided that m is roughly at least exp(n2/t), which is roughly best
possible. Therefore, by choosing t = n 2, we remove any constraint on m.

Although using n 2 colors, or equivalently space n 2 is very inefficient in terms of
our original problem, it is reasonable to use b 2 colors to resolve bins of size b,
provided that ~ b 2 is small. Probabilistic arguments show, in fact, that almost all
families of n-colorings X with I x] = m achieve ~ b E = O(n) for every S of size n,
for all m >_ n. This provides another class of linear space, constant query time table
storage schemes, which we refer to as L 2 schemes. Contrary to the difficulty we
have in constructing explicit L ® schemes, the construction in Section 2 provides
an explicit class of L 2 schemes.

4. Refinement

In this section we show how to reduce the storage utilization to n + o(n) while
retaining constant query time. First, we provide a sketch. Our data structure in
Section 2 involves an initial partition of S into n blocks, followed by resolutions of
these blocks at the second level of the data structure. Our refinement involves an
initial partition of S into a larger number of blocks, g(n) (to be specified below), of
which, obviously, at most n are nonempty. Those blocks that have more than one
element are resolved at the second level as before. However, there will be very few
blocks with more than one element; and moreover, the total space required to
resolve them is only o(n). The element of a singleton block is directly stored in the
initial level of the data structure. To reduce the space requirement for the initial
level of the data structure from g(n) to n + o(n), we use an auxiliary data structure
(to be described).

Storing a Sparse Table with 0(1) Worst Case Access Time 543

Choosing W-- S, s -- g(n), and r = n in Lemma 1, we find that for some k E U,

2 = o . (3)
j= l

Since x z = O((~)) for x _ 2,

Y/

eq. (3) implies that

B (g (n) , S , k , j) 2-- O(n~(n)) (4)

where Y,' denotes the sum over all j such that 1 <_ j < g(n) and B(g(n), S, k, j) >_
2. The set S is partitioned into blocks as determined by the values of the function
f(x) = (kx rood p)mod g(n). Since g(n) will be chosen so that lira n/g(n) = 0, eq.
(4) implies that the total space required to resolve those blocks having two or more
elements (using the method in Section 2) is o(n).

In processing a membership query for q, we first determine the number j =
(kq mod p)mod g(n) of the block Wj of the partition of S to which q must belong
if q belongs to S. At most n of these blocks are nonempty. With each nonempty
block W~ we associate a cell of T in which we store either (a) the single item of W~
in the event that I Wj I = 1, or (b) a pointer to the second level of our data structure
where Wj is resolved if I Wjl - 2. We also use a tag bit to indicate which of (a) or
(b) applies. (These tag bits can be packed into O(n/log m) = o(n) words.) This
approach requires an auxiliary data structure to determine whether a block Wj is
nonempty, and to find the cell and tag bit associated with W~ when Wj is nonempty.
The design of this auxiliary data structure is a slight modification of a similar
construction due to Tarjan and Yao [3]. The cells associated with nonempty W~
are arranged consecutively with increasing j. Let T' designate the portion of T in
which these cells are located. We partition the interval I - - [1, g(n)] into n2/g(n)
subintervals of size (g(n)/n) 2. With each of the nZ/g(n) subintervals a o f / , we
associate a base address B H , which is the address of the location immediately
preceding the cells in T' associated with nonempty Wj, j 6 a. These base addresses
are stored in a table of size n2/g(n) = o(n). A second table A[j], ,j E I, is used to
store offsets: A[j] = 0 if Wj = ~, otherwise B[a] + A[j] is the address in T'
associated with ~ fo r j E ~. Since A[j] assumes at most (g(n)/n) 2 + 1 possible
values, the entire table A[j], j E I can be packed into O(g(n)log(g(n)/n)/log n)
cells of T. Picking g(n) = n(log n) '/2 the resulting space requirement for the A[j]
table is o(n), and so the total space requirement for our data structure is n + o(n).

The remarks at the end of Section 2 concerning the time required to construct
the representation for S carry over and apply here.

5. Variations

The results presented here remain valid if we substitute the mapping x
/(kx mod p). s/pl in place of (kx mod p)mod s. Presumably, many other suitable
mappings can be found. Another mapping that may be of interest, particularly if
the multiplication of large numbers is considered objectionable, is the following.
Assume that U is the set of d dimensional s-ary vectors where s is a prime. Given
two vectors k = (k~, . . . , ka) and x -- (x~ xa) in U, we let k. x denote the inner
product: k-x = Y. k,x, mod s. Then the analog to Lemma 1 holds for the mapping
x ~ k.x. This mapping avoids multiplication by large numbers and has the further
advantage that k .x can be computed more rapidly for "short" x (x with small
Hamming weight). Our data structure, however, requires a variety of such mappings

544 M. L. FREDMAN, J. KOMLOS, AND E. SZEMEREDI

(s is a bounded parameter), which in turn requires that it be easy to convert
between different representations (having differing values of s) of the elements in
U. We would also like the Hamming weight to be roughly preserved in switching
between representations. An obvious way to accomplish this is to use a block code
approach to these representations, of which the binary coded decimal is an example.

REFERENCES

1. JAESCHKE, G. Reciprocal hashing: A method for generating minimal perfect hashing functtons.
Commun. ACM24, 12 (Dec. 1981), 829-833.

2. SPRUGNOLI, R. Perfect hashing functions: A single probe retrieving method for static sets.
Commun. ACM20, 11 (Nov. 1977), 841-850.

3. TAP.JAN, R. E., AND YAO, A.C.-C. Storing a sparse table. Commun. ACM 21, 11 (Nov. 1979),
606-611.

4. YAO, A.C.-C. Should tables be sorted? J. ACM28, 3 (July 1981), 615-628.

RECEIVED DECEMBER 1982; REVISED JANUARY 1984; ACCEPTED FEBRUARY 1984

Journal of the Association for Computing Machinery, Vol 31, No 3, July 1984

