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THE PLANAR HAMILTONIAN CIRCUIT PROBLEM IS NP-
COMPLETE*

M. R. GAREYt, D. S. JOHNSONt Anp R. ENDRE TARJAN{

Abstract. We consider the problem of determining whether a planar, cubic, triply-connected
graph G has a Hamiltonian circuit. We show that this problem is NP-complete. Hence the Hamiltonian
circuit problem for this class of graphs, or any larger class containing all such graphs, is probably
computationally intractablc.
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1. Introduction. A Hamiltonian circuit in a graph' is a path which passes
through every vertex exactly once and returns to its starting point. Many attempts
have been made to characterize the graphs which contain Hamiltonian circuits
(see [2, Chap. 10] for a survey). While providing characterizations in various
special cases, none of these results has led to an efficient algorithm for identifying
such graphs in general. In fact, recent results [5] showing this problem to be
“NP-complete” indicate that no simple, computationally-oriented characteriza-
tion is possible. For this reason, attention has shifted to special cases with more
restricted structure for which such a characterization may still be possible. One
special case of particular interest is that of planar graphs. In 1880 Tait made a
famous conjecture [8] that every cubic, triply-connected, planar graph contains a
Hamiltonian circuit. Though this conjecture received considerable attention (if
true it would have resolved the “four color conjecture’), it was not until 1946 that
Tutte constructed the first counterexample [9]. We shall show that, not only do
these highly-restricted planar graphs occasionally fail to contain a Hamiltonian
circuit, but it is probably impossible to give an efficient algorithm which disting-
uishes those that do from those that do not.

2. Proof of result. Our proof of this result is based on the recently developed
theory of “NP-complete problems”. This class of problems possesses the follow-
ing important properties:

(A) There is no known polynomial-time algorithm that solves any single
problem in the class.

(B) The existence of a polynomial-time algorithm for solving any particular
problem in the class would imply that every problem in the class can be solved with
a polynomial-time algorithm.

It is widely believed that no NP-complete problem can be solved with a
polynomial-time algorithm and hence that all such problems are inherently
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computationally intractable. Formal introductions to the notion of NP-
completeness can be found in [1], [5], [6]. Karp [5] first demonstrated that many
well-known combinatorial problems were NP-complete. Others have added to a
long and growing list of such problems (see [6] for a recent survey).

In [5] a construction due to Lawler was presented which showed that the
Hamiltonian circuit problem for arbitrary graphs is NP-complete. Garey, Johnson
and Stockmeyer [4] proved that the Hamiltonian line problem for directed planar
graphs is NP-complete. (A Hamiltonian line in a directed graph is a directed path
which passes through each vertex exactly once, but need not return to its starting
point.) We shall show that the Hamiltonian circuit problem is NP-complete even
for graphs G satisfying

(i) G is planar,
(ii) G is cubic (each vertex has degree 3), v
(iii) G is triply-connected (deletion of any two vertices leaves the graph
connected).
Thus the Hamiltonian circuit problem for these highly restricted graphs seems to
be essentially as difficult as that for arbitrary graphs.

The formal technical requirements for a proof of NP -completeness are
adequately described in [1, Chap. 10], (5], [6]. For our purposes, the only
nontrivial requirement is that we show how a known NP-complete problem can be
“transformed” in polynomial time into this restricted Hamiltonian circuit prob-
lem. This “known” NP-complete problem will be the satisfiability problem of
propositional calculus [3], [5]. ‘

Let F be any well-formed formula containing atomic variables and the
connectives A (and), V (or) and — (not). F is satisfiable if there exists some
assignment of the values true and false to the variables which makes F true under
the standard interpretation of the connectives. We shall show how to construct, in
polynomial time, a graph G satisfying (i)-(iii) such that F is satisfiable if and only if
G contains a Hamiltonian circuit. By results in [3], [5], it suffices to consider only
formulas F in conjunctive normal form with three literals per clause. That is, we
may assume that I has the form

(P 1VP12VP13)/\(P2 1 VPszP23)/\ /\(Pm 1 Vp,,.sz,.. ),

where each (p;1Vpi2Vpi3) is called a clause and each p;, called a literal, is either an
atomic variable or the negation of an atomic variable. We assume that F contains
n atomic variables, denoted x;, x5, ' *, X,,.

A number of special graph configurations will be used in our construction and
are illustrated in Figs. 1-7. Consider the graph, due to Tutte [9], shown in Fig.
1(a). Any Hamiltonian circuit in a graph G that contains this graph as a
vertex-induced subgraph must appear locally as one of the states shown in Fig.
1(b) and thus must use the edge marked A. That is, this subgraph acts like a single
degree-3 vertex which has one “specified” edge that is required to'be used in any
Hamiltonian circuit of G.

We use the graph in Fig. 1 to construct the “‘exclusive-or’’ graph shown in Fig.
2(a). Any Hamiltonian circuit in a graph G which contains this graph as a
vertex-induced subgraph must appear locally in one of the two states shown in Fig.
2(b). Thus this subgraph acts like two separate edges, one joining v to v’ and the
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F1G. 1. Required-edge graph
(a) Graph and abbreviation
(b) Possible local states

other joining u to u’, with the constraint that exactly one of these two edges must
occur in any Hamiltonian circuit of G. In this case, we say that the edges {u, u’}
and {v, v} have been “joined” by an exclusive-or. Schematically, this will be
represented by the abbreviation shown in Fig. 2(a), which we shall call an
“exclusive-or line”.

The exclusive-or construction is crucial to the planarity of the graph G which
will correspond to the formula F. The key observation is that two “exclusive-or
lines” joining different pairs of edges may cross each other without destroying the
planarity of GG. The property which permits this is that “exclusive-or lines” can be
connected in series, as shown in Fig. 3, to cross over an edge of G, when that edge
is required to occur in any Hamiltonian circuit. The sequence of two exclusive-or’s
pictured there act like a single *‘exclusive-or line” joining the two outermost edges
(B and D) while permitting the required edge (C) to pass between them. In
particular, since all 4 vertical edges in an exclusive-or graph must occur in any
Hamiltonian circuit, we can use this property to allow two “exclusive-or lines” to
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FiG. 2. Exclusive-or
(a) Graph and abbreviation
(b) Possible local states
B C D
(a)
(b)

FiG. 3. Exclusive-or's in series
(a) Schematic of graph
(b) Possible local states
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cross each other. Figure 4 shows schematically how this can be done and illustrates
the possible states that can occur in a Hamiltonian circuit.

In addition to the exclusive-or, we will also use the two-input “or” graph of
Fig. 5(a). Any Hamiltonian circuit in a graph G which contains this graph as a
vertex-induced subgraph must appear locally in one of the states shown in Fig.
5(b). Thus this subgraph acts like two separate edges, one joining v to v’ and the
other joining u to u’, with the constraint that at least one of these two edges
must occur in any Hamiltonian circuit of G.

Finally we use the graphs in Figs. 1, 2 and 5 to construct the three-input *“‘or™
shown in Fig. 6. This subgraph acts like three separate edges, one joining v to v,
one joining u to u', and one joining w to w', with the constraint that at least one of
these three edges must occur in any Hamiltonian circuit of G.

With these components we can undertake the construction. For each of the
variables x;, 1 =i = n, we construct four vertices v;y, ¥;2, ;3 and v;4, and for each
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F1G. 4. Crossing of exclusive-or's
(a) Graph and abbreviation
(b) Possible local states
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FiG. 5. 2-input or
(a) Graph and abbreviation
(b} Possible local states

clause G, 1 =j = m, we construct six vertices w;y, Wj2, Wj3, Wja, Wjs, Wjs. We start
with the following skeletal edges:

(a) two copies each of {v;), v;2} and {v;3, vis}, 1=i=n;

(b) {vip, viah, 1=i=n;

(©) {via, Ui+1,1}, 12i=n—-1,

(d) {U,,4, wmﬁ}; ‘

(e) {vi1, wiihs

(f) two copies each of {w;\, w;2}, {w;3, w;s} and {w;s, wie}, 1 =j=m;

(8) {wj2, wish, {wya, wish, 1 =j=m;

(h) {wjén W,‘+1,l}’ 1=j=m-1

For each i, we join one copy of {vi1, vz} to one copy of {vi3, v,4} with an
“exclusive-or”. For each j, we connect one copy each of {w;1, wiz}, {w;s, w;ja}, and
{w;s, wjs} with a three-input “‘or” Observe that so far the construction is planar
and depends only on the numbers m and n, rather than any more specific details
about F.
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FI1G. 6. 3-input or
(a) Graph and abbreviation
(b) Possible local states (symmetric cases not shown)

Now let us consider each literal pj, in F. If p;. = x,, we use an “‘exclusive-or” to
join the copy of {w 5¢ -1, w; 2« } not connected to a three-input “‘or” to the copy of
{vi1, vi2} which is not joined to {v;3, v;4} by an “exclusive-or”. If Pix = X;, we use an
“exclusive-or™ to join that copy of {w; >« -1, W; 2« } to a copy of {v;3, v;4} which is not
joined to {v;;, vix} by an “exclusive-or”. Finally, we connect {v;,, w;,} and {v,.4.
Wi} to a two-input “or”. (This is only used to ensure triple-connectedness; both
edges in fact must be used in any Hamiltonian circuit of G.) See Fig. 7 for a
schematic of this construction for F = (x\VyVz)AEVIVWIAYVZIVw).

Our constructed graph is planar except for crossing “exclusive-or lines”,
which are made planar as in Fig. 4. Two “exclusive-or’s” need only cross once so
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FI1G. 7. Complete construction for F = (x 'y 2)AEVFVwIA(yVEV W)

the constructed graph has O(m?) vertices and edges and is easily constructed in
polynomial time.

We leave to the reader the straightforward but tedious verification that the
graph is cubic and triply connected. Basically, all one need do is verify that our
special subgraphs have these properties (or would if their external edges were
connected by external paths) and that the overall superstructure does also (while
in addition providing the required “external paths”). Let us now see why the
graph as it stands has a Hamiltonian circuit if and only if F is satisfiable.

Consider any Hamiltonian circuit in G. Of each pair of edges {vi1, vi2}, {vi3,
vis} joined by an “exclusive-or”, the circuit must use exactly one. If the circuit uses
{vi1, vi2} from this pair, we assign x; the value false; otherwise x; is assigned true.
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F1G. 8. Elimination of four-sided face
(a) Substitution graph
(b) Possible local states (symmetric cases not shown)

The “exclusive-or lines” connecting edges for variables to edges for clauses
prevent the clause edges participating in the three-input “or” for that clause from
being used unless the corresponding variable makes the clause frue. Since at least
one of those edges must be used in any Hamiltonian circuit, it follows that this
truth setting must make each clause, and hence F itself, true. Similar reasoning
shows that any truth assignment satisfying F can be used to construct a Hamilto-
nian circuit for G. Thus the Hamiltonian circuit problem for graphs satisfying
(i)-(iii) is NP-complete.

From our construction, we can also conclude that the three general planar
Hamiltonian problems that were left open in [4] are all NP-complete. The
undirected planar Hamiltonian circuit problem is NP-complete because it con-
tains our problem as a special case. The directed planar Hamiltonian circuit
problem is NP-complete because we can replace every edge {u, v} in our
construction with two directed edges (u, v) and (v, 1) and thus getadirected graph
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F1G. 9. Elimination of triangle
(a) Substitution graph
(b) Possible local state (alternate and symmetric states not shown)

which has a Hamiltonian circuit if and only if our original undirected graph had
one. Finally, the undirected planar Hamiltonian line problem is NP-complete:
convert the “or” linking edges {v,;, w,,} and {v,.4, W..¢} into an “exclusive or”’. A
Hamiltonian line must either start at v,; and finish at w,,, or start at v,, and finish
at w,,6. Such a line will exist if and only if the original graph had a Hamiltonian
circuit. Note that the construction preserves triple connectivity and degree
threeness, as well as planarity.

We can also obtain a more specialized result that may be of interest. It has
been shown (see [7, Thm. 8.4.1]) that the four color conjecture depends only on
graphs in which each face has at least five boundary edges. We can show that the
Hamiltonian circuit problem remains NP-complete, even if we restrict ourselves
to graphs which have this property and obey (i)-(iii). We do this by taking our
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original graph and eliminating its faces with four or fewer sides by making the
following substitutions:

If G contains a four-sided face, introduce triangles into each of its four
corners as shown in Fig. 8(a). Figure 8(b) illustrates the fact that all the ways that a
Hamiltonian circuit might pass through the original face can be mimicked by its
replacement, and clearly no new possibilities are introduced. Also, since two
vertices are introduced intc every edge of the original face, no external faces can
be made into four-sided faces by this substitution. We further note that the graph
remains planar, cubic and three-connected. Repeat the substitution until there are
no more four-sided faces. ’

Triangles are now eliminated in an analogous step by step manner, with the
substitution shown in Fig. 9. The result is a graph which is planar, cubic, three
connected, has no face with fewer than five sides, and has a Hamiltonian circuit if
and only if our original graph did. Since the replacement can clearly be accom-
plished in time proportional to the number of faces in the original graph, this
means that the more restricted problem is also NP-complete.
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