An intro to lattices and learning with errors A way to keep your secrets secret in a post-quantum world

Daniel Apon - Univ of Maryland

向下 イヨト イヨト

э

Some images in this talk authored by me Many, excellent lattice images in this talk authored by Oded Regev and available in papers and surveys on his personal website http://www.cims.nyu.edu/~regev/ (as of Sept 29, 2012)

伺下 イヨト イヨト

1. Learning with Errors

• Let $p = p(n) \le poly(n)$. Consider the noisy linear equations:

$$\langle \mathbf{a}_1, \mathbf{s} \rangle \approx_{\chi} b_1 \pmod{p}$$

 $\langle \mathbf{a}_2, \mathbf{s} \rangle \approx_{\chi} b_2 \pmod{p}$

for $\mathbf{s} \in \mathbb{Z}_p^n, \mathbf{a}_i \stackrel{\$}{\leftarrow} \mathbb{Z}_p^n, b_i \in \mathbb{Z}_p$, and error $\chi : \mathbb{Z}_p \to \mathbb{R}^+$ on \mathbb{Z}_p .

:

(ロ)(同)(日)(日)(日)(日)

1. Learning with Errors

• Let $p = p(n) \le poly(n)$. Consider the noisy linear equations:

$$\langle \mathbf{a}_1, \mathbf{s} \rangle \approx_{\chi} b_1 \pmod{p}$$

 $\langle \mathbf{a}_2, \mathbf{s} \rangle \approx_{\chi} b_2 \pmod{p}$

for $\mathbf{s} \in \mathbb{Z}_p^n$, $\mathbf{a}_i \stackrel{\$}{\leftarrow} \mathbb{Z}_p^n$, $b_i \in \mathbb{Z}_p$, and error $\chi : \mathbb{Z}_p \to \mathbb{R}^+$ on \mathbb{Z}_p . • Goal: Recover \mathbf{s} .

:

(ロ)(同)(日)(日)(日)(日)

1. Learning with Errors

• Let $p = p(n) \le poly(n)$. Consider the noisy linear equations:

$$\langle \mathbf{a}_1, \mathbf{s}
angle pprox_{\chi} b_1 \pmod{p} \ \langle \mathbf{a}_2, \mathbf{s}
angle pprox_{\chi} b_2 \pmod{p}$$

for $\mathbf{s} \in \mathbb{Z}_p^n, \mathbf{a}_i \stackrel{\$}{\leftarrow} \mathbb{Z}_p^n, b_i \in \mathbb{Z}_p$, and error $\chi : \mathbb{Z}_p \to \mathbb{R}^+$ on \mathbb{Z}_p . • Goal: Recover \mathbf{s} .

- 2. Why we care:
 - Believed hard for quantum algorithms
 - Average-case = worst-case
 - Many crypto applications!

- イボト イラト - ラ

- 1. Intro to lattices
 - 1.1 What's a lattice?
 - 1.2 Hard lattice problems
- 2. Gaussians and lattices
- 3. From lattices to learning
- 4. From learning to crypto

・ 同 ト ・ ヨ ト ・ ヨ ト

э

• A lattice is a discrete additive subgroup of \mathbb{R}^n

- A lattice is a discrete additive subgroup of \mathbb{R}^n
- ► A lattice is a set of points in *n*-dimensional space with a periodic structure

イロト イポト イヨト イヨト

- A lattice is a discrete additive subgroup of \mathbb{R}^n
- ► A lattice is a set of points in *n*-dimensional space with a periodic structure
- ► Given *n* linearly independent vectors v₁, ..., v_n ∈ ℝⁿ, the lattice they generate is the set of vectors

$$L(\mathbf{v}_1,...,\mathbf{v}_n) \stackrel{\text{def}}{=} \left\{ \sum_{i=1}^n \alpha_i \mathbf{v}_i \mid \alpha_i \in \mathbb{Z} \right\}.$$

イロト イポト イヨト イヨト

- A lattice is a discrete additive subgroup of \mathbb{R}^n
- ► A lattice is a set of points in *n*-dimensional space with a periodic structure
- ► Given *n* linearly independent vectors v₁, ..., v_n ∈ ℝⁿ, the lattice they generate is the set of vectors

$$L(\mathbf{v}_1,...,\mathbf{v}_n) \stackrel{\text{def}}{=} \left\{ \sum_{i=1}^n \alpha_i \mathbf{v}_i \mid \alpha_i \in \mathbb{Z} \right\}.$$

► The basis
$$\mathbf{B} = \begin{pmatrix} | & | & \cdots & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \\ | & | & \cdots & | \end{pmatrix}$$
 generates the lattice $L(\mathbf{B})$.

イロト イポト イヨト イヨト

More on lattice bases

< 🗇 🕨

문 > 문

More on lattice bases

The gray-shaded region is the fundamental parallelepiped, given by $P(\mathbf{B}) = {\mathbf{B}x \mid x \in [0, 1)^n}.$

► For bases $\mathbf{B}_1, \mathbf{B}_2, L(\mathbf{B}_1) = L(\mathbf{B}_2) \Rightarrow \operatorname{vol}(P(\mathbf{B}_1)) = \operatorname{vol}(P(\mathbf{B}_2))$

(4回) (注) (注) (注) (三)

- ► For bases $\mathbf{B}_1, \mathbf{B}_2, L(\mathbf{B}_1) = L(\mathbf{B}_2) \Rightarrow \operatorname{vol}(P(\mathbf{B}_1)) = \operatorname{vol}(P(\mathbf{B}_2))$
- ▶ vol(P(B)) = det(B)

- ► For bases $\mathbf{B}_1, \mathbf{B}_2, L(\mathbf{B}_1) = L(\mathbf{B}_2) \Rightarrow \operatorname{vol}(P(\mathbf{B}_1)) = \operatorname{vol}(P(\mathbf{B}_2))$
- ▶ vol(P(B)) = det(B)
- $det(\mathbf{B}_1) = det(\mathbf{B}_2)$ iff $\mathbf{B}_1 = \mathbf{B}_2 \mathbf{U}$ for a unimodular matrix \mathbf{U}

- ► For bases $\mathbf{B}_1, \mathbf{B}_2, L(\mathbf{B}_1) = L(\mathbf{B}_2) \Rightarrow \operatorname{vol}(P(\mathbf{B}_1)) = \operatorname{vol}(P(\mathbf{B}_2))$
- ▶ vol(P(B)) = det(B)
- $det(\mathbf{B}_1) = det(\mathbf{B}_2)$ iff $\mathbf{B}_1 = \mathbf{B}_2 \mathbf{U}$ for a unimodular matrix \mathbf{U}
- A matrix **U** is unimodular if it is integral and $det(U) = \pm 1$.

- ► For bases $\mathbf{B}_1, \mathbf{B}_2, L(\mathbf{B}_1) = L(\mathbf{B}_2) \Rightarrow \operatorname{vol}(P(\mathbf{B}_1)) = \operatorname{vol}(P(\mathbf{B}_2))$
- ▶ vol(P(B)) = det(B)
- $det(\mathbf{B}_1) = det(\mathbf{B}_2)$ iff $\mathbf{B}_1 = \mathbf{B}_2 \mathbf{U}$ for a unimodular matrix \mathbf{U}
- A matrix **U** is unimodular if it is integral and $det(\mathbf{U}) = \pm 1$.

Moral of the story: All lattices have countably infinitely many bases, and given some fixed lattice, all of its possible bases are related by "volume-preserving" transformations.

The dual of a lattice

► Given a lattice L = L(B), the dual lattice L* def = L(B*) is generated by the dual basis B*; the unique basis s.t. B^TB* = I.

イロト イポト イヨト イヨト

The dual of a lattice

- ► Given a lattice L = L(B), the dual lattice L* def = L(B*) is generated by the dual basis B*; the unique basis s.t.
 B^TB* = I.
- Equivalently, the dual of a lattice $L \in \mathbb{R}^n$ is given by

$$L^* = \left\{ \mathbf{y} \in \mathbb{R}^n \ \Big| \ \langle \mathbf{x}, \mathbf{y} \rangle \in \mathbb{Z}, \text{ for all } \mathbf{x} \in L \right\}.$$

소리가 소문가 소문가 소문가

The dual of a lattice

- ► Given a lattice L = L(B), the dual lattice L* def = L(B*) is generated by the dual basis B*; the unique basis s.t.
 B^TB* = I.
- Equivalently, the dual of a lattice $L \in \mathbb{R}^n$ is given by

$$L^* = \left\{ \mathbf{y} \in \mathbb{R}^n \ \Big| \ \langle \mathbf{x}, \mathbf{y} \rangle \in \mathbb{Z}, \text{ for all } \mathbf{x} \in L
ight\}.$$

Fact. For any $L = L(\mathbf{B}), L^* = L(\mathbf{B}^*)$,

$$|\operatorname{vol}(P(\mathbf{B}))| = \left|\frac{1}{\operatorname{vol}(P(\mathbf{B}^*))}\right|.$$

소리가 소문가 소문가 소문가

- **1**. GapSVP $_{\gamma}$
 - INPUT: *n*-dimensional lattice L and a number d > 0
 - OUTPUT: YES if $\lambda_1(L) \leq d$; NO if $\lambda_1(L) > \gamma(n) \cdot d$

(1日) (1日) (1日)

- **1**. GapSVP $_{\gamma}$
 - INPUT: *n*-dimensional lattice L and a number d > 0
 - OUTPUT: YES if $\lambda_1(L) \leq d$; NO if $\lambda_1(L) > \gamma(n) \cdot d$
- $2. \ \mathrm{CVP}_{L^*,d}$
 - ▶ INPUT: *n*-dimensional (dual) lattice L^* and a point $\mathbf{x} \in \mathbb{R}^n$ within distance *d* of L^*
 - OUTPUT: the closest vector in L^* to **x**

・ 同 ト ・ ヨ ト ・ ヨ ト

- **1**. GapSVP $_{\gamma}$
 - INPUT: *n*-dimensional lattice L and a number d > 0
 - OUTPUT: YES if $\lambda_1(L) \leq d$; NO if $\lambda_1(L) > \gamma(n) \cdot d$
- $2. \ \mathrm{CVP}_{L^*,d}$
 - ▶ INPUT: *n*-dimensional (dual) lattice L^* and a point $\mathbf{x} \in \mathbb{R}^n$ within distance *d* of L^*
 - OUTPUT: the closest vector in L^* to **x**
- 3. Other common lattice problems:
 - Shortest Independent Vectors Problem (SIVP), Covering Radius Problem (CRP), Bounded Distance Decoding (BDD), Discrete Gaussian Sampling Problem (DGS), Generalized Independent Vectors Problem (GIVP)

소리가 소문가 소문가 소문가

Complexity of (Gap)SVP and (Gap)CVP (and SIVP)

Moral of the story: We can get $\tilde{O}(2^n)$ -approximate solutions in polynomial time. Constant-factor approximations are NP-hard. The best algorithms for anything in between require $\Omega(2^n)$ time.

- 4 回 ト 4 ヨ ト 4 ヨ ト

э

- 1. Intro to lattices
- 2. Gaussians and lattices
 - 2.1 Uniformly sampling space
 - 2.2 $D_{L,r}$: The discrete Gaussian of width r on a lattice L
- 3. From lattices to learning
- 4. From learning to crypto

向下 イヨト イヨト

Question: How do you uniformly sample over an unbounded range?

• Eg, how do you uniformly sample $x \in \mathbb{Z}$?

・ 同 ト ・ ヨ ト ・ ヨ ト

Question: How do you uniformly sample over an unbounded range?

• Eg, how do you uniformly sample $x \in \mathbb{Z}$?

Answer: You can't!

・ 同 ト ・ ヨ ト ・ ヨ ト

Question: How do you uniformly sample over an unbounded range?

• Eg, how do you uniformly sample $x \in \mathbb{Z}$?

Answer: You can't! The "lattice answer": Sample uniformly from \mathbb{Z}_p ; view \mathbb{Z} as being partitioned by copies of \mathbb{Z}_p

Question: How do you uniformly sample from \mathbb{R}^n ?

・ 回 ト ・ ヨ ト ・ ヨ ト

Э

Question: How do you uniformly sample from \mathbb{R}^n ?

Answer: You can't!

・ 同 ト ・ ヨ ト ・ ヨ ト …

Question: How do you uniformly sample from \mathbb{R}^n ?

Answer: You can't! The "lattice answer": Sample uniformly from the fundamental parallelepiped of a lattice.

ヨット イヨット イヨッ

A related question: What does a lattice look like when you "smudge" the lattice points with Gaussian-distributed noise?

伺下 イヨト イヨト

э

A related question: What does a lattice look like when you "smudge" the lattice points with Gaussian-distributed noise? Answer: \mathbb{R}^n

 Left-to-right: PDFs of Gaussians centered at lattice points with increasing standard deviation

(4月) イヨト イヨト

The discrete Gaussian: $D_{L,r}$

• Denote by $D_{L,r}$ the discrete Gaussian on a lattice L of width r

- * @ * * ミ * ミ * ミ *

The discrete Gaussian: $D_{L,r}$

• Denote by $D_{L,r}$ the discrete Gaussian on a lattice L of width r

Define the smoothing parameter, η_ϵ(L), as the least width s.t. D_{L,r} is at most ϵ-far from the continuous Gaussian (over L).

同下 くほと くほう

The discrete Gaussian: $D_{L,r}$

• Denote by $D_{L,r}$ the discrete Gaussian on a lattice L of width r

- Define the smoothing parameter, η_ε(L), as the least width s.t. D_{L,r} is at most ε-far from the continuous Gaussian (over L).
- Important fact. $\eta_{\operatorname{negl}(n)}(L) = \omega(\sqrt{\log n}) \approx \Theta(\sqrt{n})$

(4月) (1日) (日)

- 1. Intro to lattices
- 2. Gaussians and lattices
- 3. From lattices to learning
 - 3.1 Reduction sketch: GapSVP to LWE
- 4. From learning to crypto

向下 イヨト イヨト

Reduction from GapSVP to LWE - Overview

REDUCTION SKETCH

- 1. Our goal: Prove LWE is hard
- 2. Reduction outline

2.1 Why quantum?

- 3. Classical step: $D_{L,r}$ + LWE oracle \rightarrow CVP $_{L^*,\alpha p/r}$ oracle
- 4. Quantum step: $\text{CVP}_{L^*,\alpha p/r}$ oracle $\rightarrow D_{L,r\sqrt{n}/(\alpha p)}$ 4.1 NOTE: $(\eta_{\epsilon}(L) \approx) \alpha p > 2\sqrt{n} \rightarrow D_{L,r\sqrt{n}/(\alpha p)} \approx D_{L,<r/2}$
- 5. Conclude: Either LWE is hard, or the complexity landscape turns into a war zone
 - 5.1 "War zone:" At least 4 or 5 good complexity classes had to give their lives to ensure stability that sort of thing.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Reduction outline: GapSVP to LWE

► LLL Basis Reduction algorithm: In polytime, given an arbitrary L(B) outputs a new basis B' of length at most 2ⁿ times the shortest basis.

GOAL: Given an arbitrary lattice L, output a very short vector, or decide none exist.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Reduction outline: GapSVP to LWE

► LLL Basis Reduction algorithm: In polytime, given an arbitrary L(B) outputs a new basis B' of length at most 2ⁿ times the shortest basis.

GOAL: Given an arbitrary lattice L, output a very short vector, or decide none exist.

- Let r_i denote $r \cdot (\alpha p/\sqrt{n})^i$ for i = 3n, 3n 1, ..., 1 and $r \ge O(n/\alpha)$. (Imagine $\alpha \approx 1/n^{1.5}$, so $r \approx n^{1.5} \cdot n$.)
- ► Using LLL, generate B', and using B', draw n^c samples from D_{L,r_{3n}}.

・ 同 ト ・ ヨ ト ・ ヨ ト

► LLL Basis Reduction algorithm: In polytime, given an arbitrary L(B) outputs a new basis B' of length at most 2ⁿ times the shortest basis.

GOAL: Given an arbitrary lattice *L*, output a very short vector, or decide none exist.

- ► Let r_i denote $r \cdot (\alpha p/\sqrt{n})^i$ for i = 3n, 3n 1, ..., 1 and $r \ge O(n/\alpha)$. (Imagine $\alpha \approx 1/n^{1.5}$, so $r \approx n^{1.5} \cdot n$.)
- ► Using LLL, generate B', and using B', draw n^c samples from D_{L,r_{3n}}.
- For i = 3n, ...1,
 - ► Call ITERATIVESTEP n^c times, using the n^c samples from D_{L,r_i} to produce 1 sample from $D_{L,r_{i-1}}$ each time.
- Output a sample from $D_{L,r_0} = D_{L,r}$.

소리가 소문가 소문가 소문가

Two steps: (1) classical, (2) quantum

・ロン ・回と ・ヨン ・ヨン

3

- Let *L* be a lattice. Let $d \ll \lambda_1(L)$.
- You are given an oracle O that, on input x ∈ ℝⁿ within distance d from L, outputs the closest lattice vector to x.
- (Caveat: If **x** of distance > d from L, O's output is arbitrary.)
- ▶ How do you use *O*?

3

- Let *L* be a lattice. Let $d \ll \lambda_1(L)$.
- You are given an oracle O that, on input x ∈ ℝⁿ within distance d from L, outputs the closest lattice vector to x.
- (Caveat: If **x** of distance > d from L, O's output is arbitrary.)
- ▶ How do you use *O*?
- One idea: Choose some lattice vector y ∈ L. Let x = y + z with ||z|| ≤ d. Give x to O.

- Let *L* be a lattice. Let $d \ll \lambda_1(L)$.
- You are given an oracle O that, on input x ∈ ℝⁿ within distance d from L, outputs the closest lattice vector to x.
- (Caveat: If **x** of distance > d from L, O's output is arbitrary.)
- ▶ How do you use *O*?
- One idea: Choose some lattice vector y ∈ L. Let x = y + z with ||z|| ≤ d. Give x to O.
- But then $\mathcal{O}(\mathbf{x}) = \mathbf{y}!$

- Let *L* be a lattice. Let $d \ll \lambda_1(L)$.
- You are given an oracle O that, on input x ∈ ℝⁿ within distance d from L, outputs the closest lattice vector to x.
- (Caveat: If **x** of distance > d from L, O's output is arbitrary.)
- ▶ How do you use *O*?
- One idea: Choose some lattice vector y ∈ L. Let x = y + z with ||z|| ≤ d. Give x to O.
- But then $\mathcal{O}(\mathbf{x}) = \mathbf{y}!$
- But quantumly, knowing how to compute y given only y + z is useful – it allows us to uncompute a register containing y.

Let D be a probability distribution on a lattice L. Consider the Fourier transform f : ℝⁿ → C, given by

$$f(\mathbf{x}) \stackrel{\text{def}}{=} \sum_{\mathbf{y} \in L} D(\mathbf{y}) exp(2\pi i \langle \mathbf{x}, \mathbf{y} \rangle) = \mathbb{E}_{\mathbf{y} \leftarrow D}[exp(2\pi i \langle \mathbf{x}, \mathbf{y} \rangle)]$$

Let D be a probability distribution on a lattice L. Consider the Fourier transform f : ℝⁿ → C, given by

$$f(\mathbf{x}) \stackrel{\text{def}}{=} \sum_{\mathbf{y} \in L} D(\mathbf{y}) exp(2\pi i \langle \mathbf{x}, \mathbf{y} \rangle) = \mathbb{E}_{\mathbf{y} \leftarrow D}[exp(2\pi i \langle \mathbf{x}, \mathbf{y} \rangle)]$$

Using Hoeffding's inequality, if y₁,..., y_N are N = poly(n) independent samples from D, then w.h.p.

$$f(\mathbf{x}) pprox rac{1}{N} \sum_{j=1}^{N} exp(2\pi i \langle \mathbf{x}, \mathbf{y}_j
angle)$$

• Applying this idea to $D_{L,r}$, we get a good approximation of its Fourier transform, denoted $f_{1/r}$. Note $f_{1/r}$ is L^* -periodic.

・ 同下 ・ ヨト ・ ヨト

• Applying this idea to $D_{L,r}$, we get a good approximation of its Fourier transform, denoted $f_{1/r}$. Note $f_{1/r}$ is L^* -periodic.

• It can be shown that $1/r \ll \lambda_1(L^*)$, so we have

$$f_{1/r}(\mathbf{x}) \approx exp(-\pi(r \cdot \operatorname{dist}(L^*, \mathbf{x}))^2)$$

・ 同下 ・ ヨト ・ ヨト

► Attempt #1: Using samples from D_{L,r}, we repeatedly compute approximations to f_{1/r} and attempt to "walk uphill" to find the peak (a dual lattice point).

- Attempt #1: Using samples from $D_{L,r}$, we repeatedly compute approximations to $f_{1/r}$ and attempt to "walk uphill" to find the peak (a dual lattice point).
- ► The problem: This procedure only gives a method to solve CVP_{L*,1/r}. (Beyond that distance, the value of f_{1/r} becomes negligible.)
- ▶ Plugging this into our iterative step means we go from $D_{L,r}$ to $D_{L,r\sqrt{n}}$, which is the wrong direction!

- Attempt #1: Using samples from $D_{L,r}$, we repeatedly compute approximations to $f_{1/r}$ and attempt to "walk uphill" to find the peak (a dual lattice point).
- ► The problem: This procedure only gives a method to solve CVP_{L*,1/r}. (Beyond that distance, the value of f_{1/r} becomes negligible.)
- ▶ Plugging this into our iterative step means we go from $D_{L,r}$ to $D_{L,r\sqrt{n}}$, which is the wrong direction!
- ► Goal: We need a FATTER Fourier transform!

- Equivalently, we need tighter samples!
- ► Attempt #2: Take samples from D_{L,r} and just divide every coordinate by p. This gives samples from D_{L/p,r/p}, where L/p is L scaled down by a factor of p.

- Equivalently, we need tighter samples!
- ► Attempt #2: Take samples from D_{L,r} and just divide every coordinate by p. This gives samples from D_{L/p,r/p}, where L/p is L scaled down by a factor of p.
- That is, the lattice L/p consists of p^n translates of L.
 - Label these p^n translates by vectors from \mathbb{Z}_p^n .

- Equivalently, we need tighter samples!
- ► Attempt #2: Take samples from D_{L,r} and just divide every coordinate by p. This gives samples from D_{L/p,r/p}, where L/p is L scaled down by a factor of p.
- That is, the lattice L/p consists of p^n translates of L.
 - Label these p^n translates by vectors from \mathbb{Z}_p^n .
- ► It can be shown that $r/p > \eta_{\epsilon}(L)$, which implies $D_{L/p,r/p}$ is uniform over the set of $L + L\mathbf{a}/p$, for $\mathbf{a} \in \mathbb{Z}_p^n$
 - For any choice of a ∈ Zⁿ_p, L + La/p (modulo the parallelepiped) corresponds to a choice of translate

소리가 소문가 소문가 소문가

This motivates defining a new distribution, *D* with samples (a, y) obtained by:

1.
$$\mathbf{y} \leftarrow D_{L/p,r/p}$$

2. $\mathbf{a} \in \mathbb{Z}_p^n$ s.t. $\mathbf{y} \in L + L\mathbf{a}/p$ (\leftarrow Complicated to analyze..?)

- This motivates defining a new distribution, D
 with samples (a, y) obtained by:
 - 1. $\mathbf{y} \leftarrow D_{L/p,r/p}$ 2. $\mathbf{a} \in \mathbb{Z}_p^n$ s.t. $\mathbf{y} \in L + L\mathbf{a}/p$ (\leftarrow Complicated to analyze..?)
- From the previous slide, we know that we can obtain \tilde{D} from $D_{L,r}$.

(1日) (1日) (1日)

This motivates defining a new distribution, D
 with samples (a, y) obtained by:

1.
$$\mathbf{y} \leftarrow D_{L/p,r/p}$$

2. $\mathbf{a} \in \mathbb{Z}_p^n$ s.t. $\mathbf{y} \in L + L\mathbf{a}/p$ (\leftarrow Complicated to analyze..?)

From the previous slide, we know that we can obtain \tilde{D} from $D_{L,r}$.

Also, we know that \tilde{D} is equivalently obtained by:

1. First,
$$\mathbf{a} \leftarrow \mathbb{Z}_p^n$$
 (\leftarrow Ahh! Much nicer. :))

2. Then,
$$\mathbf{y} \leftarrow D_{L+L\mathbf{a}/p,r/p}$$

(日本) (日本) (日本)

This motivates defining a new distribution, *D* with samples (a, y) obtained by:

1.
$$\mathbf{y} \leftarrow D_{L/p,r/p}$$

2. $\mathbf{a} \in \mathbb{Z}_p^n$ s.t. $\mathbf{y} \in L + L\mathbf{a}/p$ (\leftarrow Complicated to analyze..?)

From the previous slide, we know that we can obtain \tilde{D} from $D_{L,r}$.

Also, we know that \tilde{D} is equivalently obtained by:

1. First,
$$\mathbf{a} \leftarrow^{\$} \mathbb{Z}_{p}^{n}$$
 (\leftarrow Ahh! Much nicer. :))

2. Then,
$$\mathbf{y} \leftarrow \dot{D}_{L+L\mathbf{a}/p,r/p}$$

► The width of the discrete Gaussian samples **y** is tighter now!..

・ 同下 ・ ヨト ・ ヨト

How about the Fourier transform of \tilde{D} ? It's wider now! But...

(1日) (日) (日)

3

How about the Fourier transform of \tilde{D} ? It's wider now! But... The problem: Each hill of $f_{p/r}$ now has its own "phase." Do we climb up or down?

▶ Two examples of the Fourier transform of $D_{L+La/p,r/p}$ with a=(0,0) (left) and a=(1,1) (right).

Key observation #1:

▶ For $\mathbf{x} \in L^*$, each sample $(\mathbf{a}, \mathbf{y}) \leftarrow \tilde{D}$ gives a linear equation

$$\langle \mathbf{a}, \tau(\mathbf{x}) \rangle = p \langle \mathbf{x}, \mathbf{y} \rangle \mod p$$

for $\mathbf{a} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^n$. After about *n* equations, we can use Gaussian elimination to recover $\tau(\mathbf{x}) \in \mathbb{Z}_p^n$.

• What if $\mathbf{x} \notin L^*$?

(周) (アン・アン・

Key observation #2:

For x close to L^{*}, each sample (a, y) ← D̃ gives a linear equation with error

 $\langle \mathbf{a}, \tau(\mathbf{x}) \rangle \approx \lfloor p \langle \mathbf{x}, \mathbf{y} \rangle \rceil \mod p$

for $\mathbf{a} \stackrel{\clubsuit}{\leftarrow} \mathbb{Z}_p^n$. After poly(n) equations, we use the LWE oracle to recover $\tau(\mathbf{x}) \in \mathbb{Z}_p^n$. (NOTE: $|error| = ||\tau(\mathbf{x})||_2$)

Key observation #2:

For x close to L^{*}, each sample (a, y) ← D̃ gives a linear equation with error

 $\langle \mathbf{a}, \tau(\mathbf{x}) \rangle \approx \lfloor p \langle \mathbf{x}, \mathbf{y} \rangle \rceil \mod p$

for $\mathbf{a} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^n$. After poly(n) equations, we use the LWE oracle to recover $\tau(\mathbf{x}) \in \mathbb{Z}_p^n$. (NOTE: $|error| = ||\tau(\mathbf{x})||_2$)

- ► This lets us compute the phase exp(2πi⟨a, τ(x)⟩/p), and hence recover the closest dual lattice vector to x.
- Classical step DONE.

Observe: $\text{CVP}_{L^*, \alpha p/r} \rightarrow D_{L, r\sqrt{n}/(\alpha p)} = \text{CVP}_{L^*, \sqrt{n}/r} \rightarrow D_{L, r}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

New quantum step: $\text{CVP}_{L^*,\sqrt{n}/r}$ oracle $\rightarrow D_{L,r}$

Ok, let's give a solution for $\text{CVP}_{L^*,\sqrt{n}/r} \to D_{L,r}$.

イロト 不良 とうほう 不良 とうほ

Ok, let's give a solution for $\text{CVP}_{L^*,\sqrt{n}/r} \to D_{L,r}$.

GOAL: Get a quantum state corresponding to $f_{1/r}$ (on the dual lattice) and use the quantum Fourier transform to get $D_{L,r}$ (on the primal lattice). We will use the promised CVP oracle to do so.

Ok, let's give a solution for $\text{CVP}_{L^*,\sqrt{n}/r} \rightarrow D_{L,r}$.

GOAL: Get a quantum state corresponding to $f_{1/r}$ (on the dual lattice) and use the quantum Fourier transform to get $D_{L,r}$ (on the primal lattice). We will use the promised CVP oracle to do so.

1. Create a uniform superposition on L^* : $\sum_{\mathbf{x} \in L^*} |\mathbf{x}\rangle$.

Ok, let's give a solution for $\text{CVP}_{L^*,\sqrt{n}/r} \rightarrow D_{L,r}$.

GOAL: Get a quantum state corresponding to $f_{1/r}$ (on the dual lattice) and use the quantum Fourier transform to get $D_{L,r}$ (on the primal lattice). We will use the promised CVP oracle to do so.

- 1. Create a uniform superposition on L^* : $\sum_{\mathbf{x} \in L^*} |\mathbf{x}\rangle$.
- 2. On a separate register, create a "Gaussian state" of width $1/r: \sum_{\mathbf{z} \in \mathbb{R}^n} exp(-\pi ||r\mathbf{z}||^2) |\mathbf{z}\rangle.$

Ok, let's give a solution for $\text{CVP}_{L^*,\sqrt{n}/r} \rightarrow D_{L,r}$.

GOAL: Get a quantum state corresponding to $f_{1/r}$ (on the dual lattice) and use the quantum Fourier transform to get $D_{L,r}$ (on the primal lattice). We will use the promised CVP oracle to do so.

- 1. Create a uniform superposition on L^* : $\sum_{\mathbf{x} \in L^*} |\mathbf{x}\rangle$.
- 2. On a separate register, create a "Gaussian state" of width $1/r: \sum_{\mathbf{z} \in \mathbb{R}^n} exp(-\pi ||r\mathbf{z}||^2) |\mathbf{z}\rangle.$
- 3. The combined system state is written:

$$\sum_{\mathbf{x}\in L^*, \mathbf{z}\in\mathbb{R}^n} exp(-\pi ||r\mathbf{z}||^2) |\mathbf{x}, \mathbf{z}\rangle.$$

New quantum step: $\text{CVP}_{L^*,\sqrt{n}/r}$ oracle $\rightarrow D_{L,r}$

Key rule: All quantum computations must be reversible.

New quantum step: $\text{CVP}_{L^*,\sqrt{n}/r}$ oracle $\rightarrow D_{L,r}$

Key rule: All quantum computations must be reversible.

1. Add the first register to the second (reversible) to obtain: $\sum_{\mathbf{x} \in L^*, \mathbf{z} \in \mathbb{R}^n} exp(-\pi ||\mathbf{r}\mathbf{z}||^2) |\mathbf{x}, \mathbf{x} + \mathbf{z}\rangle.$

(1日) (1日) (1日)

New quantum step: $\text{CVP}_{L^*,\sqrt{n}/r}$ oracle $\rightarrow D_{L,r}$

Key rule: All quantum computations must be reversible.

- 1. Add the first register to the second (reversible) to obtain: $\sum_{\mathbf{x} \in L^*, \mathbf{z} \in \mathbb{R}^n} \exp(-\pi ||\mathbf{r}\mathbf{z}||^2) |\mathbf{x}, \mathbf{x} + \mathbf{z}\rangle.$
- 2. Since we have a $\text{CVP}_{L^*,\sqrt{n}/r}$ oracle we can compute **x** from $\mathbf{x} + \mathbf{z}$. Therefore, we can uncompute the first register:

$$\sum_{\mathbf{x}\in L^*, \mathbf{z}\in \mathbb{R}^n} exp(-\pi ||r\mathbf{z}||^2) |\mathbf{x}+\mathbf{z}\rangle \approx \sum_{\mathbf{z}\in \mathbb{R}^n} f_{1/r}(\mathbf{z}) |\mathbf{z}\rangle.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Key rule: All quantum computations must be reversible.

- 1. Add the first register to the second (reversible) to obtain: $\sum_{\mathbf{x} \in L^*, \mathbf{z} \in \mathbb{R}^n} exp(-\pi ||r\mathbf{z}||^2) |\mathbf{x}, \mathbf{x} + \mathbf{z}\rangle.$
- 2. Since we have a $\text{CVP}_{L^*,\sqrt{n}/r}$ oracle we can compute **x** from $\mathbf{x} + \mathbf{z}$. Therefore, we can uncompute the first register:

$$\sum_{\mathbf{x}\in L^*, \mathbf{z}\in \mathbb{R}^n} exp(-\pi ||r\mathbf{z}||^2) |\mathbf{x}+\mathbf{z}
angle pprox \sum_{\mathbf{z}\in \mathbb{R}^n} f_{1/r}(\mathbf{z}) |\mathbf{z}
angle.$$

3. Finally, apply the quantum Fourier transform to obtain

$$\sum_{\mathbf{y}\in L} D_{L,r}(\mathbf{y}) |\mathbf{y}\rangle,$$

and measure it to obtain a sample from $\approx D_{L,r}$.

(E) < E)</p>

- 1. Intro to lattices
- 2. Gaussians and lattices
- 3. From lattices to learning
- 4. From learning to crypto
 - 4.1 Regev's PKE scheme from LWE

伺下 イヨト イヨト

Decisional Learning with Errors (DLWE)

For positive integers n and q ≥ 2, a secret s ∈ Zⁿ_q, and a distribution χ on Z, define A_{s,χ} as the distribution obtained by drawing a ^{\$}← Zⁿ_q uniformly at random and a noise term e ^{\$}← χ, and outputting (a, b) = (a, ⟨a, s + e⟩ (mod q)) ∈ Zⁿ_q × Z_q.

・ 同 ト ・ ヨ ト ・ ヨ ト

Decisional Learning with Errors (DLWE)

- For positive integers n and q ≥ 2, a secret s ∈ Zⁿ_q, and a distribution χ on Z, define A_{s,χ} as the distribution obtained by drawing a ^{\$}← Zⁿ_q uniformly at random and a noise term e ^{\$}← χ, and outputting (a, b) = (a, ⟨a, s + e⟩ (mod q)) ∈ Zⁿ_q × Z_q.
- ► (DLWE_{n,q,χ}). An adversary gets oracle access to *either* A_{s,χ} or U(Zⁿ_q × Z_q) and aims to distinguish (with non-negligible advantage) which is the case.

(1日) (1日) (1日)

Decisional Learning with Errors (DLWE)

- For positive integers *n* and *q* ≥ 2, a secret s ∈ Zⁿ_q, and a distribution *χ* on Z, define A_{s,χ} as the distribution obtained by drawing a ^{\$}← Zⁿ_q uniformly at random and a noise term e ^{\$}← *χ*, and outputting (a, b) = (a, ⟨a, s + e⟩ (mod q)) ∈ Zⁿ_q × Z_q.
- ► (DLWE_{n,q,χ}). An adversary gets oracle access to *either* A_{s,χ} or U(Zⁿ_q × Z_q) and aims to distinguish (with non-negligible advantage) which is the case.
- ▶ **Theorem**. Let $B \ge \omega(\log n) \cdot \sqrt{n}$. There exists an efficiently sampleable distribution χ with $|\chi| < B$ (meaning, χ is supported only on [-B, B]) s.t. if an efficient algorithm solves the average-case DLWE_{*n*,*q*, χ} problem, then there is an efficient quantum algorithm that solves GapSVP_{$\tilde{O}(n \cdot q/B)$} on any *n*-dimensional lattice.

イロト イポト イヨト イヨト

1. SecretKeyGen(1^{*n*}): Sample $\mathbf{s} \xleftarrow{\$} \mathbb{Z}_q^n$. Output $sk = \mathbf{s}$.

(日) (日) (日)

SecretKeyGen(1ⁿ): Sample s ← Zⁿ_q. Output sk = s.
 PublicKeyGen(s): Let N def = O(n log q). Sample A ← Z^{N×n}_q and e ← χ^N. Compute b = A ⋅ s + e (mod q), and define P def def [b|| - A] ∈ Z^{N×(n+1)}_q.

Output $pk = \mathbf{P}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- 1. SecretKeyGen(1^{*n*}): Sample $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$. Output $sk = \mathbf{s}$.
- 2. PublicKeyGen(s): Let $N \stackrel{\text{def}}{=} O(n \log q)$. Sample $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{N \times n}$ and $\mathbf{e} \stackrel{\$}{\leftarrow} \chi^N$. Compute $\mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \pmod{q}$, and define

$$\mathbf{P} \stackrel{\mathrm{def}}{=} [\mathbf{b} || - \mathbf{A}] \in \mathbb{Z}_q^{N \times (n+1)}.$$

Output $pk = \mathbf{P}$.

3. Enc_{*pk*}(*m*): To encrypt a message $m \in \{0, 1\}$ using $pk = \mathbf{P}$, sample $\mathbf{r} \in \{0, 1\}^N$ and output the ciphertext

$$\mathbf{c} = \mathbf{P}^T \cdot \mathbf{r} + \left\lfloor \frac{q}{2}
ight
floor \cdot \mathbf{m} \mod q \in \mathbb{Z}_q^{n+1},$$

where $\mathbf{m} \stackrel{\text{def}}{=} (m, 0, ..., 0) \in \{0, 1\}^{n+1}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- 1. SecretKeyGen(1^{*n*}): Sample $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$. Output $sk = \mathbf{s}$.
- 2. PublicKeyGen(s): Let $N \stackrel{\text{def}}{=} O(n \log q)$. Sample $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{N \times n}$ and $\mathbf{e} \stackrel{\$}{\leftarrow} \chi^N$. Compute $\mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \pmod{q}$, and define

$$\mathsf{P} \stackrel{\mathrm{def}}{=} [\mathsf{b} || - \mathsf{A}] \in \mathbb{Z}_q^{N imes (n+1)}.$$

Output $pk = \mathbf{P}$.

3. Enc_{*pk*}(*m*): To encrypt a message $m \in \{0, 1\}$ using $pk = \mathbf{P}$, sample $\mathbf{r} \in \{0, 1\}^N$ and output the ciphertext

$$\mathbf{c} = \mathbf{P}^{\mathcal{T}} \cdot \mathbf{r} + \left\lfloor \frac{q}{2}
ight
floor \cdot \mathbf{m} \mod q \in \mathbb{Z}_q^{n+1},$$

where $\mathbf{m} \stackrel{\text{def}}{=} (m, 0, ..., 0) \in \{0, 1\}^{n+1}$.

4. $\operatorname{Dec}_{sk}(\mathbf{c})$: To decrypt $\mathbf{c} \in \mathbb{Z}_q^{n+1}$ using secret key $sk = \mathbf{s}$, compute

$$m = \left\lfloor \frac{2}{q} (\langle \mathbf{c}, (1, \mathbf{s}) \rangle \mod q) \right\rfloor \mod 2.$$

• 3 3 4

Encryption noise. Let all parameters be as before. Then for some *e* where $|e| \leq N \cdot B$, $\langle \mathbf{c}, (1, \mathbf{s}) \rangle = \lfloor \frac{q}{2} \rfloor \cdot m + e \pmod{q}$.

▲撮♪ ★ 注♪ ★ 注♪

Encryption noise. Let all parameters be as before. Then for some e where $|e| \leq N \cdot B$, $\langle \mathbf{c}, (1, \mathbf{s}) \rangle = \lfloor \frac{q}{2} \rfloor \cdot m + e \pmod{q}$.

Proof.
$$\langle \mathbf{c}, (1, \mathbf{s}) \rangle = \left\langle \mathbf{P}^T \cdot \mathbf{r} + \left\lfloor \frac{q}{2} \right\rfloor \cdot \mathbf{m}, (1, \mathbf{s}) \right\rangle \pmod{q}$$

$$= \left\lfloor \frac{q}{2} \right\rfloor \cdot \mathbf{m} + \mathbf{r}^T \mathbf{P} \cdot (1, \mathbf{s}) \pmod{q}$$
$$= \left\lfloor \frac{q}{2} \right\rfloor \cdot \mathbf{m} + \mathbf{r}^T \mathbf{b} - \mathbf{r}^T \mathbf{As} \pmod{q}$$
$$= \left\lfloor \frac{q}{2} \right\rfloor \cdot \mathbf{m} + \langle \mathbf{r}, \mathbf{e} \rangle \pmod{q},$$

and $|\langle \mathbf{r}, \mathbf{e} \rangle| \leq ||\mathbf{r}||_1 \cdot ||\mathbf{e}||_{\infty} = \mathbf{N} \cdot \mathbf{B}.$

(4 間)と (4 回)と (4 回)と

Encryption noise. Let all parameters be as before. Then for some e where $|e| \leq N \cdot B$, $\langle \mathbf{c}, (1, \mathbf{s}) \rangle = \lfloor \frac{q}{2} \rfloor \cdot m + e \pmod{q}$.

Proof.
$$\langle \mathbf{c}, (1, \mathbf{s}) \rangle = \left\langle \mathbf{P}^T \cdot \mathbf{r} + \left\lfloor \frac{q}{2} \right\rfloor \cdot \mathbf{m}, (1, \mathbf{s}) \right\rangle \pmod{q}$$

$$= \left\lfloor \frac{q}{2} \right\rfloor \cdot \mathbf{m} + \mathbf{r}^T \mathbf{P} \cdot (1, \mathbf{s}) \pmod{q}$$
$$= \left\lfloor \frac{q}{2} \right\rfloor \cdot \mathbf{m} + \mathbf{r}^T \mathbf{b} - \mathbf{r}^T \mathbf{As} \pmod{q}$$
$$= \left\lfloor \frac{q}{2} \right\rfloor \cdot \mathbf{m} + \langle \mathbf{r}, \mathbf{e} \rangle \pmod{q},$$

and $|\langle \mathbf{r}, \mathbf{e} \rangle| \leq ||\mathbf{r}||_1 \cdot ||\mathbf{e}||_{\infty} = \mathbf{N} \cdot \mathbf{B}.$

Decryption noise. We're good to go as long as *noise* $\leq \lfloor q/2 \rfloor/2!$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let n, q, χ be chosen so that $\mathsf{DLWE}_{n,q,\chi}$ holds. Then for any $m \in \{0, 1\}$, the joint distribution (\mathbf{P}, \mathbf{c}) is computationally indistinguishable from $U\left(\mathbb{Z}_q^{N \times (n+1)} \times \mathbb{Z}_q^{n+1}\right)$, where \mathbf{P} and \mathbf{c} come from Regev's PKE scheme.

・ 同 ト ・ ヨ ト ・ ヨ ト

That's all. :)

(ロ) (部) (注) (注) (注)