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Some images in this talk authored by me
Many, excellent lattice images in this talk authored by Oded Regev

and available in papers and surveys on his personal website
http://www.cims.nyu.edu/∼regev/ (as of Sept 29, 2012)
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Introduction to LWE

1. Learning with Errors
I Let p = p(n) ≤ poly(n). Consider the noisy linear equations:

〈a1, s〉 ≈χ b1 (mod p)

〈a2, s〉 ≈χ b2 (mod p)

...

for s ∈ Zn
p, ai

$← Zn
p, bi ∈ Zp, and error χ : Zp → R+ on Zp.

I Goal: Recover s.

2. Why we care:
I Believed hard for quantum algorithms
I Average-case = worst-case
I Many crypto applications!
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Talk Overview. Up next: Intro to lattices

1. Intro to lattices

1.1 What’s a lattice?
1.2 Hard lattice problems

2. Gaussians and lattices

3. From lattices to learning

4. From learning to crypto
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What’s a lattice?

I A lattice is a discrete additive subgroup of Rn

I A lattice is a set of points in n-dimensional space with a
periodic structure

I Given n linearly independent vectors v1, ..., vn ∈ Rn, the
lattice they generate is the set of vectors

L(v1, ..., vn)
def
=

{
n∑

i=1

αivi

∣∣∣ αi ∈ Z

}
.

I The basis B =

(
|
v1
|

|
v2
|

···
···
···

|
vn
|

)
generates the lattice L(B).
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More on lattice bases

The gray-shaded region is the fundamental parallelepiped, given by
P(B) = {Bx | x ∈ [0, 1)n}.
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More on the fundamental parallelepiped

Useful facts:

I For bases B1,B2, L(B1) = L(B2)⇒ vol(P(B1)) = vol(P(B2))

I vol(P(B)) = det(B)

I det(B1) = det(B2) iff B1 = B2U for a unimodular matrix U

I A matrix U is unimodular if it is integral and det(U) = ±1.

Moral of the story: All lattices have countably infinitely many
bases, and given some fixed lattice, all of its possible bases are
related by “volume-preserving” transformations.
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The dual of a lattice

I Given a lattice L = L(B), the dual lattice L∗
def
= L(B∗) is

generated by the dual basis B∗; the unique basis s.t.
BTB∗ = I.

I Equivalently, the dual of a lattice L ∈ Rn is given by

L∗ =
{
y ∈ Rn

∣∣∣ 〈x, y〉 ∈ Z, for all x ∈ L
}
.

I Fact. For any L = L(B), L∗ = L(B∗),

|vol(P(B))| =

∣∣∣∣ 1

vol(P(B∗))

∣∣∣∣ .
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Lattice problems

Defn: λ1(L) is the length of the shortest nonzero vector in L

1. GapSVPγ
I Input: n-dimensional lattice L and a number d > 0
I Output: YES if λ1(L) ≤ d ; NO if λ1(L) > γ(n) · d

2. CVPL∗,d

I Input: n-dimensional (dual) lattice L∗ and a point x ∈ Rn

within distance d of L∗

I Output: the closest vector in L∗ to x

3. Other common lattice problems:
I Shortest Independent Vectors Problem (SIVP), Covering

Radius Problem (CRP), Bounded Distance Decoding (BDD),
Discrete Gaussian Sampling Problem (DGS), Generalized
Independent Vectors Problem (GIVP)
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Complexity of (Gap)SVP and (Gap)CVP (and SIVP)

Moral of the story: We can get Õ(2n)-approximate solutions in
polynomial time. Constant-factor approximations are NP-hard.
The best algorithms for anything in between require Ω(2n) time.
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Talk Overview. Up next: Gaussians and lattices

1. Intro to lattices

2. Gaussians and lattices

2.1 Uniformly sampling space
2.2 DL,r : The discrete Gaussian of width r on a lattice L

3. From lattices to learning

4. From learning to crypto
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Uniformly sampling space

Question: How do you uniformly sample over an unbounded
range?

I Eg, how do you uniformly sample x ∈ Z?

Answer: You can’t!
The “lattice answer”: Sample uniformly from Zp; view Z as being
partitioned by copies of Zp
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Uniformly sampling space

Question: How do you uniformly sample from Rn?

Answer: You can’t!
The “lattice answer”: Sample uniformly from the fundamental
parallelepiped of a lattice.
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Lattices with Gaussian noise

A related question: What does a lattice look like when you
“smudge” the lattice points with Gaussian-distributed noise?

Answer: Rn

I Left-to-right: PDFs of Gaussians centered at lattice points
with increasing standard deviation
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The discrete Gaussian: DL,r

I Denote by DL,r the discrete Gaussian on a lattice L of width r

I Define the smoothing parameter, ηε(L), as the least width s.t.
DL,r is at most ε-far from the continuous Gaussian (over L).

I Important fact. ηnegl(n)(L) = ω(
√

log n) ≈ Θ(
√

n)
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Talk Overview. Up next: From lattices to learning

1. Intro to lattices

2. Gaussians and lattices

3. From lattices to learning

3.1 Reduction sketch: GapSVP to LWE

4. From learning to crypto
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Reduction from GapSVP to LWE – Overview

Reduction sketch

1. Our goal: Prove LWE is hard

2. Reduction outline

2.1 Why quantum?

3. Classical step: DL,r + LWE oracle → CVPL∗,αp/r oracle

4. Quantum step: CVPL∗,αp/r oracle → DL,r
√
n/(αp)

4.1 Note: (ηε(L) ≈) αp > 2
√

n → DL,r
√
n/(αp) ≈ DL,<r/2

5. Conclude: Either LWE is hard, or the complexity landscape
turns into a war zone

5.1 “War zone:” At least 4 or 5 good complexity classes had to
give their lives to ensure stability – that sort of thing.
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Reduction outline: GapSVP to LWE

I LLL Basis Reduction algorithm: In polytime, given an
arbitrary L(B) outputs a new basis B′ of length at most 2n

times the shortest basis.

GOAL: Given an arbitrary lattice L, output a very short vector, or
decide none exist.

I Let ri denote r · (αp/
√

n)i for i = 3n, 3n − 1, ..., 1 and
r ≥ O(n/α). (Imagine α ≈ 1/n1.5, so r ≈ n1.5 · n.)

I Using LLL, generate B′, and using B′, draw nc samples from
DL,r3n .

I For i = 3n, ...1,
I Call IterativeStep nc times, using the nc samples from

DL,ri to produce 1 sample from DL,ri−1 each time.

I Output a sample from DL,r0 = DL,r .
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The iterative step

Two steps: (1) classical, (2) quantum
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Why quantum?

I Let L be a lattice. Let d � λ1(L).

I You are given an oracle O that, on input x ∈ Rn within
distance d from L, outputs the closest lattice vector to x.

I (Caveat: If x of distance > d from L, O’s output is arbitrary.)

I How do you use O?

I One idea: Choose some lattice vector y ∈ L. Let x = y + z
with ||z|| ≤ d . Give x to O.

I But then O(x) = y!

I But quantumly, knowing how to compute y given only y + z is
useful – it allows us to uncompute a register containing y.
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Classical step: DL,r + LWE oracle → CVPL∗,αp/r oracle

I Let D be a probability distribution on a lattice L. Consider
the Fourier transform f : Rn → C, given by

f (x)
def
=
∑
y∈L

D(y)exp(2πi〈x, y〉) = Ey←D [exp(2πi〈x, y〉)]

I Using Hoeffding’s inequality, if y1, ..., yN are N = poly(n)
independent samples from D, then w.h.p.

f (x) ≈ 1

N

N∑
j=1

exp(2πi〈x, yj〉)
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Classical step: DL,r + LWE oracle → CVPL∗,αp/r oracle

I Applying this idea to DL,r , we get a good approximation of its
Fourier transform, denoted f1/r . Note f1/r is L∗-periodic.

I It can be shown that 1/r � λ1(L∗), so we have

f1/r (x) ≈ exp(−π(r · dist(L∗, x))2)
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Classical step: DL,r + LWE oracle → CVPL∗,αp/r oracle

I Attempt #1: Using samples from DL,r , we repeatedly
compute approximations to f1/r and attempt to “walk uphill”
to find the peak (a dual lattice point).

I The problem: This procedure only gives a method to solve
CVPL∗,1/r . (Beyond that distance, the value of f1/r becomes
negligible.)

I Plugging this into our iterative step means we go from DL,r to
DL,r

√
n, which is the wrong direction!

I Goal: We need a FATTER Fourier transform!
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DL,r

√
n, which is the wrong direction!

I Goal: We need a FATTER Fourier transform!
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Classical step: DL,r + LWE oracle → CVPL∗,αp/r oracle

I Equivalently, we need tighter samples!

I Attempt #2: Take samples from DL,r and just divide every
coordinate by p. This gives samples from DL/p,r/p, where L/p
is L scaled down by a factor of p.

I That is, the lattice L/p consists of pn translates of L.
I Label these pn translates by vectors from Zn

p.

I It can be shown that r/p > ηε(L), which implies DL/p,r/p is
uniform over the set of L + La/p, for a ∈ Zn

p
I For any choice of a ∈ Zn

p, L + La/p (modulo the
parallelepiped) corresponds to a choice of translate
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Classical step: DL,r + LWE oracle → CVPL∗,αp/r oracle

I This motivates defining a new distribution, D̃ with samples
(a, y) obtained by:

1. y← DL/p,r/p

2. a ∈ Zn
p s.t. y ∈ L + La/p (← Complicated to analyze..?)

I From the previous slide, we know that we can obtain D̃ from
DL,r .

Also, we know that D̃ is equivalently obtained by:

1. First, a
$← Zn

p (← Ahh! Much nicer. :))
2. Then, y← DL+La/p,r/p

I The width of the discrete Gaussian samples y is tighter now!..
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Classical step: DL,r + LWE oracle → CVPL∗,αp/r oracle

How about the Fourier transform of D̃? It’s wider now! But...

The problem: Each hill of fp/r now has its own “phase.” Do we
climb up or down?

I Two examples of the Fourier transform of DL+La/p,r/p with
a=(0,0) (left) and a=(1,1) (right).
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Classical step: DL,r + LWE oracle → CVPL∗,αp/r oracle

Key observation #1:

I For x ∈ L∗, each sample (a, y)← D̃ gives a linear equation

〈a, τ(x)〉 = p〈x, y〉 mod p

for a
$← Zn

p. After about n equations, we can use Gaussian
elimination to recover τ(x) ∈ Zn

p.

I What if x 6∈ L∗?
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Classical step: DL,r + LWE oracle → CVPL∗,αp/r oracle

Key observation #2:

I For x close to L∗, each sample (a, y)← D̃ gives a linear
equation with error

〈a, τ(x)〉 ≈ bp〈x, y〉e mod p

for a
$← Zn

p. After poly(n) equations, we use the LWE oracle
to recover τ(x) ∈ Zn

p. (NOTE: |error | = ||τ(x)||2)

I This lets us compute the phase exp(2πi〈a, τ(x)〉/p), and
hence recover the closest dual lattice vector to x.

I Classical step DONE.
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Quantum step: CVPL∗,αp/r oracle → DL,r
√

n/(αp)

Observe: CVPL∗,αp/r → DL,r
√
n/(αp) = CVPL∗,

√
n/r → DL,r
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New quantum step: CVPL∗,
√

n/roracle → DL,r

Ok, let’s give a solution for CVPL∗,
√
n/r → DL,r .

GOAL: Get a quantum state corresponding to f1/r (on the dual
lattice) and use the quantum Fourier transform to get DL,r (on the
primal lattice). We will use the promised CVP oracle to do so.

1. Create a uniform superposition on L∗:
∑

x∈L∗ |x〉.
2. On a separate register, create a “Gaussian state” of width

1/r :
∑

z∈Rn exp(−π||rz||2)|z〉.
3. The combined system state is written:∑

x∈L∗,z∈Rn

exp(−π||rz||2)|x, z〉.
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New quantum step: CVPL∗,
√

n/roracle → DL,r

Key rule: All quantum computations must be reversible.

1. Add the first register to the second (reversible) to obtain:∑
x∈L∗,z∈Rn exp(−π||rz||2)|x, x + z〉.

2. Since we have a CVPL∗,
√
n/r oracle we can compute x from

x + z. Therefore, we can uncompute the first register:∑
x∈L∗,z∈Rn

exp(−π||rz||2)|x + z〉 ≈
∑
z∈Rn

f1/r (z)|z〉.

3. Finally, apply the quantum Fourier transform to obtain∑
y∈L

DL,r (y)|y〉,

and measure it to obtain a sample from ≈ DL,r .
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Talk Overview. Up next: From learning to crypto

1. Intro to lattices

2. Gaussians and lattices

3. From lattices to learning

4. From learning to crypto

4.1 Regev’s PKE scheme from LWE
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Decisional Learning with Errors (DLWE)

I For positive integers n and q ≥ 2, a secret s ∈ Zn
q, and a

distribution χ on Z, define As,χ as the distribution obtained by

drawing a
$← Zn

q uniformly at random and a noise term e
$← χ,

and outputting (a, b) = (a, 〈a, s + e〉 (mod q)) ∈ Zn
q × Zq.

I (DLWEn,q,χ). An adversary gets oracle access to either As,χ or
U(Zn

q × Zq) and aims to distinguish (with non-negligible
advantage) which is the case.

I Theorem. Let B ≥ ω(log n) ·
√

n. There exists an efficiently
sampleable distribution χ with |χ| < B (meaning, χ is
supported only on [−B,B]) s.t. if an efficient algorithm solves
the average-case DLWEn,q,χ problem, then there is an efficient
quantum algorithm that solves GapSVPÕ(n·q/B) on any
n-dimensional lattice.
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Regev’s PKE scheme

1. SecretKeyGen(1n): Sample s
$← Zn

q. Output sk = s.

2. PublicKeyGen(s): Let N
def
= O(n log q). Sample A

$← ZN×n
q

and e
$← χN . Compute b = A · s + e (mod q), and define

P
def
= [b|| − A] ∈ ZN×(n+1)

q .

Output pk = P.
3. Encpk(m): To encrypt a message m ∈ {0, 1} using pk = P,

sample r ∈ {0, 1}N and output the ciphertext

c = PT · r +
⌊q

2

⌋
·m mod q ∈ Zn+1

q ,

where m
def
= (m, 0, ..., 0) ∈ {0, 1}n+1.

4. Decsk(c): To decrypt c ∈ Zn+1
q using secret key sk = s,

compute

m =

⌊
2

q
(〈c, (1, s)〉 mod q)

⌉
mod 2.
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Regev’s PKE scheme: Correctness

Encryption noise. Let all parameters be as before. Then for some e
where |e| ≤ N · B, 〈c, (1, s)〉 =

⌊q
2

⌋
·m + e (mod q).

Proof . 〈c, (1, s)〉 =
〈
PT · r +

⌊q

2

⌋
·m, (1, s)

〉
(mod q)

=
⌊q

2

⌋
·m + rTP · (1, s) (mod q)

=
⌊q

2

⌋
·m + rTb− rTAs (mod q)

=
⌊q

2

⌋
·m + 〈r, e〉 (mod q),

and |〈r, e〉| ≤ ||r||1 · ||e||∞ = N · B.

Decryption noise. We’re good to go as long as noise ≤ bq/2c/2!
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Regev’s PKE scheme: Security

Let n, q, χ be chosen so that DLWEn,q,χ holds. Then for any
m ∈ {0, 1}, the joint distribution (P, c) is computationally

indistinguishable from U
(
ZN×(n+1)
q × Zn+1

q

)
, where P and c come

from Regev’s PKE scheme.
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That’s all. :)
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