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ANALYTIC MODELS AND AMBIGUITY OF 
CONTEXT-FREE LANGUAGES* 

Philippe FLAJOLET 

INRIA, Rocquencourr, 78150 Le Chrsnay Cedex, France 

Abstract. We establish that several classical context-free languages are inherently ambiguous by 

proving that their counting generating functions, when considered as analytic functions, exhibit 
some characteristic form of transcendental behaviour. To that purpose, we survey some general 

results on elementary analytic properties and enumerative uses of algebraic functions in relation 

to formal languages. In particular, the paper contains a general density theorem for unambiguous 

context-free languages. 

1. Introduction 

We propose here to study an analytic method for approaching the problem of 

determining whether a context-free language is inherently ambiguous. This method 

(which cannot be universal since the problem is highly undecidable) is applied to 

several context-free languages that had resisted previous attacks by purely com- 

binatorial arguments. In particular, we solve here a conjecture of Autebert, 

Beauquier, Boasson and Nivat [l] by establishing that the ‘Goldstine language’ is 

inherently ambiguous. Our technique is also applied to a number of context-free 

languages of rather diverse structural types. 

There are relatively few types of languages that have been proved to be inherently 

ambiguous. This situation owes mostly to the fact that classical proofs of inherent 

ambiguity have to be based on a combinatorial argument of some sort considering 

allpossiblegrammars for the language. Such proofs are therefore scarce and relatively 

lengthy. 

At an abstract level, our methodology is related to a more general principle, 

namely the construction of analytic models for combinatorial problems. Informally 

the idea is as follows: 

To determine if a problem P belongs to a class C, associate to elements 

w of C adequately chosen analytic objects 6(w) so that a (possibly partial) 

characterisation of 19(c) can be obtained. If 6(P) FG 6(C), then P does 

not belong to C. 

* A preliminary version of some of the results in this paper has been presented under the title 

“Ambiguity and transcendence” at the ICALP85 Conference (Lecture Notes in Computer Science 194 
(Springer, Berlin, 1986) 179-188). e 
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At such a level of generality, this principle is of course of little use. However it has 

been successfully applied in the past in the derivation of nontrivial lower bounds 

in complexity theory, as the two following examples demonstrate. 

(1) Shamos and Yuval [39] have obtained interesting lower bounds for the 

complexity of computing the mean distance of points in a Euclidean space by 

considering the Riemann surface associated fo the complex multivalued ,function 

(especially its branch points) that continues the function defined by the original 

problem. They obtain in this way an CL(n’) lower bound on the complexity of the 

problem. The fact that the proof of this particular result was subsequently made 

algebraic by Pippenger [33] does not limit the interest of their approach. 

(2) More recently Ben-Or [4] has obtained a number of lower bounds for member- 

ship problems, including for instance the distinctness problem, set equality and 

inclusion . . . . His method consists in considering the topological structure of the real 

algebraic variety (the number of connected components) associated to a particular 

problem and relate it to the inherent complexity of that problem. 

Our approach here is to examine properties of generating functions of context-free 

languages especially when these functions are considered as analytic functions 

instead of plain formal power series. The situation in this case is greatly helped by 

the fact that, from an old theorem of Chomsky and Schutzenberger [9], the ordinary 

generating function of an unambiguous context-free language is algebraic as a series, 

and thus also as an analytic function. Therefore, we can simply prove that a 

context-free language is inherently ambiguous provided we establish that its generat- 

ing function is a transcendental,function. Thus, in the previously described framework, 

6 is the mapping that associates to a formal language its counting generating 

function, and with C the class of unambiguous context-free languages, 6(C) is a 

subset of the set of Q[z]-algebraic functions. 

Proofs of transcendence for analytic functions appear to be fortunately appreciably 

simpler than for real numbers. A method of choice consists in establishing the 

transcendence of a function by investigating its singularities, in particular, showing 

that it has a non-algebraic singularity (the way algebraic functions may become 

singular is well characterised), or infinitely many singularities or even a natural 

boundary. Alternatively, one may study Taylor coefficients of functions since many 

of their properties, especially their asymptotic growth, are reflections of functions 

singularities. 

In the sequel, we shall state some useful transcendence criteria for establishing 

inherent ambiguity of context-free languages (Section 3), and then present a number 

of applications to specific languages (Sections 4-8). 

Note about our presentation : It should be clear in what follows that we have made 

no attempt at deriving the simplest or most elementary proofs of inherent ambiguities 

of languages. We have instead tried to demonstrate the variety of techniques that 

may be employed here as they should prove useful in future applications. It should 

also be clear that a very large number of languages are amenable to these techniques 
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and some random sampling has been exercised to keep this paper within reasonable 

size limits. 

2. Some inherently ambiguous languages 

A context-free grammar G is ambiguous iff there exists at least one word in the 

language generated by G that can be parsed according to G in two different ways. 

A context-free language L is inherently ambiguous iff any grammar that generates 

L is ambiguous. 

A prototype of an inherently ambiguous language is 

L={amb”cP(n=morn=p} (1) 

and the proof of its inherent ambiguity proceeds by showing, by means of some 

iteration theorem, that any grammar for L needs to generate words of the form 

a”b”c” at least twice for large enough n. (See, e.g., Harrison’s book (211 for similar 

classical proofs.) 

In this paper, we propose to prove the inherent ambiguity of a number of languages 

of various types that are structurally more complex than the above example. 

Theorem 1 (Languages with constraints on the number of occurrences of letters). 

The languages 03, 0,) R, are inherently ambiguous, where 

Theorem 2 (Crestin’s language formed with products of palindromes). 7’he language 

C is inherently ambiguous, where 

C={w,w2)wl, W,E{U, b}*; wl= w;, w2= w;} 

with wf denoting the mirror image of w. 

Theorem 3 (A simple linear language). The language S is inherently ambiguous, where 

S ={a”bu,a”u2( n 3 1; u,, QE {a, b}*}. 

Theorem 4 (Languages with a comb-like structure). The languages P, , PI are inher- 

ently ambiguous, where 

P, = {_n,n* . . . $kI(forallj, n2j = n2j_]) or (forallj, n2, = n2j+,, n2k = n,)}, 

P2={n,n,... n,~(n,=1,forallj,nz,=2n2,_,) or(forallj,n,=2n,,+,)} 

and, for an integer n 2 0, _n denotes the unary representation of n in the form of a”& 
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Remark. In these definitions, k runs over the integers 3 1 and the n, over integers 30. 

Theorem 5 (Languages deriving from the Goldstine language). The languages G, , 

G.- , G __, H, are inherently ambiguous, where 

G, = {_n,_nz. . g,, (for somej, n, fj}, 

G,={_n,_nn... _n, lfor some j, nj <j}, 

G>={n,_n,..._n,jforsomej,n,>j}, 

G=={_n,nn. . . _n,(forsomej, n,=j}, 

H,={~,_n~...n,lforsomej,n,#p}. 

Remark. Variable p runs over all integers al and the n, over integers 20. 

Theorem 6 (Languages obeying local constraints). The languages K, , K> are inher- 

ently ambiguous, where 

K, = {_n,_n*. . . pk lfor somej, nit-, # n,}, 

K7={n,_n2... n,,lforsomej,n,+,#2n,}. 

Remark. Variable k runs over the integers 32 and the n, over integers 20. 

Theorem 7 (A language based on binary representations of integers). The language 

B is inherently ambiguous, where 

B={<,ri,. . &(n,f 1 or,forsomej, n,+,f nj+l} 

in which ii E {0, 1, c}” denotes the standard binary representation (starting with a “1”) 

of integer n followed by marker “CT’>. 

Some of these results are actually known but have been included here for the 

sake of illustrating the power of the methods we employ. The case of languages 

like 02, O3 is easily reduced to the ambiguity of languages like L defined in (1). 

The ambiguity of language a3 is included here because it is related to a stronger 

conjecture of Autebert et al., namely that the language 

I_’ = {a “‘b”cp / n # m or n # p} 

is inherently ambiguous. 

(2) 

The language C has been studied combinatorially by Crestin [12] who proved 

that it is of inherent unbounded ambiguity. We establish here the transcendence of 

its generating function, which settles a conjecture of Kemp. The result concerning 

language S is akin to a result due to Shamir [38] by which the ‘more general’ language 

{ ucu, u’q / u, a,, uz E {a, b}*} 
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is infinitely ambiguous. The language P2 has been studied by Kemp [26] who proved 

that the asymptotic density of a closely related language is a transcendental number, 

thereby establishing its ambiguity. Finally, the case of the language G,, which is 

exactly the Goldstine language, solves the conjecture of Autebert et al. 

Although it seems quite plausible at first sight that such languages must be 

inherently ambiguous, the difficulty owes to the fact that when attempting to apply 

iteration theorems (like Ogden’s lemma), some of them (most notably the Goldstine 

language) behave ‘almost’ like regular languages. 

3. An overview of transcendence criteria used for establishing inherent ambiguity 

To any infinite language L= A* (A a finite alphabet) we associate its enumeration 

sequence (also called counting sequence) defined by 

Z,,=card{w~ Ll(wl=n}. 

This sequence is characterised by its generating function, called the generating 

function of language L: 

I(z) = c I,$. 
Ita0 

This function is an analytic function in a neighbourhood of the origin, and its radius 

of convergence p satisfies 

1 
-SpPl 
card A 

since 1,~ (card A)“. 

Consideration of analytical properties of the function l(z) or, in an often equivalent 

manner, of asymptotic properties of the sequence {I,} permits in a number of cases 

to establish inherent ambiguity of the context-free language L by means of the 

following classical theorem of Chomsky and Schutzenberger [9]. 

Theorem. Let I(z) be the generating function of a context-free language L. If L is 

unambiguous, then Z(z) is an algebraic series (function) over Q. 

We recall that a series I(z) is algebraic over a field K (or over K[ z] if one prefers) 

if it satisfies an algebraic equation in the ring K[[z]] of formal power series in one 

variable, of the form P(z, l(z)) = 0 for some bivariate polynomial P(z, y) E K[z, y]. 
It is also known that an algebraic series (over Q or C) represents (a branch of) an 

algebraic function in a neighbourhood of the origin. Last, from classical elimination 

theory follows that a component of a solution to a finite system of algebraic equations 

is also an algebraic function in the above sense. In other words, sets of equations 

can be reduced rationally to a single equation (see, e.g., [30]). 
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The classical Chomsky-Schutzenberger theorem is established in a constructive 

manner by transforming an unambiguous grammatical specification of the language 

into a set of polynomial equations. Since we later need repeatedly to transform 

specifications of context-free languages into equations for corresponding generating 

functions, we shall illustrate the use of this theorem by means of an example. 

Example. Consider the grammar with axiom A (assignment), nonterminals B 

(boolean), E (expression) and V (variables) over the terminal alphabet 

{:=, not, or, G, *, log, if, then, else, fi, x, y, w} 

and production rules 

A+ V:= E, 

B+not B+or BB+sEE, 

E+*EE+logE+ifBthenEelseEfi+V, 

V+x+y+w. 

This grammar describes simple assignment statements in a rudimentary programming 

language. Letting a(z), b(z), e(z), v(z) be the generating functions of the languages 

associated to the nonterminals A, B, E, V respectively, we have 

a(z) = zu(z)e(z), 

b(z) = zb(z)+ zb(z)2+ ze(z)‘, 

v(z) = 3z. 

By elimination, we find that a(z) is an algebraic function of degree 10: 

a(z)“-27(~~-z~)a(z)~+~~ .+59049~‘~=0. 

Thus the theorem simply expresses the fact that disjoint unions and (unambiguous) 

catenation products correspond to sums and ordinary products of generating func- 

tions (also, equations correspond to equations.. . ). 

We shall need a related principle also to be found in [9]: if two languages are 

such that L= M”, then the corresponding generating functions satisfies 

I(z)= l 
l- m(z) 

provided the ‘star’ operation on M defines L unambiguously. 

The theorem will be used in the sequel under the following trivially equivalent 

form. 
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Corollary. If the generatingfunction I(z) of a context-free language L is transcendental 

over Q, then L is inherently ambiguous. 

The above corollary (see [35] for general information on languages and formal 

power series) therefore permits to conclude as to the inherent ambiguity of a language 

provided the following two conditions are met: 

(i) (counting condition): one has at one’s disposal a combinatorial decomposition 

of the language, in a way that gives access to the sequence I, and permits to ‘express’ 

f(z); 
(ii) (transcendence condition): a transcendence criterion is available to establish 

the non-algebraic character of I(z). 

We now proceed with the statement of a few simple transcendence criteria of 

which applications will be given in the following sections. 

3.1. Transcendence of values 

This method constitutes in principle the most straightforward transcendence 

criterion for functions, although it is almost invariably the most difficult to apply. 

(Transcendence results are usually much easier for functions than for numbers.) 

Theorem A. Let l(z) be an algebraic series over Q and w an algebraic number. Then 

l(w) is algebraic. 

The proof simply follows from eliminating w from the set of two equations: 

R(w) =o, 

P(w, I(w)) =o. 

Hence, we can formulate the following criterion. 

Criterion A (Transcendence of values at an algebraic point). If I(z) is a (convergent) 

series of Q[[z]] and if I(w) is transcendental for some algebraic w, then l(z) is 

transcenden tat. 

3.2. Nature of singularities 

The next criterion is based on the fact that an algebraic function has a finite 

number of singularities’ that can be explicitly determined. 

Theorem B. An algebraic function I(z) over Q defined 6-y an equation P(z, l(z)) = 0 

has a finite number of singularities that are algebraic numbers z satisfying one of the 

’ Singularities are meant here in the sense of analytic functions (not in the sense of algebraic curves): 

for us, 41 -z is singular at z = 1. 
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equations: 

(i) P(z, y), ___ = 
dP(&Y) 0 

dY 1 , 

(ii) RI(Z) =O, 

where pd(z) is the coeficient of the term of P(z, y) of highest degree in y. 

This result is of course a very classical one (see, for instance, [27,37]). 

If in equation P(z, y) = 0 the coefficient of the highest degree term in y vanishes, 

then some of the points of the algebraic curve y(z) are rejected to infinity and one 

has a pole (at least for some branch of the analytic function). 

Otherwise, around a point ( zO, y,) satisfying P( z,), _vO) = 0, one has a locally linear 

relation: 

If aP/?~y is not zero, then relation (3) locally defines y as an analytic function of z 

by the implicit function theorem. Else, one has a branch point. 

Example. Let E denote the empty word. The grammar 

D+ aDbD+e 

defines the usual parenthesis language. The corresponding generating function 

satisfies the equation in y: 

z’y2-y+l =o. (4) 

From Theorem B, singularities are to be found amongst: 

- the roots of p*(z) = z2 = 0, that is z = 0; 

- the roots in z of the system: 

Z2y’ - y+1=0, 2z2y - 1 = 0; 

that is to say, z = ii. 

This can be checked here by solving (4) directly. The two solutions of (4) are 

1- Jl -4z2 1+J1-4z2 
Yl = 29 ; Y2= 2z2 . 

The branch yZ has a pole at the origin and hence, cannot represent the generating 

function of language D. The branch y, (which represents the generating function 

of D) admits z = *i as singularities. 
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Criterion B. A function having injinitely many singularities (for instance, a natural 

boundary) is transcendental. 

In the sequel, this result is used to establish the ambiguity of Crestin’s language 

C taking advantage of Kemp’s determination of its generating function which 

appears to have infinitely many singularities. Other applications stem from the 

existence of natural boundaries for lacunary series (also called gap series [34]) as 

an application of theorems of Hadamard, Bore1 and Fabry. 

Theorem (Lacunary series theorem). A series of the form 

such that the c,‘s are integers satisfying the ‘lacunary’ condition: 

sup( c,+, - c,) = t-00 

admits its circle of convergence as a natural boundary. 

Thus, such a series cannot represent the expansion of an algebraic function around 

the origin. Examples of such series rejated to some of our future applications are: 

cz n(n+l)/2. , cg”; ~pv!l~ 
n--O n -0 n --0 

These functions all have the unit circle as a natural boundary and thus fail to be 

algebraic. 

3.3. Algebraicity and transcendence of local expansions 

A more refined way of establishing the transcendence of a series consists in 

observing the appearance of transcendental elements in local expansions around a 

singularity. Indeed, for an algebraic function, one has the following theorem. 

Theorem C. If l(z) is algebraic over Q, it admits, in the vicinity qf a singularity, a 

fractional power series expansion of the type 

kr 

where the coeficients ak are algebraic. 

The above expansion is nothing but the familiar Puiseux expansion of an algebraic 

function. The exponents may be determined explicitly by Newton’s polygon rule [ 141. 

Example. Consider the grammar 

S+fSSS+ x 



defining the language S of functional schemes (terms) with x as a nullary symbol 

and f as a ternary symbol. By Theorem B, the singularities of the generating function 

s(z) of language S are found to be 

p, p e21n!7, p e-2iv/i withp=c, 
3 

At z = p, one has s(p) =2-Ii”. Setting 2 = 2”‘(2 - p) and Y = 2”“(s(z) -s(p)), one 

gets the relation 

- 
so that when Z-O, we have Y - *iJ$Z and a full expansion of Y in powers of 

fi can be obtained. (Note: one has there a branch point of order 1 and the 

generating function s(z) corresponds to the minus sign.) 

The case of equations with the particular form y = zcp(y) is discussed by Meir 

and Moon [32], and it corresponds to so-called simple families of trees (or, 

equivalently, to terms formed with a fixed set of functional symbols). 

Criterion C. If l( z) has, in the vicinity of a singularity, an asymptotic equivalent that 

is not of the form 

r 

with o and cr algebraic and r rational, then l(z) is transcendental. 

In particular, the occurrence of logarithmic terms in a local expansion of a function 

will immediately reveal that the function is transcendental. 

3.4. Density results for coejicients 

It is also well known that the local behaviour of a function in the vicinity of its 

singularities is closely reflected by the asymptotic behaviour of its Taylor coefficients. 

Corresponding ‘transfer’ lemmas rely on contour integration techniques. From 

Cauchy’s formula 

1, =$ I l(z# 
o+ zn+’ 

using an adequate contour of integration, one can relate the local behaviour of 

function l(z) to the asymptotic form of the coefficients 1,. For that purpose, one 

may use either the classical Darboux method [22; 11, p. 2771 (i.e., integration on 

the circle of convergence) or the type of contour of [16] (i.e., integration on a 

contour extending outside the circle of convergence). Basically, these methods 

guarantee that the coefficients of a function I(z) satisfying the expansion of Theorem 
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C can be obtained asymptotically by extracting the coefficients of the expansion, 

noticing that2: 

Finally, the contributions from all dominant singularities have to be added. Thus 

using these classical results, one finds the following theorem. 

Theorem D (General density theorem for unambiguous context-free languages). If 

l(z) is an algebraic function over Q that is analytic at the origin, then its n-th Taylor 

coeficient 1, has an asymptotic equivalent of the form 

(A): I, = 

where s E Q/{ -1, -2, -3, . . . }, t < s; p is a positive algebraic number and the C, and 

wi are algebraic with lwij = 1. 

Criterion D. Let l(z) be a function analytic at the origin; if its Taylor coeficients I, 

do not satisfy an asymptotic expansion of type (A), then l(z) is transcendental. 

In passing, Criterion D generalises a result of Berstel [5] who observed that if 

there exists an integer p such that the limit 

exists and A is a transcendental number, then l(z) is a transcendental function, so 

that L cannot be an unambiguous context-free language. Theorem D does provide 

a generalised density characterisation for unambiguous context-free languages that 

extends Berstel’s results. 

Examples. A particularly useful set of applications of Theorem D is for coefficients 

with asymptotic equivalents of the form 

1” - yp”n’. 

If either r is irrational, p transcendental or -yT(r+ 1) is transcendental, then l(z) 

is a transcendental function. Therefore, the following asymptotic behaviours are 

characteristic of transcendental functions: 

O(e”nr); O(pnn”“); O(F); O(s); 7t”24nn~3’2;. . . . 

’ We let, as usual, [z”]f(z) denote the coefficient of 2” in the Taylor expansion off(z). 
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example corresponds to a logarithmic singularity. For the fifth example, 

to notice that we can write it as 

~ 4tzn-i/? 
--~ 

2 Q-l,) 

(since I-(:) =&) and use the fact that 7~ is transcendental. 

In contrast, 5Y ‘j24”n -‘I2 does occur in the expansion of algebraic functions as 

the classical example of the Catalan numbers that count words in the Dyck language 

(the language D defined above by well-parenthesised expressions) demonstrate: 

Similarly, by the Lagrange inversion theorem [22], the language S of ternary 

functional terms satisfies 

On the other hand, it is easy to see, using again Stirling’s formula, that amongst 

the sequences 

Lk) _ 
a, - 

for integral k, it is only for k = 1 that the a!,” are coefficients of an algebraic function 

(see [40] for related questions). For instance, a:‘- 16”/rn and the factor n ’ 

corresponds to a logarithmic singularity. 

3.5. Polynomial recurrences 

The last batch of methods is based on a theorem by Comtet [lo] to the effect that 

any algebraic function satisfies a linear differential equation with polynomial 

coefficients, a fact itself reflected on its Taylor coefficients by the following theorem. 

Theorem E. [f 1, is the sequence of coeficients of an algebraic function, there exist a 

set of polynomials q,,(u), . , qm( u) such that, ,for all n 2 n,,, 

f qi( n)l,_, = 0. 
, i 0 

Criterion E. Let l(z) be an analytic function. Zf there does not exist a Jinite sequence 

of polynomials go, q, , . , qm such that, for n large enough, 

!? 4,(n)& = 0, 
, -0 

then l(z) is transcendental. 
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The reader is referred to Stanley’s paper [40] for additional information regarding 

sequences satisfying polynomial-linear recurrences that have been named P-recur- 

sive sequences. Notice also, in passing that Comtet’s result makes it possible to 

determine in linear time the number of words of given length in an unambiguous 

context-free language L. It can thus be used to generate ‘at random’ words of given 

length in an unambiguous context-free language efficiently (thereby improving some 

of the complexity bounds of [23]). 

Note on the application of the transcendence criteria: In some cases, the above 

transcendence criteria can be used directly on the generating functions 1 of context- 

free languages. In some cases however, one has to proceed indirectly as follows: 

From I(z), build a new function p(z) by means of an adequately chosen ‘algebraic 

functional’: (p(z) = n(z, l(z)). (An algebraic functional is defined here as a functional 

transforming algebraic functions into algebraic functions.) Then use one of the 

above criteria to prove p(z)-whence f(z)-transcendental. 

Also, we make an occasional use of an extension of the basic Chomsky-Schutzen- 

berger theorem under the following form: Let l,, ,,nk denote the number of words in 

language L with n, occurrences qf letter a,, . . . , nk occurrences of letter ak. Then the 

multivariate generating function 

I(z,, . . . , Zk) =c I, ,.._ _Z;’ * . . . ’ 2;h 

is an algebraic function over Q[zl,. . . , zk]. 

The two methods may be combined. Thus, in the case of a binary alphabet, if 

e.g. the function 

is transcendental, then the language L is inherently ambiguous. 

4. Transcendence of values of generating functions 

This method is in principle the most direct. However, in practice, it turns out to 

be rather hard to apply because of the relative scarcity of transcendence results for 

real numbers. (Actually, it is even the case that many arithmetic transcendence 

results are established by function-theoretic techniques). That method can be applied 

to the following languages: 

- the language 0, defined by occurrences constraints (Theorem 1); 

- the ‘comb-like’ language Pr (Theorem 4). 

The reader is referred to either [ 18, 361 for an exposition of classical transcendental 

number theory. 

Language 0,. This language is the union of two unambiguous (actually determinis- 

tic) context-free languages. In the sense of multisets, one can write the equation 
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0, = L, + L, - I where I = L, n L2 and L, , L, are defined by: 

L, = {w E 1x9 2, Y, Y]*l/wlX = IwIn>, L2=~W~~X,~,~,~~*llWly=IWI~~. 

Corresponding generating functions’ l,(z), Z2(z) are algebraic, so that O,(z) has the 

same transcendence status as the generating function I(z) of I. Note in passing that 

language I encodes 2-dimensional walks on a square lattice starting and ending at 

the origin. 

A direct computation shows that: 

(6) 

(7) 

(8) 

Here, (6) is the basic counting of I as a shuffle of two languages whose enumerating 

sequence is the central binomial sequence; (7) comes from simplification of factorials 

and (8) relies on Vandermonde convolution. 

From there, we find that I(z) is a hypergeometric function [41, p. 4991 but also 

an elliptic integral, as can be checked by direct expansion using Wallis’ integrals: 

I(z) =z 
I 

m/2 
(1- 16z2 sin’ 8j-“* d6. 

rr 0 

One can then use a classical result in transcendence theory [36] concerning values 

of such integrals at algebraic points to deduce the transcendence of I(z) and hence 

of the generating function of O4 which is thus inherently ambiguous. 

Language P2. This language also presents itself as the union of two deterministic 

context-free languages. One can write P2 = L, + L, - I with now: 

LI={nIgz.. &I[n,=l,forallj, n2,=2n2,_r]}, 

L2={n,_n2..._nkI[fora11j,n2j=2n2,+,11, 

and I = L, n L,. Languages L,, L2 are again deterministic, whence unambiguous, 

and with algebraic bivariate generating functions. Since we have 

I = {dm26a22ba23b. . . a2’b (p 2 0}, 

we find that the bivariate generating function of I is 

I(a, b) = 1 bru2P--l. 
pz, 

’ We adhere from now on to the implicit convention of denoting a language L, its generating function 

I(z) (or L(z)) and its counting sequence I, (or L,) by the same group of letters. 
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The function x+xZ(x, 1) is exactly the Fredholm series: F(x) =CnzO x2” and the 

approximation theorem of Thue-Siegel-Roth shows the value of the series to be 

transcendental at any point x = l/q for integral q > 1. Thus, 1(x, 1) and I(a, b) are 

transcendental functions so that Pz is inherently ambiguous. 

The last example of language P2 has been inspired by the construction due to 

Kemp [26] of a context-free language with a transcendental density. 

Let us recall that a language L over an alphabet A of cardinality (Y has asymptotic 

density 6 iff 

In general, there is a relation between values of generating functions at particular 

rational points and densities of languages: let B be a proper superset of A with 

b E Bf A. Then the language 

M = LbB” 

has a generating function that satisfies 

(9) 

m(z) = I(z+- 
l-pz 

(10) 

where p = card B. Thus, m(z) has a simple pole at z = l/p, and a direct residue 

calculation with Cauchy’s integral formula (5) shows that 

so that pP’I(pm’) is the asymptotic density of M (see also [6, p. 231). 

Therefore, taking an alphabet B with at least five symbols and L= 0, or an 

alphabet B with at least three symbols and L= PI, construction (9) furnishes two 

examples of (ambiguous) context-free languages with a transcendental density. The 

second example (built from PI) is exactly Kemp’s construction. 

5. Functions with infinitely many singularities 

Criterion B expresses that any function with infinitely many singularities is 

transcendental. Such a property may either be apparent from the very expression 

of the function or it may result from the theorem on lacunary series cited in Section 

3. That method is applied here to the following examples: 

- the simple linear language S (Theorem 3); 

- Crestin’s palindrome-related language (Theorem 2); 

- the Goldstine language G, and the related languages H, and G, (Theorem 5). 
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Language S. We can decompose S unambiguously, recording the first occurrence 

of a group a” as follows: 

S = 1 a”hR,a”{a, h}“, (11) 
,I -1 

where R, is the regular language formed with all strings over {a, h} ending with a 

b-or empty-that do not have n consecutive occurrences of letter a: 

R,=((~+a+a’+...a” ‘)b)*. (12) 

In terms of generating functions, decompositions ( 11) and (12) lead to 

S(z) = * _z2 __ C z~“R,~(z), 
z ,I -I 

(13) 

R,(z) = 
1 1-Z 

I-z(l+z+z’+. .+p)=1-2z+2nrl (14) 

so that, finally, 

z(l -z) 

s’z)=cn?, ,_lzyzn+,. ( 
,z 

15) 

The terms in the sum of (15) are defined except at the roots of their denominator. 

Let P,(Z) denote l-2z+z”“, and consider the P,,‘s for Jz]< 1. Each f,, for n 2 2 

has a unique real zero p,, between 1 and 1. Using the principle of the argument, it 

is easy to check [28] that this is the unique zero satisfying /Z/G :. Furthermore, as 

n increases, these zeros tend to 1 and are clearly all distinct. 

Therefore, for any complex 2, jz( <i, h, t at is not equal to one of the p,,‘s or to I, 

the sum in (15) converges and defines an analytic function (observe the presence 

of the ‘convergence factor’ z2”). On the other hand, each of the p,,‘s is a pole of S(Z). 

We have thus shown that S(Z) is analytic in (z/ <i except for infinitely many poles 

pn and their accumulation point i. Thus, S(Z) is transcendental and S is ambiguous. 

We may mention here that, not too surprisingly, functions S(Z) and R,,(Z) are 

related to classical statistics on runs [IS] and, accordingly, R, occurs in an analysis 

by Knuth of carry propagation in some binary adders [28]. 

Language C. The language C has been introduced by Crestin [12] and Kemp [25] 

has shown that its generating function is 

C(z)=1+2 c q/(m) 
?‘I( 1 + Z”‘)( 1 + 22’“) 

m -1 (l-29”) ’ 

where G,(m) = ]] (1 -p), the product being extended to all prime divisors of m. From 

that expression follows, as in the previous argument, that, for /z( c 1, C(z) has 

isolated singularities (double poles) at points 

z,,, = 2_1/(2m) eilnlm 
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that cancel the denominator of one of the terms composing C(z). (Note: this 

observation answers a question of Kemp regarding the transcendence of function C.) 

Language G,. The Goldstine language can be characterised via its complement 

w.r.t. {a, b}” which consists of two types of words: 

(A) words in {a, b}*a since they fail to have the formal g,nz.. . g,; 

(B) words of the form: 

s; ab; aba’b; aba2ba’b; . . . . 

Thus the generating function G(z) of G, is 

G(Z) =& A(z) -B(z) 

with A(z) and B(z) being the generating functions for words of type (A) and (B): 

A(z) =A; 
B(z) = 1 Zn(“+lVSl 

n 2 1 

so that 

From this last equation results that G(z) has the same transcendence status as the 

series 

@(z) = c Zn(n+“/2. 
n-1 

Function 0 is an elliptic theta function; it is a lacunary series and, as such, admits 

the unit circle as a natural boundary. Thus it cannot be algebraic and the Goldstine 

language is inherently ambiguous. 

Language H,. The argument is almost the same as for the Goldstine language. 

Only, for words of type B, substitute the set 

e; ab; (a2b)‘; (a3b)3;. . . ; (d’b)“; . . . 

with generating function 

B(z) = C Zf2(ni’) 
n -0 

again a lacunary series. 

Language G. . As in the previous two examples, consider the language 

B = ({a, b}*/G. ) n {a, b}*b. 

This language admits the decomposition: 

B = a2a*b+ a”a*ba’a*b + a2a*ba3a*ba4a*b t. . ’ 
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so that 

B(a,b)= 1 &-A.. 

k’l 

which is rationally expressible in terms of the 0 function and is again transcendental. 

The case of the Goldstine language is the one that initially motivated our study 

because of the previously mentioned conjecture of [I] regarding its inherent 

ambiguity. The reader may consult [3] for several related enumeration issues. We 

observe that a similar argument based on lacunary series could have been used to 

treat the Fredholm series and hence the generating function of language P2. Also, 

since the Fredholm series satisfies the functional equation F(z) = z + F(z*) and 

F( l-) = +co, a direct argument might have been employed to establish that F has 

the unit circle as a natural boundary. 

6. Local behaviour around singularities 

Studying the local behaviour around singularities is certainly the most comfortable 

method to apply. The mere appearance of logarithmic terms in the local expansion 

of a function around a singularity is sufficient to establish its transcendence. Such 

local analyses may often be treated by Mellin transform techniques, a not too 

surprising fact considering the arithmetical character of many of the languages we 

study. We shall apply this method here to the following languages: 

- languages K, and K2 (Theorem 6); 

- the ‘comb-like’ language P, (Theorem 4); 

- the Goldstine-like language G; 

Language K,. As in the case of the Goldstine language, we enumerate K, by 

considering its complement. Define the language 

D=({a, b}*/K,)n{a, b}*b. 

It suffices to establish that the generating function of D is transcendental. But D 

has the simple form 

D= C (a”b)” 
m 3 1 
n ro 

so that its generating function is 

D(z)= C z*” = C d(p)z”, 
m,na, pr, 

where d(p) is the divisor function counting the number of divisors of integer p. 

We propose here to establish the transcendence of D(z) by showing that, as z + 1-, 

D(z)-(l-z)-‘log(l-z))‘, (16) 
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a typically transcendental behaviour. To do so, one can consider the function 

A(t) = D(e-‘) and determine its asymptotic behaviour as t + O+. 

The Mellin transform (see, e.g., [8, 131 and, for uses in analysis of algorithms, 

[17]) of the function A is, by definition, the function A* given by 

I 

o(1 
A*(s) = A(t)t’-‘dr, (17) 

0 

which, for Re(s) > 1, is equal to: 

A*(s)= 2 
d(n) 
_-I-T(s) = C2(s)T(s). 

nap n 
(18) 

(c(s) is the Riemann zeta function and T(s) is the Euler gamma function.) From 

the general inversion theorem for Mellin transforms 

1 

c+im 

AU)=& _, A*(s)F ds (19) 
c !W 

which can here be taken with c = 2, calculating the residue of the integrand of (19) 

at s = 1 and shifting the line of integration to Re(s) = 4, one finds 

A(t)=+ilog;+O 5 . 
( > 

This last equation entails (16). Thus, D(z) is a transcendental function and language 

K, is ambiguous. 

Language K2. The argument is quite similar. Consider now the language E formed 

with the complement of K,: 

E = ({a, b}*/ K2) n ( CI’~)~( a+b)*. 

Its bivariate generating function is 

E(a, b) = C amba2”ba2+‘b.. . a2kmb 
m,kal 

n~(2~+‘-l) k+l 
=Ca b. (21) 

Function E (z, 1) thus has the expression 

E(z, l)= C d,(n)z”, 
” ;1 I 

where d,(n) is the number of divisors of n of the form 2k - 1 with k a 2. TO prove 

that E(z, 1) is transcendental, one may again determine its asymptotic behaviour 

at z = l-. The Mellin transform of E (e-‘, 1) is 



To the left of the line Re(s) = -1 the Dirichlet series w(s) = c, _* (2” - l)-‘ has 

simple poles at all points of the form (2ikn)/log 2 with k E 2. Thus, around r = 0, 

E(e-‘, 1) has an expansion of the form 

E(e-‘, 1) =! C L+h log tf C c~~*‘~““~“~+O(J~), 
t k-2 2k - 1 ktZ 

(22) 

a typically transcendental expansion due to both the logarithmic terms and the 

imaginary exponents. Thus K, is also ambiguous. 

Language P, . A combinatorial decomposition like that used for language P2 reduces 

the problem to proving that the generating function of language I, here defined by 

Z={(amb)2k~k~l,m~O}, 

is transcendental. But this function is directly related to the divisor function since 

Z(z,z)= C zZkm= C d(n)z2”, 
k,m :: 1 nzz, 

so that Z(z, z) is transcendental by the argument given for language K, . 

Language G= . We shall prove this language to be ambiguous by showing essentially 

that around a singularity a derived function behaves like 

1 1 -__ 
e l-z 

with e the transcendental number e = 2.71828 . . A somewhat related reduction 

(though concluding with a density argument instead) will be used in the next section 

when dealing with language G-, . 

Words of the format FJ, . . _n, (p 2 0) that are nor in G= .are described by 

B= C (a”/a)b(a*/‘a’)b(u*/u’)b.. . (u*/uk)b 
kal 

so that their bivariate generating function reads 

B(a, b)=kL-$$ ,(l-u(l-u))(l-uz(l-u)) 

and 

B(u,z(l-a))= c Zk(l-u(l-u))(l-u2(l-a)) 
k=O 

x(1-u3(l-u))L~(1-uk(l-u)). 

Thus, as z + l- for fixed a, Ial < 1, 

Q(a) -- B(v(l-a)) (l-z), 
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where 

Now, if B(a, b) were algebraic, Q(a) would be an algebraic function. But, by a 

classical identity of Euler (see [ll, p. 103]), 

1 m m 

j!Jl 1 - f40’ 
-=1+ 2 

ma, (I- a)(* - .2)(Yz3) . . . . . (1 -a”)’ 

Therefore, function Q(a) has the alternative form 

$)=I+ c 
am 

,,,(1+a)(1+a+a2)~..:(1+a+a2+~~~+a”-’) 

so that 

Thus Q(a) is transcendental and so is B(a, b). Language G= is ambiguous. 

We observe that we could alternatively have used the Lambert series expansions 

to establish that these functions have the unit circle as a natural boundary. 

Also, Mellin transform techniques when applied to the Fredholm series reveal 

the presence of a logarithmic term together with periodic fluctuations similar to 

those of Eq. (22). 

7. Generalised asymptotic densities 

The argument here is based on the existence of generalised densities for coefficients 

of algebraic functions given by expansion (A) of Theorem D. Here it is applied to: 

- languages O,, fi3 defined by occurrence constraints (Theorem 1); 

- the Goldstine-like language G, (Theorem 5). 

Languages II3 and 0,. Language 0, has a complement which is 

~={a,b,c}*/R,={wllwl,=Iwl,=Iwl,}. 

Thus, the number of words in I of length 3n is given by the multinomial coefficient 

(3n)! 
=- 

(n!)3 ’ 
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SO that 

%z)=;‘-Z(z)=;‘- c 
(3n)! 

*~o(n!)?Zn~ 

Function 1(z) is transcendental since, by Stirling’s formula, 

I 3n - 33s 
27rn 

and, because of the K’ factor, this expansion fails to be of type (A). 

Similarly, O3 is the union of two deterministic languages (see the treatment of 

0,), whose intersection is exactly the language I defined above. Thus, O3 is 

transcendental. 

Language G, Once more, we prove it to be ambiguous by showing that its comple- 

ment has a transcendental generating function. Therefore, we consider the language 

B = {a, b}*/{ a, b}*b. It is formed with words of the type 

u”b; uOb(uO+ u’)b; u0b(u0+a’)b(uo+a1+a2)b;. . . 

so that its bivariate generating function is 

l-u 1-u’ l-u3 I-uk B(u,b)= 1 bk---. . .- 
k>l l-u l-u l-u l-u 

from which we get 

B(u,z(l-a))= c zk(l-u)(l-u*)~..:(l-uk). 
kal 

That function is a basic hypergeometric function. For \a( < 1, B( a, z( 1 - a)) has a 

simple pole at z = 1 and one has 

B(a, z(I -a)) -&k~,(I-“*). (23) 

Assume a contrario that B(u, z( 1 - a)) were an algebraic function; then, so would 

be (1 - z) B( a, z( 1 - a)) together with its value at z = 1, namely 

Q(o) = knl (I -a”). (24) 

We may now resort to a density argument. Indeed, by a celebrated theorem of 

Hardy and Ramanujan [20] concerning the number p,, of partitions of integer n, 

we have 

1 ,“JT;;/3 
pn s [x”]-_- 

Q(x) 4nd3 . 
(25) 

Thus, Q(x))‘, hence also B( a, b), is transcendental, and G z is inherently ambiguous. 
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For G, , many routes are conceivable to establish the (clear) 

transcendence of Q(z) defined by (23). One may directly observe from the infinite 

product expansion that Q(z) has the unit circle as a natural boundary. Also, by the 

Euler Pentagonal Number Theorem, Q(z) is a lacunary series since 

n (1 -z”) = 1 (_l)kZk(3k+‘)/2, 
k-_-l kcZ 

Conversely, density arguments could have been used for other languages. For 

instance, for language 0, studied in Section 4 (see Eq. (8)) we have 

16” 
I -- 

2n 
rrn 

Similarly for languages K, and P,, the mean order results (cf. [S, 171) 

ik,i, d(k)-logn; f k( Uk) - log,n 

are evidence of the transcendental character of the generating functions of d(n) 

and d,(n). 

8. Polynomial-linear recurrences 

Recall that Criterion E based on Comtet’s theorem states that if no linear recurrence 

with polynomial coefficients exists between terms of a sequence l,, then that sequence 

cannot be the sequence of coefficients of an algebraic function. It comes as a useful 

complement (or as an alternative) to transcendence proofs based on lacunary series 

mentioned in relation to Criterion B. We shall apply it here to 

- language B based on binary representations of integers (Theorem 7). 

Language B. The language C = (0, 1, c}*/ B is formed with words that are the prefixes 

ending with a letter c of the injinite word: 

b=lclOcllc looclolclloclllc lOOOc.... 

Let A(k) denote the rank of the kth c in b. We have 

h(l)=2; A(2)=5; A(3)=8; A(4)=12; . . . 

and, in general, 

A(k)=k+l+ ;: [log,k] 
,=I 

with [x] representing the ceiling function of real x: [x] - 1 < x s [xl. 

Therefore, C, = 1 if n is of the form A(k) for some k and C, = 0 otherwise. 

Assume a contrario the existence of a polynomial linear recurrence: 

CN = i Pj(n)CN-j. 

,=I 
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One has, for all k, A(p) - A( p - 1) = [log,p]; thus, taking in (26) N = A(p) (with 

for instance p = 2d+‘) one reaches a contradiction since all terms on the r.h.s. of 

(26) are 0 while C, = 1. 

Of course, all other languages where lacunary series intervene could have been 

treated by means of Criterion E which, for our purposes, is in principle more 

powerful than the lacunary series theorem. Conversely, language B could have been 

dealt with by using that theorem since the generating function of language C is a 

lacunary series. At present, we do not have examples of applications of Comtet’s 

theorem that are not also lacunary series. 

9. Conclusions and open problems 

(1) The first conclusion of this work is that analytic methods are well suited to 

proving inherent ambiguity of a variety of context-free languages since a transcen- 

dental element in a generating function can be almost invariably recognised ‘at 

sight’ using the classical arsenal of complex analysis. 

Our methods seem well-suited to languages of intermediate structural complexity 

in the following sense: the languages have to be simple enough so that we can solve 

their counting problems with the available technologies of combinatorial analysis; 

they have to be not too simple since otherwise their generating functions could 

become algebraic or even rational and the method then ceases to be applicable. 

At the lower end of the spectrum, we find the languages L 

Equations (l), (2), which have rational generating functions: 

1 
L(z)= 2 --. 

(1-z)(l-z’) l-z?’ 
~‘(+L-L 

l-z I-z3’ 

and L’ defined in 

At the upper end of the spectrum, there probably lie languages like the ‘hardest 

context-free language’ of Greibach or even Shamir’s language (compare with 

language S in our Theorem 3): 

S’={~cv,uzl~/u, v,, V,E{U, b}“} 

whose counting problem is equivalent to the general enumeration of occurrences 

of patterns in strings [19]. 

Since many of the languages considered here appear to be of unbounded ambiguity 

[12,38] a natural question is whether our methods can be extended to cover the 

following situation. 

Question 1. Are there sufficient conditions on generating functions to ensure that 

a language is infinitely inherently ambiguous? 

We believe the answer to this question is yes. 
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(2) The second conclusion is that there is a fairly rich analytic structure amongst 

generating functions of ambiguous context-free languages. Many of these functions 

are related to classical specialfunctions, a fact perhaps not too surprising since the 

language definitions are often closely related to integer partitions and compositions. 

Thus we have the following problem. 

Question 2. In which class of transcendental functions do generating functions of 

(general) context-free languages lie? (For instance, in our work we came nowhere 

close to expressions involving the exponential function.) 

A closely related problem is the following. 

Question 3. Are there general results on densities of (ambiguous) context-free 

languages? For instance, can the number of words of size n in a context-free language 

grow like exp(c&)? 

In relation to Question 2, it has been proved by Bertoni and Sabadini [7] that it is 

undecidable whether a context-free language has an algebraic generating function. 

In another direction, Kuich and Shyamasundar [31] have obtained characterisations 

of generating functions associated to (usually non-context-free) languages produced 

by some Lindenmeyer systems. 

In relation to Question 3, Baron and Kuich [2] as well as Ibarra and Ravikumar 

[24] have shown that it is decidable whether a context-free language is ‘sparse’, 

meaning that its enumeration sequence grows no faster than a polynomial. Recently, 

Kornai [29] has employed analytic techniques to study a related notion of density 

for some special context-free languages. Counting results for particular languages 

are also given by Beauquier and Thimonier [3]. 

(3) Finally, it would be very interesting to have ways of establishing the inherent 

ambiguity of languages like (1): 

{umbncP (n = m or n = p] 

using analytic methods. This would probably require the construction of quite 

different analytic models that should be of interest since they would better capture 

inherently noncommutative properties of formal languages. 
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