SOME EXTREME FORMS DEFINED IN TERMS OF ABELIAN GROUPS

E. S. BARNES and G. E. WALL

(rec. 15 Jan. 1959)

1. Introduction

Let $f(\mathbf{x}) = f(x_1, x_2, \ldots, x_n)$ be a positive definite quadratic form of determinant D, and let M be the minimum of $f(\mathbf{x})$ for integral $\mathbf{x} \neq \mathbf{0}$. Then we set

 $\gamma_n(f) = M/D^{1/n}$

and

(1.2)
$$\gamma_n = \max \gamma_n(f),$$

the maximum being over all positive forms f in n variables. f is said to be *extreme* if $\gamma_n(f)$ is a local maximum for varying f, absolutely extreme if $\gamma_n(f)$ is an absolute maximum, i.e. if $\gamma_n(f) = \gamma_n$.

It is well known that γ_n is of order *n* for large *n*; in fact, by the classical results of Blichfeldt and Hlawka (see [3], Ch. II, § 6),

(1.3)
$$\frac{1}{2\pi e} \leq \liminf \frac{\gamma_n}{n} \leq \limsup \frac{\gamma_n}{n} \leq \frac{1}{\pi e}.$$

On the other hand, no one has yet constructed a sequence of forms for which $\gamma_n(f)$ is unbounded, let alone of order n, as $n \to \infty$. We have therefore thought it worthwhile to describe, in some detail, a new class of extreme forms yielding values $\gamma_n(f)$ of order $n^{\frac{1}{2}}$ for suitable large n.

More specifically, corresponding to each $N = 2^n$ (n = 2, 3, ...) and to each sequence of integers $\lambda_0, \lambda_1, \ldots, \lambda_n$ satisfying

$$\lambda_0 = 0, \ \lambda_r - 1 \leq \lambda_{r-1} \leq \lambda_r \quad (1 \leq r \leq n),$$

we construct a positive N-variable form $f_{(\lambda)}$, which we show to be extreme in most cases. We prove also that, for each N, there is an $f_{(\lambda)}$ satisfying $\gamma_N(f) = (\frac{1}{2}N)^{\frac{1}{2}}$, whence

(1.4)
$$\gamma_N \ge (\frac{1}{2}N)^{\frac{1}{2}} \text{ for } N = 2^n, \ n \ge 2.$$

Our method of construction is based on the structure of the elementary Abelian group of order 2^n .

Further investigation shows that by an elaboration of the method, or by using a similar method based on Abelian groups of exponent 3, (1.4) can be strengthened for large N. It should also be noted that (1.4) is precise for N = 4 or 8, since $\gamma_4 = \sqrt{2}$, $\gamma_8 = 2$, and that, for sufficiently small N, (1.4) is a considerable improvement on known results.

The general properties of forms and lattices which we require are collected in § 2. The forms $f_{(\lambda)}$ and their lattices $\Lambda_{(\lambda)}$ are defined in § 3, the determinant D and minimum M are calculated and a criterion for the minimal vectors is given. In § 4, we prove that the $f_{(\lambda)}$ are extreme (under suitable conditions) and investigate the equivalences between them. In § 5, we enumerate the minimal vectors. A table of the inequivalent extreme forms $f_{(\lambda)}$ in 4, 8, 16 and 32 variables is given at the end of the paper.

2. Forms and lattices*

A positive quadratic form $f(x) = f(x_1, x_2, ..., x_n)$ is said to have lattice Λ if

$$f(\boldsymbol{x}) = \boldsymbol{\xi}' \boldsymbol{\xi},$$

where ξ runs through the points of Λ when x runs through all integral vectors; i.e. if

$$f(\mathbf{x}) = \mathbf{x}' A \mathbf{x} = \mathbf{x}' T' T \mathbf{x}$$

where Λ is specified by

(2.1)
$$\boldsymbol{\xi} = T\boldsymbol{x}, \ \boldsymbol{x} \text{ integral.}$$

Then $D(f) = \det A = (\det T)^2 = d^2(A)$.

Clearly, if f has lattice Λ , it also has lattice $R\Lambda$, where R is any orthogonal transformation. Also, equivalent forms correspond to the same lattice; for if U is an integral unimodular transformation, then T and TU define the same lattice and correspond to the equivalent forms $\mathbf{x}' \Lambda \mathbf{x}$ and $\mathbf{x}' U' \Lambda U \mathbf{x}$. It is thus easy to see that two forms f_1 , f_2 with lattices Λ_1 , Λ_2 are equivalent if and only if $\Lambda_2 = R\Lambda_1$ for some orthogonal transformation R.

We define the reciprocal lattice Λ^{-1} of Λ to be the set of points $\eta = T'^{-1}x$, x integral, where Λ is given by (2.1). Then $d(\Lambda^{-1})d(\Lambda) = 1$, and the corresponding quadratic forms x'T'Tx, and $x'(T'T)^{-1}x$ are reciprocal (i.e. have inverse matrices).

We shall be concerned in this paper only with forms whose lattices are sublattices of the integer lattice Γ . For these, it is convenient to define the notion of dual lattices modulo k.

Let k be a positive integer, and Λ_1 , Λ_2 lattices such that

$$k\Gamma \subset \Lambda_1, \ \Lambda_2 \subset \Gamma.$$

* For further general information we refer the reader to Coxeter's paper [2].

49

Then Λ_2 is said to be the *dual* of Λ_1 modulo k if it consists of those $x \in \Gamma$ satisfying

(2.2)
$$\mathbf{x}' \mathbf{y} \equiv 0 \pmod{k}$$
 for all $\mathbf{y} \in \Lambda_1$.

It is easy to see that in fact

$$\Lambda_2 = k \Lambda_1^{-1}.$$

For if Λ_1 is defined by (2.1), i.e. $\Lambda_1 = T\Gamma$, then an integral $\mathbf{x} \in \Lambda_2$ if and only if

 $\mathbf{x}' T \mathbf{y} \equiv 0 \pmod{k}$ for all $\mathbf{y} \in \Gamma$,

i.e. if and only if

 $(2.4) T' \mathbf{x} \in k\Gamma.$

Now since $k\Gamma \subset \Lambda_1$, the relation ku = Tx has a solution $x \in \Gamma$ for every $u \in \Gamma$, so that kT^{-1} is an integral matrix. Hence (2.4) is equivalent to

$$\mathbf{x} \in kT'^{-1}\Gamma = k\Lambda_1^{-1}$$

and (2.3) is established.

From (2.3), we see that the relation between Λ_1 and Λ_2 is symmetrical, so that also Λ_1 is the dual of Λ_2 modulo k; and

$$d(\Lambda_1) d(\Lambda_2) = d(k\Gamma) = k^n$$

Further, if f_1 , f_2 are the quadratic forms corresponding to the dual lattices Λ_1 , Λ_2 , then each of f_1 , f_2 is a multiple of the reciprocal of the other.

3. The Form $f_{(\lambda)}$ and its Lattice

Let V be the *n*-dimensional vector space over the Galois field GF(2); in terms of a basis $\varepsilon_1, \ldots, \varepsilon_n$, we may write the elements as $\alpha = \sum \alpha_i \varepsilon_i$ with coordinates α_i which are integers taken modulo 2. The additive group of V, which we shall also denote by V, is the elementary Abelian group of order $N = 2^n$. We shall generally use group, rather than vector space, terminology; we shall, however, speak of cosets "of dimension r" or say that a given subgroup "has basis $\alpha_1, \alpha_2, \ldots$ " Subgroups and cosets of dimension r will be denoted generically by V_r and C_r respectively.

In N-dimensional Euclidean space we consider integral vectors $\mathbf{x} = (x_{\alpha})$ with coordinates x_{α} indexed by the N elements α of V. For symmetry of notation, we write $\mathbf{x} \cdot \mathbf{y}$ for the scalar product $\mathbf{x}' \mathbf{y}$.

If W is any subset of V, [W] will denote the vector x defined by

$$x_{\boldsymbol{\alpha}} = \begin{cases} 1 & \text{if } \boldsymbol{\alpha} \in W, \\ 0 & \text{if } \boldsymbol{\alpha} \notin W. \end{cases}$$

Let $\lambda_0, \ \lambda_1, \ldots, \lambda_n$ be integral exponents satisfying (3.1) $\lambda_0 = 0, \ \lambda_r - 1 \leq \lambda_{r-1} \leq \lambda_r$ for $1 \leq r \leq n$. We denote by $\Lambda(\lambda) = \Lambda(\lambda_0, \lambda_1, \ldots, \lambda_n)$ the sublattice of Γ generated by all vectors $2^{\lambda_{n-r}}[C_r]$, where C_r runs over all cosets in V. Clearly

 $2^{\lambda_n}\Gamma \subset \Lambda(\lambda) \subset \Gamma.$

We now define $f_{(\lambda)}$ to be the N-dimensional form with lattice $\Lambda(\lambda)$, so that the values assumed by $f_{(\lambda)}$ for integral values of its variables are those of

$$x^2 = \sum_{\alpha \in V} x^2_{\alpha}$$
 for $x \in \Lambda(\lambda)$.

(We may remark here that the apparently arbitrary restrictions (3.1) involve very little loss of generality. If $\lambda_0 > 0$, we may consider $2^{-\lambda_0} \Lambda(\lambda)$, which corresponds to a multiple of $f_{(\lambda)}$. Also if the exponents satisfy only $0 \leq \lambda_r \leq r$ ($0 \leq r \leq n$), it is not difficult to show that there exists a set (λ) defining the same lattice and satisfying (3.1), with the possible exception of the inequality $\lambda_n - 1 \leq \lambda_{n-1}$.)

The exponents λ'_r defined by

(3.2)
$$\lambda'_{r} = \lambda_{n} - \lambda_{n-r} \quad (0 \leq r \leq n)$$

are said to be dual to the exponents λ_r . It is evident that (λ') satisfies (3.1), that $\lambda'_n = \lambda_n$, and that (λ) is dual to (λ') .

We can now prove

THEOREM 3.1. (i) $\Lambda(\lambda)$ and $\Lambda(\lambda')$ are dual lattices modulo 2^{λ_n} ; $f_{(\lambda)}$ and $f_{(\lambda')}$ are multiples of reciprocal forms.

(ii) Let $\varepsilon_1, \ldots, \varepsilon_n$ be any basis of V. Then a basis of $\Lambda(\lambda)$ is given by the N vectors

where V_r runs through the subgroups of V which have a subset of $\varepsilon_1, \ldots, \varepsilon_n$ as basis.

(iii) The determinants $d(\lambda)$, $D(\lambda)$ of $\Lambda(\lambda)$, $f_{(\lambda)}$ are given by

(3.4)
$$\log_2 d(\lambda) = \sum_{r=0}^n \lambda_r \binom{n}{r},$$

(3.5)
$$\log_2 D(\lambda) = 2 \sum_{r=0}^n \lambda_r \binom{n}{r}$$

PROOF. (a) We first show that

(3.6)
$$\mathbf{x} \cdot \mathbf{y} \equiv 0 \pmod{2^{\lambda_n}} \text{ if } \mathbf{x} \in \Lambda(\lambda), \ \mathbf{y} \in \Lambda(\lambda').$$

For this, it suffices to prove that for any cosets C_r , C'_s

(3.7)
$$2^{\lambda_{n-r}+\lambda'_{n-s}}[C_r] \cdot [C'_s] \equiv 0 \pmod{2^{\lambda_n}}.$$

Now if $r + s \leq n$, then

Some extreme forms defined in terms of Abelian groups

$$\lambda_{n-r} + \lambda'_{n-s} = \lambda_n + \lambda_{n-r} - \lambda_s \ge \lambda_n,$$

and (3.7) is trivial. If r + s > n, then $C_r \cap C'_s$ is either empty or a coset of dimension at least r + s - n; in either case

$$[C_r] \cdot [C'_s] \equiv 0 \pmod{2^{r+s-n}}.$$

Since, by (3.1), $\lambda_s - \lambda_{n-r} \leq s - (n-r)$, we have

$$\lambda_{n-r} + \lambda'_{n-s} + r + s - n = \lambda_n + r + s - n - (\lambda_s - \lambda_{n-r}) \ge \lambda_n$$

and (3.7) follows at once.

(b) With the notation of part (ii) of the theorem, let $\Lambda_1(\lambda)$ be the lattice spanned by the N vectors (3.3). Then clearly

$$(3.8) 2^{\lambda_n} \Gamma \subset \Lambda_1(\lambda) \subset \Lambda(\lambda).$$

Further, we show that

(3.9)
$$\log_2 d(\Lambda_1(\lambda)) = \sum_{r=0}^n \lambda_r \binom{n}{r}.$$

Since there are $\binom{n}{r}$ vectors $2^{\lambda_{n-r}}[V_r]$ for each r, (3.9) will follow when we show

that the set of all vectors $[V_r]$ forms a basis of Γ . To see this, suppose the $[V_r]$ ordered in such a way that the dimensions r do not decrease. Then, for each V_r , there is an $\alpha \in V$ such that $[\alpha]$ has coefficient 1 in $[V_r]$ and coefficient 0 in any predecessor of $[V_r]$; in fact, if $\varepsilon_{i_1}, \ldots, \varepsilon_{i_r}$ is a basis of V_r , $\alpha = \varepsilon_{i_1} + \ldots + \varepsilon_{i_r}$ satisfies this requirement. Hence the N unit vectors $[\alpha]$ ($\alpha \in V$) are integral linear combinations of the $[V_r]$, whence the $[V_r]$ form a basis of Γ , as required.

(c) Let $\Lambda_1(\lambda')$ be defined as in (b) for the exponent set (λ') . By (3.9), the determinants d_1 , d'_1 of $\Lambda_1(\lambda)$, $\Lambda_1(\lambda')$ satisfy

$$\log_2 (d_1 d_1') = \sum_{r=0}^n \lambda_r {n \choose r} + \sum_{r=0}^n \lambda'_{n-r} {n \choose n-r}$$
$$= \sum \lambda_n {n \choose r}$$
$$= \lambda_n 2^n = \log_2 (2^{N\lambda_n})$$

whence

$$d_1 d_1' = d(2^{\lambda_n} \Gamma).$$

From this, and (3.6), it follows that $\Lambda_1(\lambda)$ and $\Lambda_1(\lambda')$ are dual lattices modulo 2^{λ_n} . But it also follows from (3.6) that $\Lambda(\lambda)$ is contained in the dual of $\Lambda_1(\lambda')$, i.e. that $\Lambda(\lambda) \subset \Lambda_1(\lambda)$. It follows from (3.8) that therefore

$$\Lambda_1(\lambda) = \Lambda(\lambda).$$

All parts of the theorem now follow at once after identifying $\Lambda(\lambda)$, $\Lambda(\lambda')$ with the dual lattices $\Lambda_1(\lambda)$, $\Lambda_1(\lambda')$.

As a corollary, we obtain

LEMMA 3.1. $\Lambda(\lambda)$ is the set of integral x satisfying the system of congruences

(3.10)
$$\sum_{\alpha \in C_r} x_{\alpha} \equiv 0 \pmod{2^{\lambda_r}}$$

taken over all cosets C_r of V.

PROOF. By Theorem 2.1, $\Lambda(\lambda)$ is the dual, modulo 2^{λ_n} , of $\Lambda(\lambda')$, which is generated by the vectors $2^{\lambda'_{n-r}}[C_r]$. Hence, from the definition of dual lattices, $\mathbf{x} \in \Lambda(\lambda)$ if and only if $\mathbf{x} \in \Gamma$ and

$$2^{\lambda'_{n-r}}[C_r] \cdot \mathbf{X} \equiv 0 \pmod{2^{\lambda_n}} \quad (0 \leq r \leq n).$$

Since $\lambda'_{n-r} = \lambda_n - \lambda_r$, these are precisely the congruences (3.10).

LEMMA 3.2. $\Lambda(\lambda)$ is invariant under the following orthogonal transformations:

(i) the permutation of the coordinates x_{α} induced by the transformation (3.11) $\alpha \rightarrow \tau \alpha + \gamma$

of V, where τ is a non-singular matrix over GF(2) and γ is any fixed element of V;

(ii) the involution

(3.12)
$$y_{\alpha} = \begin{cases} x_{\alpha} & \text{if } \alpha \in W, \\ -x_{\alpha} & \text{if } \alpha \notin W, \end{cases}$$

where W is any fixed subgroup of V of dimension n - 1.

PROOF. (i) The transformation (3.11) of V permutes the cosets of each dimension r, and so induces a permutation of the generators $2^{\lambda_{n-r}}[C_r]$ of $\Lambda(\lambda)$.

(ii) Suppose first that $\mathbf{x} = 2^{\lambda_{n-r}}[C_r]$ for some coset C_r . Then $C_r \cap W$ is either empty or a coset of dimension at least r-1, and in each case it is easy to show that \mathbf{y} , defined by (3.12), is a point of $\Lambda(\lambda)$. For if $C_r \cap W$ is empty, $\mathbf{y} = -\mathbf{x}$; if $C_r \cap W = C_r$, $\mathbf{y} = \mathbf{x}$; and if $C_r \cap W = C_{r-1}$ and say $C_r = C_{r-1} \cup C'_{r-1}$,

$$y = 2^{\lambda_{n-r}}[C_{r-1}] - 2^{\lambda_{n-r}}[C'_{r-1}]$$

= $2^{\lambda_{n-r}+1}[C_{r-1}] - 2^{\lambda_{n-r}}[C_r]$
 $\epsilon \Lambda(\lambda)$

since $\lambda_{n-r} + 1 \geq \lambda_{n-r+1}$.

Since $\Lambda(\lambda)$ is generated by the vectors $2^{\lambda_{n-r}}[C_r]$, it follows that $\mathbf{y} \in \Lambda(\lambda)$ whenever $\mathbf{x} \in \Lambda(\lambda)$. Since the transformation (3.12) is involutory, the converse statement holds. $\Lambda(\lambda)$ is therefore invariant, as asserted.

Our final task in this section is to determine the minimum M of $f_{(\lambda)}$, i.e. the minimum of x^2 for points $x \neq 0$ of $\Lambda(\lambda)$. We shall show that in fact

M is the minimum of x^2 over the set of vectors $2^{\lambda_{n-r}}[C_r]$ which we have selected to generate $\Lambda(\lambda)$.

For this purpose, it is convenient to define the special lattices Λ_s $(0 \leq s \leq n)$: Λ_s is the lattice $\Lambda(\lambda)$ whose exponents are defined by (3.13) $\lambda_r = 0$ if $r \leq s$; $\lambda_r = 1$ if r > s.

LEMMA 3.3. Suppose that $x \in \Lambda_s$ and that not all x_{α} are even. Then at least 2^{n-s} coordinates x_{α} are odd.

PROOF. If s = n, the result is trivial; hence we may suppose that $0 \le s < n$. We shall proceed by induction on n, the result being obvious when n = 1.

After applying a suitable transformation (3.11), we may suppose that x_0 is odd. By (3.10), with r = n, $\lambda_n = 1$, we have

$$\sum_{\alpha \in V} x_{\alpha} \equiv 0 \pmod{2}$$
,

so that some other coordinate x_{γ} , say, is odd. Choose an (n-1)-dimensional subgroup W of V so that $\gamma \notin W$, and let W' be the other coset of W.

Now since (3.10) holds a fortiori whenever $C_r \subset W$, induction on n shows that x_{α} is odd for at least $2^{(n-1)-s}$ indices α in W. The same result also holds for W'; for, by the transformation $\alpha \to \alpha + \gamma$ of (3.11), W' is transformed into W; and, under the induced permutation of the coordinates, x_{γ} , which is odd, is transformed into x_0 . Thus the odd coordinates x_{α} number at least $2^{n-1-s} + 2^{n-1-s} = 2^{n-s}$, as asserted.

Let us now define the *rank* of a point $x \neq 0$ of $\Lambda(\lambda)$ to be the largest $r \ (0 \leq r \leq n)$ for which all coordinates x_{α} are divisible by 2^{λ_r} . We then have

THEOREM 3.2. The minimum M of $f_{(\lambda)}$ is given by

(3.14)
$$\log_2 M = m = \min (n - r + 2\lambda_r).$$

A point $\mathbf{x} \neq \mathbf{0}$ of $\Lambda(\lambda)$ is a minimal vector $f_{(\lambda)}$ if and only if it is of rank R, where

$$(3.15) n-R+2\lambda_R=m,$$

and, for some subset H of V containing 2^{n-R} elements,

(3.16)
$$|x_{\alpha}| = 2^{\lambda_{R}} \text{ if } \alpha \in H, \ x_{\alpha} = 0 \text{ if } \alpha \notin H.$$

PROOF. Each generator $\mathbf{x} = 2^{\lambda_r} [C_{n-r}]$ of $\Lambda(\lambda)$ satisfies $\mathbf{x}^2 = 2^{n-r+2\lambda_r}$,

so that certainly $M \leq 2^m$, where *m* is defined by (3.14).

On the other hand, let $\mathbf{x} \in \Lambda(\lambda)$, $\mathbf{x} \neq \mathbf{0}$, and suppose that \mathbf{x} has rank $r(0 \leq r \leq n)$; set $\mathbf{y} = 2^{-\lambda_r} \mathbf{x}$, so that \mathbf{y} is integral, $\mathbf{y} \neq \mathbf{0}$.

If now all y_{α} are even, then, by the definition of rank, we must have

r = n; since $y \neq 0$, we therefore have

$$\mathbf{x}^2 = 2^{2 \lambda_n} \mathbf{y}^2 \ge \mathbf{4} \cdot 2^{2 \lambda_n} > 2^m.$$

If however some y_{α} is odd, we see that $y \in A_r$. For, since

$$\mathbf{x} \in \Lambda(\lambda_0, \lambda_1, \ldots, \lambda_n), \ \mathbf{y} = 2^{-\lambda_r} \mathbf{x} \in \Lambda(0, \ldots, 0, \ \lambda_{r+1} - \lambda_r, \ldots, \lambda_n - \lambda_r);$$

we have $\lambda_{r+1} > \lambda_r$, by the definition of rank, and so $\lambda_s - \lambda_r \ge 1$ for s > r; hence a fortiori $y \in \Lambda(0, \ldots, 0, 1, \ldots, 1) = \Lambda_r$. Now Lemma 3.3 shows that at least 2^{n-r} coordinates y_{α} are odd, whence

$$\mathbf{x}^2 = 2^{2 \lambda_r} \mathbf{y}^2 \geqq 2^{n-r+2\lambda_r} \geqq 2^m$$

This establishes (3.14). The argument shows that in fact $x^2 = M = 2^m$ precisely when x has rank R satisfying (3.15) and the corresponding $y = 2^{-\lambda_R} x$ has 2^{n-R} coordinates ± 1 and the rest zero. The proof of the theorem is therefore complete.

4. The Extreme Forms $f_{(\lambda)}$

Although Theorem 3.2 takes us some way towards a specification of the minimal vectors of $f_{(\lambda)}$, the complete picture is rather complicated. (We shall give more precise results in § 5.) However, we can easily write down a sufficiently large set of minimal vectors to enable us to establish the extreme forms $f_{(\lambda)}$.

We denote generically by R an index satisfying (3.15), so that there are certainly minimal vectors of rank R.

Let \mathfrak{M}_R denote the set of vectors

(4.1)
$$2^{\lambda_R}[C_{n-R}], \quad 2^{\lambda_R}[C_{n-R-1}] - 2^{\lambda_R}[C'_{n-R-1}]$$

and their negatives, taken over all cosets of the indicated dimensions, where C_{n-R-1} , C'_{n-R-1} denote distinct cosets of the same subgroup.

LEMMA 4.1. (i) \mathfrak{M}_R is a set of $2^{n+1}K_{n,R}$ minimal vectors of $f_{(\lambda)}$ of rank R, where

$$K_{n,R} = \frac{(2^n - 1)(2^{n-1} - 1) \dots (2^{n-R+1} - 1)}{(2^R - 1)(2^{R-1} - 1) \dots (2 - 1)}.$$

(ii) The group \mathfrak{G} of automorphs of $f_{(\lambda)}$ is transitive on \mathfrak{M}_R .

PROOF. Let \mathfrak{G}' be the group generated by all the orthogonal transformations given in Lemma 3.2. Since these leave $\Lambda(\lambda)$ invariant, \mathfrak{G}' is a subgroup of \mathfrak{G} .

It is now easy to see that \mathfrak{M}_R is precisely the set of vectors which are the transforms by \mathfrak{G}' of any one of them. For, by suitable choice of τ and γ in (3.11), any coset may be mapped into any other coset of the same dimension; and, for fixed C_{n-R-1} , C'_{n-R-1} with $C_{n-R-1} \cup C'_{n-R-1} = C_{n-R}$,

 $\mathbf{54}$

the transformation (3.12) interchanges the two vectors (4.1) if W is suitably chosen.

Since $2^{\lambda_R}[C_{n-R}]$ is a generator of $\Lambda(\lambda)$, all vectors of \mathfrak{M}_R belong to $\Lambda(\lambda)$; and, by the criterion of Theorem 3.2, they are all minimal vectors of $f_{(\lambda)}$. The argument also establishes part (ii) of the lemma.

Finally, if V_{n-R} is any fixed subgroup, we have from (4.1) the 2 vectors $\pm 2^{\lambda_R}[V_{n-R}]$ and the $2(2^{n-R}-1)$ vectors $2^{\lambda_R}[C_{n-R-1}] - 2^{\lambda_R}[C'_{n-R-1}]$ obtained by splitting V_{n-R} in all ways into 2 cosets. This gives 2^{n-R+1} vectors of \mathfrak{M}_R corresponding to each V_{n-R} . Since V_{n-R} has 2^R distinct cosets, and V contains $K_{n,R}$ subgroups V_{n-R} , the total number of vectors in \mathfrak{M}_R is $2^{n+1}K_{n,R}$, as asserted.

LEMMA 4.2. If 0 < R < n, $f_{(\lambda)}$ is perfect with respect to the set \mathfrak{M}_R of minimal vectors; i.e. if $g(\mathbf{x})$ is any quadratic form satisfying

(4.2)
$$g(\mathbf{x}) = 0$$
 for all $\mathbf{x} \in \mathfrak{M}_R$,

then $g(\mathbf{x}) \equiv 0$.

PROOF. Suppose that (4.2) holds, where $g(\mathbf{x}) = \sum_{\alpha, \beta \in V} b_{\alpha\beta} x_{\alpha} x_{\beta} (b_{\alpha\beta} = b_{\beta\alpha})$; we have to show that $b_{\alpha\beta} = 0$ for all α , $\beta \in V$.

Inserting the vectors (4.1), with $C_{n-R} = C_{n-R-1} \cup C'_{n-R-1}$, we obtain

B & C'n-R-

(4.3)
$$\sum_{\substack{\alpha,\beta \in C_{n-R}}} b_{\alpha\beta} = 0,$$
$$\sum_{\alpha,\beta \in C_{n-R-1}} b_{\alpha\beta} + \sum_{\substack{\alpha,\beta \in C'_{n-R-1}}} b_{\alpha\beta} - 2 \sum_{\alpha \in C_{n-R-1}} b_{\alpha\beta} = 0,$$

whence, by addition,

(4.4)
$$\sum_{\alpha,\beta\in C_{n-R-1}} b_{\alpha\beta} + \sum_{\alpha,\beta\in C'_{n-R-1}} b_{\alpha\beta} = 0.$$

Applying (4.4) to each pair of 3 distinct cosets of a V_{n-R-1} (which is possible since $n - R - 1 \leq n - 2$), we deduce that

$$\sum_{\alpha,\beta\in C_{n-R-1}}b_{\alpha\beta}=0.$$

We now make the inductive assumption that the relations

(4.5)
$$\sum_{\boldsymbol{\alpha},\,\boldsymbol{\beta}\,\boldsymbol{\epsilon}\,\boldsymbol{C}_{\tau+1}} b_{\boldsymbol{\alpha}\boldsymbol{\beta}} = 0,$$

(4.6)
$$\sum_{\alpha,\beta \in C_r} b_{\alpha\beta} = 0$$

hold, for some r with $0 < r \le n-2$, for any cosets C_{r+1} , C_r , and prove that (4.6) holds for cosets of dimension r-1.

Let V_{r-1} be a subgroup and $C_{r-1} = V_{r-1} + \gamma_1$ any coset of it. Since $r-1 \leq n-3$, V_{r-1} has at least 2³ cosets; let $C^i = V_{r+1} + \gamma_i$ (i = 1, ..., 6)

be 6 distinct cosets of V_{r-1} such that $C^i \cup C^{i+1}$ (i = 1, 3, 5) are 3 cosets of a subgroup V_r . We write (temporarily)

$$B_{ij} = \sum_{\substack{\boldsymbol{\alpha} \in C^i \\ \boldsymbol{\beta} \in C^j}} b_{\boldsymbol{\alpha}\boldsymbol{\beta}}$$

From (4.6), with $C_r = C^i \cup C^j$, we have

(4.7)
$$B_{ii} + B_{jj} + 2B_{ij} = 0$$
 $(1 \le i < j \le 6).$

From (4.5), with $C_{r+1} = \bigcup_{i=1}^{4} C^{i}$, we have

(4.8)
$$\sum_{i=1}^{4} B_{ii} + 2\sum_{1 \le i < j \le 4} B_{ij} = 0.$$

Adding (4.7) for all i, j with $1 \leq i < j \leq 4$ and subtracting (4.8), we obtain

(4.9)
$$\sum_{i=1}^{4} B_{ii} = 0$$

Adding (4.7) for i, j = 1, 2 and i, j = 3, 4, and subtracting (4.9), we obtain $B_{12} + B_{34} = 0.$

From this, and the two similar relations $B_{12} + B_{56} = 0$, $B_{34} + B_{56} = 0$, we deduce that $B_{12} = 0$; hence, by (4.7),

$$B_{11} + B_{22} = 0.$$

From this and the two similar relations $B_{11} + B_{33} = 0$, $B_{22} + B_{33} = 0$, we deduce that $B_{11} = 0$, i.e.

$$\sum_{\alpha,\beta \epsilon c_{r-1}} b_{\alpha\beta} = 0,$$

as required.

Now we have shown that (4.5), (4.6) hold for r = n - R - 1, where $0 \le n - R - 1 \le n - 2$. Hence by induction, (4.5) and (4.6) hold for r = 0. Thus, for any distinct α , β ,

$$b_{\alpha\alpha} + b_{\beta\beta} + 2b_{\alpha\beta} = 0, \ b_{\alpha\alpha} = 0.$$

It follows that $b_{\alpha\beta} = 0$ for all α , β , and our proof is complete.

It is now easy to prove our main result:

THEOREM 4.1. $f_{(\lambda)}$ is extreme if and only if it has minimal vectors of rank R for some R with 0 < R < n, or is the 4-variable form $f_{(0,1,1)}$.

PROOF. (i) If R satisfies (3.15), with 0 < R < n, we have exhibited a set \mathfrak{M}_R of minimal vectors such that (a) the group \mathfrak{G} of automorphs of $f_{(\lambda)}$ is transitive on \mathfrak{M}_R (Lemma 4.1); and (b) $f_{(\lambda)}$ is perfect with respect to \mathfrak{M}_R . Hence, by [1], theorem 4, $f_{(\lambda)}$ is extreme.

(ii) If (3.15) holds only with R = 0 or R = n, it may be shown that, when $f_{(\lambda)} \neq f_{(0,1,1)}$, the total number of minimal vectors of rank 0 or n is

 $2^{n+1} = 2^{n+1}K_{n,0}$. Thus $f_{(\lambda)}$ has at most $2^{n+1} = 2N$ pairs of minimal vectors. Since $2N < \frac{1}{2}N(N+1)$ if $N \ge 4$, $f_{(\lambda)}$ is not perfect, and so not extreme, if $N \ge 4$; and trivially $f_{(\lambda)}$ is not perfect if N = 2.

Although the 2^n choices of (λ) satisfying (3.1) yield 2^n distinct forms $f_{(\lambda)}$ for each *n*, most of which are extreme, these forms are not all inequivalent. The following two theorems appear to settle the problem of finding the inequivalent $f_{(\lambda)}$, at least for small N.

THEOREM 4.2. For any set (λ) of exponents satisfying (3.1), define the conjugate set (μ) by

(4.10)
$$\mu_r = r + \lambda_{n-r} - \lambda_n$$

Then (μ) satisfies (3.1) and

(4.11)
$$2^{-\mu_n} f_{(\mu)} \sim 2^{-\lambda_n} f_{(\lambda)}$$

PROOF. From (4.10),

$$\mu_0 = 0, \ \mu_r - \mu_{r-1} = 1 - (\lambda_{n-r+1} - \lambda_{n-r}) = 0 \text{ or } 1 \quad (1 \le r \le n)$$

so that (μ) satisfies (3.1). It is also clear that (λ) is conjugate to (μ) , i.e. $\lambda_r = r + \mu_{n-r} - \mu_n$.

Now let B: ε_1 , ε_2 , ..., ε_n be any fixed basis of V, and define a scalar product on V by

$$\alpha \cdot \beta = \sum_{i=1}^{n} \alpha_i \beta_i$$
 if $\alpha = \sum \alpha_i \varepsilon_i$, $\beta = \sum \beta_i \varepsilon_i$.

 $\boldsymbol{\alpha} \cdot \boldsymbol{\beta}$ is thus an element of GF(2), written as an integer modulo 2. We now consider the transformation

(4.12)
$$y_{\alpha} = 2^{-\lambda_n} \sum_{\beta \in V} (-1)^{\alpha \cdot \beta} x_{\beta}$$

and we shall show that

(4.13) $\mathbf{y} \in \Lambda(\mu)$ if $\mathbf{x} \in \Lambda(\lambda)$,

(4.14)
$$2^{-\mu_n} y^2 = 2^{-\lambda_n} x^2.$$

By Theorem 3.1. (ii), a basis of $\Lambda(\lambda)$ is given by the vectors $2^{\lambda_{n-r}}[V_r]$, where V_r runs through the subgroups of V having a subset of B as basis. Hence, to prove (4.13), it suffices to show that $\mathbf{y} \in \Lambda(\mu)$ if $\mathbf{x} = 2^{\lambda_{n-r}}[V_r]$ $(0 \leq r \leq n)$. For each such V_r , let V'_{n-r} be the complementary subgroup of V; i.e. V_r and V'_{n-r} have complementary subsets of B as basis. We then have

(4.15)
$$\sum_{\beta \in V_r} (-1)^{\alpha \cdot \beta} = \begin{cases} 2^r & \text{if } \alpha \in V'_{n-r}, \\ 0 & \text{if } \alpha \notin V'_{n-r}. \end{cases}$$

For if $\alpha \in V'_{n-r}$, then $\alpha \cdot \beta = 0$ for all $\beta \in V_r$. If, however, $\alpha \notin V'_{n-r}$, then there is some $\gamma \in V_r$ with $\alpha \cdot \gamma = 1$; then

$$\sum_{\beta \in V_r} (-1)^{\alpha \cdot \beta} = \sum_{\beta \in V_r} (-1)^{\alpha \cdot (\beta + \gamma)} = -\sum_{\beta \in V_r} (-1)^{\alpha \cdot \beta} = 0.$$

If now $x = 2^{\lambda_{n-r}} [V_r]$, (4.12) and (4.15) give

$$y_{\alpha} = 2^{-\lambda_n} \sum_{\beta \in V_r} (-1)^{\alpha \cdot \beta} 2^{\lambda_{n-r}} = \begin{cases} 2^{r+\lambda_{n-r}-\lambda_n} \text{ if } \alpha \in V'_{n-r}, \\ 0 & \text{ if } \alpha \notin V'_{n-r}, \end{cases}$$

i.e. $y = 2^{\mu_r}[V'_{n-r}]$, which is a generator of $\Lambda(\mu)$. This proves (4.13). To prove (4.14), we use the case r = n, $V_r = V$ of (4.15) to obtain

$$y^{2} = \sum_{\alpha \in V} y^{2}_{\alpha} = 2^{-2\lambda_{n}} \sum_{\alpha, \beta, \gamma \in V} (-1)^{\alpha \overline{\cdot} (\beta + \overline{\gamma})} x_{\beta} x_{\gamma} = 2^{n-2\lambda_{n}} \sum_{\alpha \in V} x^{2}_{\alpha},$$

whence (4.14) follows at once.

The desired equivalence (4.11) follows from (4.13), (4.14), on observing that, since the relations between (λ) , (μ) and between x, y are symmetrical, $y \in \Lambda(\mu)$ if and only if $x \in \Lambda(\lambda)$.

THEOREM 4.3. For the exponent sets (λ) , (μ) given by

(4.16)
$$\lambda_r = \left[\frac{r}{2}\right] \qquad (0 \le r \le n),$$

(4.17)
$$\mu_r = \begin{bmatrix} r+1\\ 2 \end{bmatrix} \quad (0 \le r \le n),$$

we have

 $f_{(\mu)} \sim 2 f_{(\lambda)}$

PROOF. Take any fixed subgroup W of dimension n - 1 and any element $\gamma \notin W$, and consider the transformation defined by

(4.18)
$$\begin{aligned} y_{\alpha} &= x_{\alpha} + x_{\alpha+\gamma} \\ y_{\alpha+\gamma} &= x_{\alpha} - x_{\alpha+\gamma} \end{aligned} (\alpha \in W)$$

Then clearly $y^2 = 2x^2$, and so the required equivalence will follow when we show that $y \in \Lambda(\mu)$ if and only if $x \in \Lambda(\lambda)$.

Let V_r be any subgroup of V and $\mathbf{x} = 2^{\lambda_{n-r}}[V_r] \epsilon \Lambda(\lambda)$. Then $V_r \cap W$ is either V_r or a subgroup V_{r-1} ; we must now distinguish three cases.

(a) If $V_r \subset W$, (4.18) shows that $\mathbf{y} = 2^{\lambda_{n-r}}[V_r] + 2^{\lambda_{n-r}}[V_r+\gamma]$, i.e. $\mathbf{y} = 2^{\lambda_{n-r}}[V_{r+1}] = 2^{\mu_{n-r-1}}[V_{r+1}] \in \Lambda(\mu)$.

(b) If
$$V_r \cap W = V_{r-1}$$
 and $V_r = V_{r-1} \cup (V_{r-1} + \gamma)$, (4.18) gives

$$y = 2.2^{\lambda_{n-r}}[V_{r-1}] = 2^{\mu_{n-r+1}}[V_{r-1}] \epsilon \Lambda(\mu)$$

(c) The remaining possibility is that $V_r = V_{r-1} \cup (V_{r-1} + \beta)$, where $V_{r-1} \subset W$, $V_{r-1} + \beta \subset W + \gamma$, but the cosets $V_{r-1} + \beta$, $V_{r-1} + \gamma$ are distinct. Then observing that $V_{r-1} + \beta + \gamma \subset W$, we obtain from (4.18) $y = 2^{\lambda_{n-r}} \{ [V_{r-1}] + [V_{r-1} + \gamma] + [V_{r-1} + \beta + \gamma] - [V_{r-1} + \beta] \}.$

[12]

With
$$V_{r+1} = V_{r-1} \cup (V_{r-1} + \beta) \cup (V_{r-1} + \gamma) \cup (V_{r-1} + \beta + \gamma)$$
, this gives

$$\begin{aligned} \mathbf{y} &= 2^{\lambda_{n-r}} [V_{r+1}] - 2 \cdot 2^{\lambda_{n-r}} [V_{r-1} + \beta] \\ &= 2^{\mu_{n-r-1}} [V_{r+1}] - 2^{\mu_{n-r+1}} [V_{r-1} + \beta] \epsilon \Lambda(\mu). \end{aligned}$$

We have therefore shown that, in all cases, $y \in \Lambda(\mu)$ if $x = 2^{\lambda_{n-r}}[V_r]$; since these vectors generate $\Lambda(\lambda)$, it follows that $y \in \Lambda(\mu)$ if $x \in \Lambda(\lambda)$. A precisely similar argument, using the inverse transformation $x_{\alpha} = \frac{1}{2}(y_{\alpha} + y_{\alpha+\gamma})$ $x_{\alpha+\gamma} = \frac{1}{2}(y_{\alpha} - y_{\alpha+\gamma})$, shows that conversely $x \in \Lambda(\lambda)$ if $y \in \Lambda(\mu)$. This completes the proof of the theorem.

The particular interest of the (equivalent) exponent sets (4.16) and (4.17) is shown by:

THEOREM 4.4. For each $N = 2^n (n \ge 2)$, the extreme form f_N whose exponents are given by (4.16) has

(4.19)
$$\gamma_N(f_N) = (\frac{1}{2}N)^{\frac{1}{2}};$$

and this is the largest value of $\gamma_N(f_{(\lambda)})$.

PROOF. Since $\gamma_N(f) = M/D^{1/N}$, the values of M and D given in Theorems 3.1 and 3.2 show that

$$\log_2 \gamma_N(f_{(\lambda)}) = m - \frac{2}{N} \sum_{r=0}^n \lambda_r \binom{n}{r}$$
$$= \frac{1}{2}n - \frac{1}{N} \sum_{r=0}^n (n - r + 2\lambda_r - m) \binom{n}{r}.$$

Since $m = \min(n - r + 2\lambda_r)$, we have $n - r + 2\lambda_r - m \ge 0$ for all r; and the parity of $n - r + 2\lambda_r - m$ is determined by the parity of r. It is thus easy to see that $\gamma_N(f_{(\lambda)})$ is greatest when the expressions $n - r + 2\lambda_r - m$ (r = 0, 1, ..., n) take alternately the values 0 and 1; and the only exponent sets satisfying this condition are those given in (4.16) and (4.17). This shows that $\gamma_N(f_N)$ is maximal, and a simple calculation now gives (4.19).

It is perhaps worth noting here that, by Theorem 3.1 (i), the reciprocal of $f_{(\lambda)}$ is a multiple of $f_{(\lambda')}$, where $\lambda'_r = \lambda_n - \lambda_{n-r}$ ($0 \leq r \leq n$). For the exponent set (4.16) corresponding to f_N , it is easily verified that the dual set (λ') is either (4.16) or (4.17), according as n is odd or even; thus f_N is equivalent to (a multiple of) its reciprocal.

5. The Minimal Vectors of $f_{(\lambda)}$

For each R satisfying (3.15), we have exhibited a set \mathfrak{M}_R of $2^{n+1}K_{n,R}$ minimal vectors of $f_{(\lambda)}$. Denoting by s_R the total number of pairs of minimal vectors of rank R, we therefore have certainly

$$(5.1) 2s_R \ge 2^{n+1}K_{n,R}.$$

[13]

(5.2)
$$|x_{\alpha}| = 2^{\lambda_R} \text{ if } \alpha \in C_{n-R}, x_{\alpha} = 0 \text{ otherwise.}$$

We may say that a minimal vector (5.2) has carrier C_{n-R} . By using the transformation (3.11), we see that the number of minimal vectors with carrier C_{n-R} is the same for all cosets of dimension n - R; call this number N_R , so that

(5.3)
$$2s_R = 2^R K_{n,R} N_R.$$

For a minimal vector (5.2) with carrier a subgroup V_{n-R} , set

(5.4)
$$x_{\alpha} = 2^{\lambda_R} (1 - 2z_{\alpha})$$
 if $\alpha \in V_{n-R}$, $x_{\alpha} = 0$ otherwise,

so that z_{α} is defined on V_{n-R} and has the value 0 or 1. It may now be verified that $x \in \Lambda(\lambda)$ if and only if

(5.5)
$$\mathbf{z} \in \Lambda(0, 0, \lambda_{R+2} - \lambda_R - 1, \lambda_{R+3} - \lambda_R - 1, \ldots, \lambda_n - \lambda_R - 1)$$

(a 2^{n-R} -dimensional lattice), with each $z_{\alpha} = 0$ or 1.

We must now distinguish the cases: $\lambda_{R+2} = \lambda_R + 2$; $\lambda_{R+2} = \lambda_R + 1$. (a) If $\lambda_{R+2} = \lambda_R + 2$, (5.5) implies that certainly

(5.6)
$$z \in \Lambda(0, 0, 1, 1, ..., 1), z_{\alpha} = 0 \text{ or } 1;$$

the number of solutions of (5.6) is precisely the number of solutions in GF(2) of a set of equations of rank $\binom{n-R}{2} + \ldots + \binom{n-R}{n-R}$, and nullity $1 + \binom{n-R}{1}$, i.e. it is 2^{1+n-R} . Thus now

$$N_R \leq 2^{1+n-R}$$
 , $2s_R \leq 2^{n+1}K_{n,R}$.

This shows that the bound (5.1) is precise, i.e. that

$$2s_R = 2^{n+1}K_{n,R}$$
 if $\lambda_{R+2} = \lambda_R + 2$.

The same result is easily seen to hold if λ_{R+2} is undefined, i.e. if $R \ge n-1$. (b) If $\lambda_{P+2} = \lambda_P + 1$, then $\lambda_{R+2} = \lambda_{R+2} + 1$ and (5.5) implies that

(b) If
$$\lambda_{R+2} = \lambda_R + 1$$
, then $\lambda_{R+3} = \lambda_{R+2} + 1$ and (5.5) implies the

(5.7)
$$\mathbf{z} \in \Lambda(0, 0, 0, 1, 1, ..., 1), \quad z_{\alpha} = 0 \text{ or } 1.$$

Arguing as above, we obtain

(5.8)
$$N_R \leq 2^{1 + \binom{n-R}{1} + \binom{n-R}{2}}$$

whence by (5.3)

(5.9)
$$2s_R \leq 2^{n+1+\binom{n-R}{2}} K_{n,R}.$$

By a deeper investigation into the case $\lambda_{R+2} = \lambda_R + 1$, based on the theory of (n - R)-dimensional quadratic forms over GF(2), we have

established the precise result

(5.10)
$$2s_R = 2^{n+1} K_{n,R} \sum_{0 \le \delta \le d} 2^{\delta(\delta-1)} \frac{(2^{n-R}-1)(2^{n-R-1}-1) \dots (2^{n-R-2\delta+1}-1)}{(4^{\delta}-1)(4^{\delta-1}-1) \dots (4-1)}$$

where $d \ge 0$ is the largest integer such that there are minimal vectors of ranks $R, R+2, R+4, \ldots, R+2d$; alternatively expressed, d is the largest integer for which

(5.11)
$$\lambda_{R+i} = \lambda_R + \left[\frac{i+1}{2}\right] \text{ for } 0 \leq i \leq 2d.$$

From (5.10), or pursuing the direct argument which led to (5.9), it follows that the bound (5.9) is precise if (5.11) holds for all $i \ge 0$. In particular, for the form f_N whose exponents are given by (4.16) (or equivalently by (4.17)) we obtain

$$2s_{R} = 2^{n+1+\binom{n-R}{2}} K_{n,R} \text{ for all odd } R \leq n,$$

whence

$$s(f_N) = 2^n \sum_{R \text{ odd}} 2^{\binom{n-R}{2}} K_{n,R}.$$

6. Conclusion

Our analysis of the lattices $\Lambda(\lambda)$ has yielded a large number of extreme forms $f_{(\lambda)}$, nearly all of which are new. The form $f_{(0, \dots, 0, 1)}$ is the known form B_N of [2]. The special form f_N , corresponding to the exponent set $\lambda_r = \lfloor \frac{1}{2}r \rfloor$ ($0 \leq r \leq n$), is equivalent to the known absolutely extreme form when N = 4 or N = 8, and may well be absolutely extreme for some larger N.

For all sufficiently large N, f_N cannot be absolutely extreme, since $\gamma_N(f_N)$ is of order $N^{\frac{1}{2}}$ only. We can hope that, by methods similar to those used here, a sequence of forms can be constructed with larger values of $\gamma_N(f)$ for large N. A preliminary investigation suggests the existence of such a sequence with $\gamma_N(f)$ of order $N^{\frac{2}{3}}$ whenever $N = 2.3^n$.

We add finally some notes on further results which may be obtained from our analysis of the lattices $\Lambda(\lambda)$.

(i) By choosing suitable sublattices of $\Lambda(\lambda)$ of lower dimension, it is possible to construct further forms with relatively large values of $\gamma_N(f)$. Thus the sublattice of $\Lambda(0, 1, 1, 2)$ defined by

$$\sum_{\pmb{\alpha}\,\epsilon\,V_{\mathbf{3}}} x_{\pmb{\alpha}} = 0$$

gives a 7-variable form with $\gamma_7(f) = 2^{6/7}$; since $\gamma_7 = 2^{6/7}$, this form is absolutely extreme. Similarly, the sublattice of $\Lambda(0, 0, 1, 1, 2)$ defined by

$$\sum_{\alpha \in V_4} x_{\alpha} = 0$$

[15]

gives a 15-variable form with $\gamma_{15}(f) = 2^{7/5}$; thus we obtain the new inequalities

$$\gamma_{15} \geqq 2^{7/5}; \ \varDelta_{15} \leqq 2^{1/6}$$

(ii) Many of our results will apply with very little modification to give upper bounds for the critical determinant of the N-dimensional convex body

$$K_{\nu}:\sum_{\boldsymbol{\alpha} \in V} |x_{\boldsymbol{\alpha}}|^{\nu} \leq 1 \quad (\nu \geq 1, V = V_{n}).$$

For example, for $x \in \Lambda(0, 1, 2, ..., n)$, $x \neq 0$, we find that

$$\min\sum_{\boldsymbol{\alpha} \in V} |x_{\boldsymbol{\alpha}}| = 2^n = N;$$

thus, for the 'octahedron' K_1 , we have

$$\Delta(K_1) \leq d(N^{-1}\Lambda(0, 1, 2, ..., n)) = N^{-N} 2^{\Sigma r \binom{n}{r}} = N^{-\frac{1}{2}N} \quad (N = 2^n).$$

This represents an improvement on known results for small $N \ge 4$.

We append a table of the distinct extreme forms $f_{(\lambda)}$ for N = 4, 8, 16 and 32, giving the values of $\log_2 M = m$; $\log_2 D$; the number s of pairs of minimal vectors; and $\log_2 \Delta$ (where $\Delta = (2/M)^N D$). The values of Δ for $f_{(0,0,1)}$ and $f_{(0,0,1,1)}$ show that they are the known absolutely extreme forms in 4 and 8 variables respectively. The italicized figures in the exponent sets (λ) are the λ_R for which there exist minimal vectors of rank R, i.e. for which $n - R + 2\lambda_R = m$.

N	(λ)	$\log_2 M$	$\log_2 D$	S	$\log_2 \Delta$
4	$(0, \theta, 1)$	1	2	12	2
8	(0, 0, 0, 1)	1	2	56	2
	(0, 0, 1, 1)	2	8	120	0
16	(0, 0, 0, 0, 1)	1	2	240	2
	(0, 0, 0, 1, 1)	2	10	1,136	-6
	(0, 0, 0, 1, 2)	2	12	560	
	(0, 0, 1, 1, 2)	3	24	2,160	-8
	(0, 0, 1, 2, 2)	3	32	240	0
32	(0, 0, 0, 0, 0, 1)	1	2	992	2
}	(0, 0, 0, 0, 1, 1)	2	12	9,952	-20
	(0, 0, 0, 0, 1, 2)	2	14	4,960	-18
	(0, 0, 0, 1, 1, 2)	3	34	40,672	- 30
	(0, 0, 0, 1, 2, 2)	3	44	4,960	-20
1	(0, 0, 1, 1, 1, 2)	3	54	992	-10
	(0, 0, 1, 1, 2, 2)	4	64	73,440	-32
	(0, 0, 1, 2; 2, 2)	4	84	1,024	-12
	(0, 0, 1, 2, 3, 3)	4	96	992	0
)	(0, 1, 1, 1, 2, 2)	4	74	9,952	-22

62

We should like finally to express our thanks to Professor T. G. Room for helping us spot the transformation (4.12).

References

[1] Barnes, E. S., Criteria for extreme forms, This Journal p. 17.

[2] Coxeter, H. S. M., Extreme forms, Canad. J. Math. 3 (1951), 391-441.

[3] Koksma, J. F., Diophantische Approximationen (Springer, 1936).

The University of Sydney.