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1. Introduction

Let f(x) = f(xlt x», . . ., xn) be a positive definite quadratic form of
determinant D, and let M be the minimum of f(x) for integral x ^ 0.
Then we set

(1.1) yn(f) = M/DV"

and

(1-2) yn = maxyn{f),

the maximum being over all positive forms / i n w variables. / is said to be
extreme if yn{f) is a local maximum for varying /, absolutely extreme if
yn(/) is an absolute maximum, i.e. if yn(f) = yn.

It is well known that yn is of order n for large n; in fact, by the classical
results of Blichfeldt and Hlawka (see [3], Ch. II, § 6),

(1.3) — ^ lim inf — ^ lim sup — ^
n n Tie

On the other hand, no one has yet constructed a sequence of forms for
which yn{f) is unbounded, let alone of order n, as n -> oo. We have therefore
thought it worthwhile to describe, in some detail, a new class of extreme
forms yielding values yn{f) of order n% for suitable large n.

More specifically, corresponding to each N = 2n (n = 2, 3, . . .) and to
each sequence of integers Ao, Xv . . ., Xn satisfying

Ao = 0, Xr - 1 ^ Ar_i ^ <*r ( l ^ r ^ »).

we construct a positive iV-variable form /(A), which we show to be extreme
in most cases. We prove also that, for each N, there is an /U ) satisfying
YNU) = ( W * . whence
(1.4) 7^ ^ (JiV)* for iV = 2", » ^ 2.

Our method of construction is based on the structure of the elementary
Abelian group of order 2n.
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Further investigation shows that by an elaboration of the method, or
by using a similar method based on Abelian groups of exponent 3, (1.4)
can be strengthened for large N. It should also be noted that (1.4) is precise
for N — 4 or 8, since y4 = -y/2, y8 = 2, and that, for sufficiently small N,
(1.4) is a considerable improvement on known results.

The general properties of forms and lattices which we require are collected
in § 2. The forms /(A) and their lattices Aa) are defined in § 3, the determinant
D and minimum M are calculated and a criterion for the minimal vectors
is given. In § 4, we prove that the /(A) are extreme (under suitable con-
ditions) and investigate the equivalences between them. In § 5, we enumerate
the minimal vectors. A table of the inequivalent extreme forms /(A) in 4, 8,
16 and 32 variables is given at the end of the paper.

2. Forms and lattices*

A positive quadratic form f(x) = f(xv x2, . . ., xn) is said to have lattice
A if

where £ runs through the points of A when x runs through all integral
vectors; i.e. if

f(x) =x'Ax = x'T'Tx

where A is specified by

(2.1) £ = Tx, x integral.
Then D{f) = det A = (det T)2 = d*(A).

Clearly, if / has lattice A, it also has lattice RA, where R is any orthogonal
transformation. Also, equivalent forms correspond to the same lattice; for
if U is an integral unimodular transformation, then T and TU define the
same lattice and correspond to the equivalent forms x'Ax and x'U'AUx.
It is thus easy to see that two forms flf f2 with lattices Av A2 are equivalent
if and only if A2 = RAX for some orthogonal transformation R.

We define the reciprocal lattice A~x of A to be the set of points r\ = T'~xx,
x integral, where A is given by (2.1). Then d(A~1)d(A) = 1, and the cor-
responding quadratic forms x'T'Tx, and x'{JTT)~xx are reciprocal (i.e.
have inverse matrices).

We shall be concerned in this paper only with forms whose lattices are
sublattices of the integer lattice F. For these, it is convenient to define the
notion of dual lattices modulo k.

Let k be a positive integer, and Av A2 lattices such that

krCAlt A2CR

* For further general information we refer the reader to Coxeter's paper [2].
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Then A2 is said to be the dual of Ax modulo k if it consists of those x e F
satisfying

(2.2) x'y=0 (mod k) for all yeAx.

It is easy to see that in fact

(2.3) A2 = kAx
x.

For if Ax is defined by (2.1), i.e. Ax = TF, then an integral x e A2 if and
only if

x' Ty = 0 (mod k) for all y e F,

i.e. if and only if

(2.4) T'xekF.

Now since kF C Ax, the relation ku = Tx has a solution x e F for every
Uf/1, so that ^P"1 is an integral matrix. Hence (2.4) is equivalent to

x e kT-^F = fiA?

and (2.3) is established.
From (2.3), we see that the relation between Ax and A2 is symmetrical,

so that also Ax is the dual of Az modulo k; and

d(Ax)d{A2) =d{kF) = k\

Further, if fx, f2 are the quadratic forms corresponding to the dual lattices
Av A2, then each of fx, /2 is a multiple of the reciprocal of the other.

3. The Form /(A) and its Lattice

Let V be the ^-dimensional vector space over the Galois field GF(2);
in terms of a basis ex, . . ., en, we may write the elements as a = ]£ at- €t

with coordinates a.t which are integers taken modulo 2. The additive group
of V, which we shall also denote by V, is the elementary Abelian group of
order N = 2n. We shall generally use group, rather than vector space,
terminology; we shall, however, speak of cosets "of dimension r" or say
that a given subgroup "has basis ax, a%, . . ." Subgroups and cosets of
dimension r will be denoted generically by Vr and Cr respectively.

In iV-dimensional Euclidean space we consider integral vectors x = (xa)
with coordinates xa indexed by the N elements a of V. For symmetry of
notation, we write x • y for the scalar product x'y.

If W is any subset of V, [W] will denote the vector x defined by

_ r 1 if a e W,
X° ~ [ 0 if a 4 W.

Let Ao, Xx, . . ., ln be integral exponents satisfying

(3.1) Ao = 0, Ar — 1 ^ Xr_x ^ Xr for 1 ^ r ^ n.
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We denote by A(X) = A(X0, Xv . . ., Xn) the sublattice of F generated by
all vectors 2A»-r[Cr], where Cr runs over all cosets in V. Clearly

We now define /(A) to be the iV-dimensional form with lattice A(X), so that
the values assumed by /(A) for integral values of its variables are those
of

x\ for xeA{X).

(We may remark here that the apparently arbitrary restrictions (3.1)
involve very little loss of generality. If Ao > 0, we may consider 2~X°A (A),
which corresponds to a multiple of /(A). Also if the exponents satisfy only
0 ^ Xr ̂  r (0 ̂  r ^ «), it is not difficult to show that there exists a set
(X) defining the same lattice and satisfying (3.1), with the possible exception
of the inequality Xn — 1 ̂  Xn_v)

The exponents X'r defined by

(3.2) K = K~K-r (O^r^n)

are said to be dual to the exponents Xr. It is evident that (A') satisfies (3.1),
that X'n = Xn, and that (A) is dual to (A').

We can now prove

THEOREM 3.1. (i) A (A) and A(X') are dual lattices modulo 2A«; /(A) and
/{A/) are multiples of reciprocal forms.

(ii) Let ev . . ., en be any basis of V. Then a basis of A(X) is given by the
N vectors

(3.3) 2A»-[Fr],

where Vr runs through the subgroups of V which have a subset of elt ..., en

as basis.
(iii) The determinants d(X), D(X) of A(X), /(A) are given by

(3.4) log2d(X)=ZXr(
n),

r=0 \rI

(3.5) (^
r=0 \ r I

PROOF, (a) We first show that

(3.6) x -y=0 (mod 2A«) if xcA(X), yeA{X').

For this, it suffices to prove that for any cosets Cr, C's

(3.7) 2A»-'+A'«-[Cr] • [C's] = 0 (mod 2A»).

Now if r + s ^ n, then

J
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"n-r "T" *n-« = = ^n + *n-r — ^s = *n>

and (3.7) is trivial. If r + s > n, then CrD C'g is either empty or a coset
of dimension at least r + s — n; in either case

[Cr] • [C;] = 0 (mod 2'+s-'1).

Since, by (3.1), Xs ~ Xn_r ^ s — (n — r), we have

*«-r + * L . + ^ + s - « = An + y + s — w— (A8 — An_r) ^ An,

and (3.7) follows at once.
(b) With the notation of part (ii) of the theorem, let At(X) be the lattice

spanned by the N vectors (3.3). Then clearly

(3.8) 2x»rCA1(X) CA[X).

Further, we show that

(3.9) i^)
r=0

( n\
I vectors 2A»-r[Fr] for each r, (3.9) will follow when we show

that the set of all vectors [Vr] forms a basis of F. To see this, suppose the
[Vr] ordered in such a way that the dimensions r do not decrease. Then,
for each Vr, there is an a e V such that [a] has coefficient 1 in [Vr] and
coefficient 0 in any predecessor of [Vr]; in fact, if et., . . ., et is a basis
of Vr, a = £,• -+- . . . -f- f,- satisfies this requirement. Hence the N unit
vectors [a] (a e V) are integral linear combinations of the [Vr], whence
the [Vr] form a basis of F, as required.

(c) Let AX(K) be defined as in (b) for the exponent set {X'). By (3.9),
the determinants dx, d[ of A^X), A^X') satisfy

()
r=0 \ r / r=0

= An2« = log2 (2^A«)
whence

dxd[ = d{2XnF).

From this, and (3.6), it follows that AX{X) and A^X') are dual lattices
modulo 2A». But it also follows from (3.6) that A (X) is contained in the
dual of A^X'), i.e. that A(X) CAX{X). It follows from (3.8) that therefore

A1(X)=A(X).

All parts of the theorem now follow at once after identifying A(X), A(X')
with the dual lattices A^X), A^X').
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As a corollary, we obtain

LEMMA 3.1. A (X) is the set of integral x satisfying the system of congruences

(3.10) 2 xa = ° ( m o d 2Ar)
aecr

taken over all cosets Cr of V.

PROOF. By Theorem 2.1, A{X) is the dual, modulo 2A», of A{X'), which
is generated by the vectors 2A'»-'[Cr]. Hence, from the definition of dual
lattices, x e A(X) if and only if x e F and

2A'«-'[Cr] • x = 0 (mod 2A«) (0 ^ r ^ n).

Since X'n_r = Xn — hr, these are precisely the congruences (3.10).

LEMMA 3.2. A (X) is invariant under the following orthogonal transfor-
mations'.

(i) the permutation of the coordinates xa induced by the transformation

(3.11) a^ra + y

of V, where r is a non-singular matrix over GF(2) and y is any fixed element
of V;

(ii) the involution

Ja \ —xa if a 4 W,

where W is any fixed subgroup of V of dimension n — 1.

PROOF, (i) The transformation (3.11) of V permutes the cosets of each
dimension r, and so induces a permutation of the generators 2A»-r[Cr]
of A(X).

(ii) Suppose first that x = 2A»-»-[Cr] for some coset Cr. Then CrD W
is either empty or a coset of dimension at least r — 1, and in each case
it is easy to show that y, defined by (3.12), is a point of A(X). For if Cr O W
is empty, y = —x; if CrC\ W = Cr, y = x; and if Crn W = Cr_j and say
Cr = C M u C i .

y = 2A»-[Cr_1] - 2A»-[C;_1]

= 2A«-'+1[Cr_1] - 2A»-[Cr]

since ln_r + 1 ^ An_r+1.
Since A (A) is generated by the vectors 2A«-'-[Cr], it follows that y e A(X)

whenever xeA{X). Since the transformation (3.12) is involutory, the con-
verse statement holds. A{X) is therefore invariant, as asserted.

Our final task in this section is to determine the minimum M of /(A),
i.e. the minimum of x2 for points x =£ 0 of A (A). We shall show that in fact
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M is the minimum of x2 over the set of vectors 2A«-'-[Cr] which we have
selected to generate A (A).

For this purpose, it is convenient to define the special lattices
As (0 ^ s ^ n): As is the lattice A (A) whose exponents are defined by

(3.13) Ar = 0 if r ^ s; Ar = 1 if r > s.

LEMMA 3.3. Suppose that x e As and that not all xa are even. Then at least
2n~s coordinates xa are odd.

PROOF. If s = n, the result is trivial; hence we may suppose that
0 5S s < n. We shall proceed by induction on n, the result being obvious
when n = 1.

After applying a suitable transformation (3.11), we may suppose that
x0 is odd. By (3.10), with r = n, An = 1, we have

J,xa^0 (mod 2),
aev

so that some other coordinate Xy, say, is odd. Choose an (n — 1)-dimensional
subgroup W of V so that y 4 W, and let W be the other coset of W.

Now since (3.10) holds a fortiori whenever Cr C W, induction on n
shows that xa is odd for at least 2(n~1)~s indices a in W. The same result
also holds for W; for, by the transformation a -> a + y of (3.11), W is
transformed into W; and, under the induced permutation of the coordinates,
Xy, which is odd, is transformed into xQ. Thus the odd coordinates xa number
at least 2n~1~s + 2n-1~s = 2n~s, as asserted.

Let us now define the rank of a point x =£ 0 of A (A) to be the largest
r (0 ^ r 5g n) for which all coordinates xa are divisible by 2Ar. We then have

THEOREM 3.2. The minimum M of /(A) is given by

(3.14) log2 M = m = min (n — r + 2Ar).
r

4̂ point x ^ 0 o/ A(X) is a minimal vector /(A) if and only if it is of rank R,
where

(3.15) n — R + 2XR = w,

aw ,̂ /or some subset H of V containing 2n~R elements,

(3.16) |asj = 2A* *y aeH, xa = 0 if a<tH.

PROOF. Each generator x — 2x'[Cn_r] of A (A) satisfies

so that certainly M ^ 2W, where w is defined by (3.14).
On the other hand, let x eA{X), x ^0, and suppose that x has rank

r(Q ^ r 5̂  n); set j " = 2~A»-;r, so that y is integral, y ^ 0.
If now all y a are even, then, by the definition of rank, we must have
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r = n; since y ^ 0, we therefore have

x2 — 22Xn y2 > 4 • 22A" > 2m.

If however some ya is odd, we see that y e /lr. For, since

xeA(kQ,Xx, . . ., AJ, y= 2-x'X€A{0, . . ., 0, Ar+1 - Ar, . . ., Xn - Xr)\

we have Xr+1 > Ar, by the definition of rank, and so Xs — Xr ̂  1 for s > r;
hence a fortiori y e A(0, . . ., 0, 1, . . ., 1) — Ar. Now Lemma 3.3 shows
that at least 2n~r coordinates ya are odd, whence

^2 __ 22A»- v 2 > 2w—r+2/^r > 2 m

This establishes (3.14). The argument shows that in fact x2 — M — 2m

precisely when x has rank R satisfying (3.15) and the corresponding
y= 2~xRx has 2n~R coordinates ± 1 and the rest zero. The proof of the
theorem is therefore complete.

4. The Extreme Forms /(A)

Although Theorem 3.2 takes us some way towards a specification of the
minimal vectors of /(A), the complete picture is rather complicated. (We
shall give more precise results in § 5.) However, we can easily write down
a sufficiently large set of minimal vectors to enable us to establish the
extreme forms /(A).

We denote generically by R an index satisfying (3.15), so that there
are certainly minimal vectors of rank R.

Let WlR denote the set of vectors

(4-1) 2X

and their negatives, taken over all cosets of the indicated dimensions,
where Cw_iJ_1, C'n_R_1 denote distinct cosets of the same subgroup.

LEMMA 4.1. (i) WR is a set of 2n+1KnR minimal vectors of /(A) of rank R, where

(2n-
KKn'R = ( 2 R - l ) ( 2 i ? - 1 - 1 ) . . . ( 2 - 1 ) '

(ii) The group © of automorphs of /(A) is transitive on WR.

PROOF. Let ©' be the group generated by all the orthogonal transfor-
mations given in Lemma 3.2. Since these leave A(X) invariant, &' is a sub-
group of ©.

It is now easy to see that %RR is precisely the set of vectors which are the
transforms by QV of any one of them. For, by suitable choice of x and y
in (3.11), any coset may be mapped into any other coset of the same
dimension; and, for fixed Cn_iJ_1, C'n_R_x with Cn_R_x u C s - i = Cn-R>
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the transformation (3.12) interchanges the two vectors (4.1) if W is suitably
chosen.

Since 2xR[Cn_R] is a generator of A{X), all vectors of ffiR belong to A (A);
and, by the criterion of Theorem 3.2, they are all minimal vectors of /(A).
The argument also establishes part (ii) of the lemma.

Finally, if Vn_R is any fixed subgroup, we have from (4.1) the 2 vectors
±2XR[Vn-n] and the 2 ( 2 - * - 1) vectors 2A*[Cn_ie_1] - 2^[Cn_R_1] ob-
tained by splitting Vn_R in all ways into 2 cosets. This gives 2n-R+1 vectors
of %RR corresponding to each Vn_R. Since Vn_R has 2R distinct cosets, and
V contains KnR subgroups Vn_R, the total number of vectors in %RR is
2n+1KnR, as asserted.

LEMMA 4.2. / / 0 < R < n, /(A) is perfect with respect to the set SJî  of
minimal vectors', i.e. if g(x) is any quadratic form satisfying

(4.2) g{x) = 0 for all XCWIR,

then g(x) == 0.

PROOF. Suppose that {4^.2) holds, where g(x)^^atiJeVbapxaXp(bap=bpa);
we have to show that bap — 0 for all a, /? e V.

Inserting the vectors (4.1), with Cn_R = Cn_R_1uCf
n_R_1, we obtain

(4.3) 2 ba{3 = 0,

PeC'n-R-1

whence, by addition,

a,jieCn-R-l

Applying (4.4) to each pair of 3 distinct cosets of a Vn_R_x (which is possible
since n — R — 1 ̂  n — 2), we deduce that

a,fleCn-R-l

We now make the inductive assumption that the relations

(4-5) 2 bap = 0,
a./*eCr+1

(4.6)

hold, for some r with 0 < r ̂  n — 2, for any cosets Cr+1, Cr, and prove
that (4.6) holds for cosets of dimension r — 1.

Let Vr_x be a subgroup and Cr__1 = Vr_1 + y1 any coset of it. Since
r — 1 ̂  n — 3, Vr_x has at least 23 cosets; let C2' = Vr+1 + y< (* = 1,..., 6)
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be 6 distinct cosets of Vr_x such that C* u Ci+1 (i = 1, 3, 5) are 3 cosets of a
subgroup Vr. We write (temporarily)

B<S= I Kp-

From (4.6), with Cr = Ci u C\ we have

(4.7) B(t + Bit + 2BU = 0 (1 ^ * < / ^ 6).

From (4.5), with Cr+1 = v*=1C\ we have

(4.8) IBH+ 22 Bit = 0.
t=l l^i<2^4

Adding (4.7) for all i, j with 1 5S i < / ^ 4 and subtracting (4.8), we obtain

(4.9) 2 5,,. = 0.
i=l

Adding (4.7) for i,j= 1, 2 and «, / = 3, 4, and subtracting (4.9), we obtain

From this, and the two similar relations B12 + B56 = 0, B3i + 55 6 = 0,
we deduce that B12 = 0; hence, by (4.7),

BX1 + B22 = 0.

From this and the two similar relations Bn + B$3 = 0, B22 + 5 3 3 = 0,
we deduce that Bu = 0, i.e.

as required.
Now we have shown that (4.5), (4.6) hold for r = n — R — 1, where

0 <^n — R — I <:n — 2. Hence by induction, (4.5) and (4.6) hold for
r = 0. Thus, for any distinct a, ft,

baa + bflfl + 2&«£ = 0, baa = 0.

It follows that baff = 0 for all a, ft, and our proof is complete.
It is now easy to prove our main result:

THEOREM 4.1. /(A) is extreme if and only if it has minimal vectors of rank
R for some R with 0 < R < n, or is the ^-variable form /(O,I,D-

PROOF, (i) If R satisfies (3.15), with 0 < R < n, we have exhibited
a set SKR of minimal vectors such that (a) the group © of automorphs of
/(A) is transitive on WlR (Lemma 4.1); and (b) /(A) is perfect with respect
to SJJR. Hence, by [1], theorem 4, /(A) is extreme.

(ii) If (3.15) holds only with R = 0 or R = n, it may be shown that, when
/(A) ^ / ( 0 ) l i l ) , the total number of minimal vectors of rank 0 or n is
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2n+i = 2n+1Knt0. Thus /(A) has at most 2n+1 = 2N pairs of minimal vectors.
Since 2N < %N(N -+- 1) if iV ^ 4, /(A) is not perfect, and so not extreme,
if N ^ 4; and trivially /(A) is not perfect if N = 2.

Although the 2n choices of (A) satisfying (3.1) yield 2n distinct forms
/(A) for each n, most of which are extreme, these forms are not all inequivalent.
The following two theorems appear to settle the problem of finding the
inequivalent /(A), at least for small N.

THEOREM 4.2. For any set (A) of exponents satisfying (3.1), define the
conjugate set (//,) by

(4.10) nr = r + An_r - X

Then (/u) satisfies (3.1) and
n.

PROOF. From (4.10),

^ = 0, pr - fzr_x = 1 - (An_r+1 - Xn_r) = 0 or 1 (l^r^n)

so that (fi) satisfies (3.1). It is also clear that (A) is conjugate to (/*), i.e.
K = r + f*n-r — Pn-

Now let B: E^ e%, . . ., en be any fixed basis of V, and define a scalar
product on V by

n

« • P = 2 a ^ i if « = 2 a< e*> P = 2Pi£i-
i=i

a • /? is thus an element of GF(2), written as an integer modulo 2. We now
consider the transformation

(4-12) 2/a = 2-A

and we shall show that

(4.13) yeAfa) if XeA{X),

(4.14) 2-^«y2 = 2~A»A-2.

By Theorem 3.1* (ii), a basis of A(X) is given by the vectors 2Xn~r[Vr],
where Vr runs through the subgroups of V having a subset of B as basis.
Hence, to prove (4.13), it suffices to show that y e A(ji) if x = 2A»-'[Ff.]
(0 5̂  r ^ w). For each such Fr, let V'n_r be the complementary subgroup
of V; i.e. F r and V'n_r have complementary subsets of B as basis. We then
have

(4.15) 2 (-1>"'= If Hair""'
/J e T, I" u ° r n-r •

For if a e V'n_r, then a • /? = 0 for all /? e Fr. If, however, a 4 V'n_r, then there
is some y eVr with a • y = 1; then
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= o.

If now * = 2A»-'[Fr], (4.12) and (4.15) give

2r + An-r~*«

i.e. ^ = 2^[F^_r], which is a generator of A(ji). This proves (4.13).
To prove (4.14), we use the case r = n, Vr = V of (4.15) to obtain

= ^ 2/« = 2"2Afl 2 ( - l ) a "
aeF a,ff,yev aev

whence (4.14) follows at once.
The desired equivalence (4.11) follows from (4.13), (4.14), on observing

that, since the relations between (A), (/x) and between x, y are symmetrical,
ye A(ju) if and only if xeA{X).

THEOREM 4.3. For the exponent sets (A), (ju) given by

(4.16)

(4.17)

we have

lr = (0 ^ w),

> + ]
. 2 J

(0 ^ r ^ «),

2 / (A)

PROOF. Take any fixed subgroup W of dimension n — 1 and any element
y 4 W, and consider the transformation defined by

(4.18) ^
~~ xa ~~ xa+7

{a € W)

Then clearly y2 = 2x2, and so the required equivalence will follow when
we show that y e A(ju) if and only if xeA{X).

Let Vr be any subgroup of V and x = 2A»-r[Fr] aA{X). Then Vrn W
is either Vr or a subgroup Vr_x\ we must now distinguish three cases.

(a) If VrCW, (4.18) shows that y = 2A»-[Fr] + 2A»-'[Fr+7], i.e.
y = 2A-[Fr + 1] = 2 ^ - 1 [Fr+1] e^Gu).

(b) If F r n W = Vr_x and Fr = Vr_x u (Fr_x + 7), (4.18) gives

^ = 2.2A«-'[Fr_1] = 2""-'

(c) The remaining possibility is that Fr = F r _ t u (F r - 1 + /?), where
Fr_! C T ,̂ Fr_i + /? C PF + 7, but the cosets Vr_x + /?, Fr_x + 7 are
distinct. Then observing that Vr_x + 0 -\- y CW, we obtain from (4.18)

y = 2A«-{[Fr_1]
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With Vr+1 = Fr_x u (Fr_x + fi) u {Vr_x -j- y) u (Fr_x + fi + y), this gives

y = 2A»-[Fr+1] - 2.2A~|7r-i + /?]

We have therefore shown that, in all cases, y e A(/x) if x = 2An-'[Fr];
since these vectors generate A (A), it follows that y e A(JU) if ;re/l(A). A
precisely similar argument, using the inverse transformation xa=\ {ya-\-ya+y)
%a+y = \{ya ~ 2/a+y)' s n o w s that conversely x e A{X) if y e A{/x). This
completes the proof of the theorem.

The particular interest of the (equivalent) exponent sets (4.16) and
(4.17) is shown by:

THEOREM 4.4. For each N — 2n(n ^ 2), the extreme form fN whose ex-
ponents are given by (4.16) has

(4-19) yN{fN) =

and this is the largest value of y^ifix))-

PROOF. Since yN{f) — MjDxlN, the values of M and D given in Theorems
3.1 and 3.2 show that

Since m = min (n — r + 2Ar), we have n — r + 2Ar — m ^ 0 for all r\
and the parity of n — r + 21r — m is determined by the parity of r. It is
thus easy to see that 7JV(/(A)) is greatest when the expressions n—r-\-2Xr—m
(r = 0, 1,. . ., n) take alternately the values 0 and 1; and the only exponent
sets satisfying this condition are those given in (4.16) and (4.17). This
shows that yN{f^) is maximal, and a simple calculation now gives (4.19).

It is perhaps worth noting here that, by Theorem 3.1 (i), the reciprocal
of /(A) is a multiple of /(A,}, where X'r = Xn — Xn_r (0 ^ r ^n). For the
exponent set (4.16) corresponding to fN, it is easily verified that the dual
set (A') is either (4.16) or (4.17), according as n is odd or even; thus fN is
equivalent to (a multiple of) its reciprocal.

5. The Minimal Vectors of /(A)

For each R satisfying (3.15), we have exhibited a set 30^ of 2n+1KnR

minimal vectors of /(A). Denoting by sR the total number of pairs of minimal
vectors of rank R, we therefore have certainly

(5.1) 2sR ^ 2
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It is not difficult to obtain an upper bound for sR> in the following way.
First, the second part of theorem 3.2 may be sharpened to the statement
that x e A (X) is a minimal vector of rank R if and only if, for some coset Cn_R,
we have

(5.2) \xa\ = 2A* if a e Cn_R, xa = 0 otherwise.

We may say that a minimal vector (5.2) has carrier Cn_R. By using the
transformation (3.11), we see that the number of minimal vectors with
carrier Cn_R is the same for all cosets of dimension n — R; call this number
NR, so that

(5.3) 2sR = 2*Kn>RNR.

For a minimal vector (5.2) with carrier a subgroup Vn_R, set

(5.4) xa = 2A*(1 — 2za) if a e Vn_R, xa = 0 otherwise,

so that za is defined on Vn_R and has the value 0 or 1. It may now be
verified that x e A (X) if and only if

(5.5) z e A{0, 0 , XR+2 - X R - 1 , XR+3 -XR-l,...,Xn-XR~l)

(a 2n~R -dimensional lattice), with each za — 0 or 1.
We must now distinguish the cases: XR+2 = XR -\- 2; XR+2 = XR + 1.
(a) If XR+2 = XR + 2, (5.5) implies that certainly

(5.6) zeA(0, 0, 1, 1, . . ., 1), ^ = 0 o r 1;

the number of solutions of (5.6) is precisely the number of solutions in

GF(2) of a set of equations of rank I I -f- . . . + I p j , and nul-

J, i.e. it is 21+n~R. Thus now

This shows that the bound (5.1) is precise, i.e. that

2sR = 2^Kn>R if XR+2 = XR + 2.

The same result is easily seen to hold if XR+2 is undefined, i.e. ii R ^ n—1.
(b) If XR+2 = XR + 1, then A +̂g = Afl+2 + 1 and (5.5) implies that

(5.7) ZeA{0, 0, 0, 1, 1, . . ., 1), ^ = 0 o r 1.

Arguing as above, we obtain

(5.8) NR

whence by (5.3)

(5.9) 2SR g ,

By a deeper investigation into the case XR+2 = XR + 1, based on the
theory of (w — i?)-dimensional quadratic forms over CF(2), we have

- ,(n-R\ ,/n-R\
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established the precise result

(5,0) 2,,

where d ^ 0 is the largest integer such that there are minimal vectors of
ranks R, R + 2, R + 4, . . ., R + 2d; alternatively expressed, d is the
largest integer for which

[i + 11(5.11) **+, = A* + [_-Jfor 0 ^ i ^ 2d.

From (5.10), or pursuing the direct argument which led to (5.9), it
follows that the bound (5.9) is precise if (5.11) holds for all i ^ 0. In par-
ticular, for the form fN whose exponents are given by (4.16) (or equivalently
by (4.17)) we obtain

2sR = 2n+1+("2 ) Kn>R for all odd R ^ n,
whence

7? odd

6. Conclusion

Our analysis of the lattices A{X) has yielded a large number of extreme
forms /(A), nearly all of which are new. The form /(0, ...,o,i) *s the known
form BN of [2]. The special form fN, corresponding to the exponent set
K = [\r"\ (0 ^ y ^ n), is equivalent to the known absolutely extreme form
when N = 4 or N = 8, and may well be absolutely extreme for some
larger N.

For all sufficiently large N, fN cannot be absolutely extreme, since
YNUN) is 0 I order N% only. We can hope that, by methods similar to those
used here, a sequence of forms can be constructed with larger values of
yN(f) for large N. A preliminary investigation suggests the existence of such
a sequence with yN{f) of order iVs/3 whenever N = 2.3n.

We add finally some notes on further results which may be obtained
from our analysis of the lattices A (A).

(i) By choosing suitable sublattices of A(X) of lower dimension, it is
possible to construct further forms with relatively large values of yN{f).
Thus the sublattice of A{0, 1, 1, 2) defined by

2 * « = <>
gives a 7-variable form with y,(/) = 2s'7; since y7 = 2*/7, this form is ab-
solutely extreme. Similarly, the sublattice of A(0, 0, 1, 1, 2) defined by
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gives a 15-variable form with y15(/) = 27/s; thus we obtain the new in-
equalities

(ii) Many of our results will apply with very little modification to give
upper bounds for the critical determinant of the iV-dimensional convex body

Kv: xa\ = = Vn).
aev

For example, for x 6/1(0, 1, 2, . . ., n), x ^ 0, we find that

\*
aev

a\ = 2" = N>

thus, for the 'octahedron' Kx, we have

A{KX) ^ ^(iV-M(0, 1, 2, . . ., n)) = # ^ 2 * ' ^ = iV"*^ (iV = 2").

This represents an improvement on known results for small N ^ 4.
We append a table of the distinct extreme forms /(A) for N = 4, 8, 16

and 32, giving the values of log2 M = m; log2 D; the number s of pairs of
minimal vectors; and log2 A (where A = (2/M)ND). The values of A for
f(o.o.i) a n d /(o,o,i,i) s n o w that they are the known absolutely extreme
forms in 4 and 8 variables respectively. The italicized figures in the exponent
sets (A) are the XR for which there exist minimal vectors of rank R, i.e.
for which n — R + 2kR = m.

N

4

8

16

32

(A)

(0, 0, 1)

(0, 0, 0, 1)
(0, 0, 1, 1)

(0, 0, 0, 0, 1)
(0, 0, 0, 1, 1)
(0, 0, 0, 1, 2)
(0, 0, 1, 1, 2)
(0, 0, 1, 2, 2)

(0, 0, 0, 0, 0, 1)
(0, 0, 0, 0, 1, 2)
(0, 0, 0, 0, 1, 2)
(0, 0, 0, 1, 2, 2)
(0, 0, 0, 1, 2, 2)
(0, 0, 1, 1, 1, 2)
(0, 0, 1, 1, 2, 2)
(0, 0, 1, 2", 2, 2)
(0, 0, 1, 2, 3, 3)
(0, 1, 1, 1, 2, 2)

log2M

1

1
2

1
2
2
3
3

1
2
2
3
3
3
4
4
4
4

2

2
8

2
10
12
24
32

2
12
14
34
44
54
64
84
96
74

s

12

56
120

240
1,136
560

2,160
240

992
9,952
4,960
40,672
4,960
992

73,440
1,024
992

9,952

log2zl

2

2
0

2
— 6
^
g
0

2
-20
-18
-30
-20
-10
-32
— 12

0
-22
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We should like finally to express our thanks to Professor T. G. Room
for helping us spot the transformation (4.12).
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