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BELIEVING THE AXIOMS. I 

PENELOPE MADDY 

Nothing venture, nothing win, 
Blood is thick, but water's thin. 

-Gilbert & Sullivan 

$0. Introduction. Ask a beginning philosophy of mathematics student why we 
believe the theorems of mathematics and you are likely to hear, "because we have 
proofs!" The more sophisticated might add that those proofs are based on true 
axioms, and that our rules of inference preserve truth. The next question, naturally, 
is why we believe the axioms, and here the response will usually be that they are 
"obvious", or "self-evident", that to deny them is "to contradict oneself" or "to 
commit a crime against the intellect". Again, the more sophisticated might prefer to 
say that the axioms are "laws of logic" or "implicit definitions" or "conceptual 
truths" or some such thing. 

Unfortunately, heartwarming answers along these lines are no longer tenable (if 
they ever were). On the one hand, assumptions once thought to be self-evident have 
turned out to be debatable, like the law of the excluded middle, or outright false, like 
the idea that every property determines a set. Conversely, the axiomatization of set 
theory has led to the consideration of axiom candidates that no one finds obvious, 
not even their staunchest supporters. In such cases, we find the methodology has 
more in common with the natural scientist's hypotheses formation and testing than 
the caricature of the mathematician writing down a few obvious truths and 
preceeding to draw logical consequences. 

The central problem in the philosophy of natural science is when and why the 
sorts of facts scientists cite as evidence really are evidence. The same is true in the 
case of mathematics. Historically, philosophers have given considerable attention 
to the question of when and why various forms of logical inference are truth- 
preserving. The companion question of when and why the assumption of various 
axioms is justified has received less attention, perhaps because versions of the 
"self-evidence" view live on, and perhaps because of a complacent if-thenism. 
For whatever reasons, there has been little attention to the understanding and 
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classification of the sorts of facts mathematical scientists cite, let alone to the 
philosophical question of when and why those facts constitute evidence. 

The question of how the unproven can be justified is especially pressing in current 
set theory, where the search is on for new axioms to determine the size of the 
continuum. This pressing problem is also the deepest that contemporary mathema- 
tics presents to the contemporary philosopher of mathematics. Not only would 
progress towards understanding the process of mathematical hypothesis formation 
and confirmation contribute to our philosphical understanding of the nature of 
mathematics, it might even be of help and solace to those mathematicians actively 
engaged in the axiom search. 

Before we can begin to investigate when and why the facts these mathematicians 
cite constitute good evidence, we must know what facts those are. What follows 
is a contribution to this preliminary empirical study (thus the reference to "be- 
lieving" rather than "knowing" in my title). In particular, I will concentrate on the 
views of the Cabal seminar, whose work centers on determinacy and large car- 
dinal assumptions.' Along the way, especially in the early sections, the views of 
philosophers and set theorists outside the group, and even opposed to it, will be 
mentioned, but my ultimate goal is a portrait of the general approach that guides the 
Cabal's work.' 

Because of its length, this survey appears in two parts. The first covers the axioms 
of ZFC, the continuum problem, small large cardinals and measurable cardinals. 
The second concentrates on determinacy hypothesis and large large cardinals, and 
concludes with some philosophical observations. 

$1. The axioms of ZFC. I will start with the well-known axioms of Zermelo- 
Fraenkel set theory, not so much because I or the members of the Cabal have 
anything particularly new to say about them, but more because I want to counteract 
the impression that these axioms enjoy a preferred epistemological status not shared 
by new axiom candidates. This erroneous view is encouraged by set theory texts that 
begin with "derivations" of ZFC from the iterative conception, then give more self- 
conscious discussions of the pros and cons of further axiom candidates as they arise. 
The suggestion is that the axioms of ZFC follow directly from the concept of set, 
that they are somehow "intrinsic" to it (obvious, self-evident), while other axiom 
candidates are only supported by weaker, "extrinsic" (pragmatic, heuristic) 
justifications, stated in terms of their consequences, or intertheoretic connections, or 

'Naturally the various members of the Cabal d o  not agree on everything. When appropriate, I will 
take note of these disagreements. 

'1 am indebted to John Burgess, for introducing me to much of the material discussed here, to Matt 
Foreman, Menachem Magidor, Yiannis Moschovakis, John Steel, and Hugh Woodin, for helpful 
conversations, to Chris Freiling, Stewart Shapiro, John Simms, and an anonymous referee for helpful 
comments on earlier drafts, and, especially, to Tony Martin, without whose patience and generosity the 
project would have been dead in the water. Versions of this work have been delivered to helpful audiences 
at the University of California at Los Angeles (Department of Mathematics) and Irvine (Department of 
Philosophy), and at conventions of the Philosophy of Science and the American Philosophical 
Associations. The support of NSF Grant No. SES-8509026 and the hospitality of the UCLA Math 
Department are also gratefully acknowledged. 
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explanatory power, for example. (It is these extrinsic justifications that often mimic 
the techniques of natural science.) Thus some mathematicians will stand by the truth 
of any consequence of ZFC, but dismiss additional axioms and their consequences 
as metaphysical rot. Even the most cursory look at the particular axioms of ZFC 
will reveal that the line between intrinsic and extrinsic justification, vague as it might 
be, does not fall neatly between ZFC and the rest. The fact that these few axioms are 
commonly enshrined in the opening pages of mathematics texts should be viewed 
as an historical accident, not a sign of their privileged epistemological or metaphys- 
ical status. 

The impulse towards axiomatization can be seen as beginning in 1883, when 
Cantor introduced "a law of thought", 

. . . fundamental, rich in consequences, and particularly marvelous for its 
general validity.. .It is always possible to bring any well-dejned set into the 
form of a well-ordered set. 

(Cantor [1883, p. 5501, as translated in Moore [1982, p. 421). Hallet [1984, 
pp. 156-1571 traces Cantor's belief in the well-ordering principle to his under- 
lying conviction that infinite sets are not so different from finite ones, that the most 
basic properties are ones they share. (This will be called "Cantorian finitism" 
in what follows. In this case, the basic property shared is "countability" or "enumer- 
ability".) Unfortunately, the mathematical community at large did not find it 
obvious that infinite sets could be well-ordered, and by 1895, Cantor himself came to 
the conclusion that his principle should really be a theorem. 

Though Cantor made various efforts to prove this and related theorems (see, for 
example, his famous letter to Dedekind [1899]), the first proof was Zermelo's in 
[1904]. This proof, and especially the Axiom of Choice on which it was based, 
created a furor in the international mathematical community. Under the influence 
of Hilbert's axiomatics, Zermelo hoped to secure his proof by developing a precise 
list of the assumptions it required, and proposing them (in [1908]) as an axiomatic 
foundation for the theory of sets. The fascinating historical ins and outs of this 
development are clearly and readably described in Moore's book. The point of 
interest here is that the first axioms for set theory were motivated by a pragmatic 
desire to prove a particular theorem, not a foundational desire to avoid the 
paradoxes3 

For our purposes, it will be enough to give a brief survey of the arguments given 
by Zermelo and later writers in support of the various axioms of ZFC. 

1.1. Extensionality. Extensionality appeared in Zermelo's list without comment, 
and before that in Dedekind's [1888, p. 451. Of all the axioms, it seems the most 
"definitional" in character; it distinguishes sets from intensional entities like 

3See Moore [1982]. Apparently Zermelo discovered the paradox some two years before Russell. O n  his 
interpretation, it shows only that no set can contain all its subsets as members (see Moore [1982, p. 891). 
Recall that Cantor also took the paradoxes less seriously than the philosophers, for example, in the letter 
to Dedekind [1899]. Godel also expresses the view that the paradoxes present a problem for logic, not for 
mathematics (Godel [1944/67, p. 4743). 
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properties or concepts. Most writers seem to echo the opinion of Boolos [1971, 
p. 5011, that if any sense can be made of the distinction between analytic and 
synthetic, then the Axiom of Extensionality should be counted as analytic. (See also 
Shoenfield [1977, p. 3251, and Wang [1974, p. 5331.) 

Fraenkel, Bar-Hillel and Levy give a bit more in their [1973, pp. 28, 871. They 
argue that an extensional notion of set is preferable because it is simpler, clearer, and 
more convenient, because it is unique (as opposed to the many different ways 
intensional collections could be individuated), and because it can simulate 
intensional notions when the need arises (e.g. two distinguishable "copies" of an 
extensional set can be produced by taking its cross product with distinct singletons). 
Thus extrinsic reasons are offered even for this most obvious of axioms. 

1.2. Foundation. Zermelo used a weak form of the Axiom of Foundation (A $ A) 
to block Russell's paradox in a series of lectures in the summer of 1906, but by 1908, 
he apparently felt that the form of his Separation Axiom was enough by itself, and 
he left the earlier axiom off his published list. (See Moore [1982, p. 1571; Hallet 
[1984, p. 2521.) Later Mirimanoff [I9171 defined "ordinary sets" to be those with- 
out infinite descending epsilon chains. Using the notion of rank, he was able to 
formulate necessary and sufficient conditions for the existence of ordinary sets. 
Though he did not suggest that the ordinary sets are all the sets, he did think that 
restricting attention to them (in effect adopting Foundation) was a good working 
method. 

This attitude towards Foundation is now a common one. It is described as 
weeding out "pathologies" or "oddities" (Boolos [1971, p. 4911) on the grounds that 

. . . no field of set theory or mathematics is in any general need of sets which 
are not well-founded. 

(Fraenkel, Bar-Hillel and Levy [1973, p. 883) Von Neumann adopted it in [1925], 
hoping to increase the categoricity of his axioms, and Zermelo included it in [I9301 
because it was satisfied in all known applications of set theory and because it 
gives a useful understanding of the universe of sets. (Supporters of the "iterative 
conception" discussed below often see foundation as built into the very idea of the 
stages. See Boolos [1971, p. 4981; Shoenfield [1977, p. 3271.) 

1.3. Pairing and Union. Cantor first stated the Union Axiom in a letter to 
Dedekind in 1899 (see Moore [1982, p. 54]), and the Pairing Axiom superseded 
Zermelo's 1908 Axiom of Elementary Sets when he presented the modified verison 
of his axiom system in [1930]. Both are nearly too obvious to deserve comment from 
most commentators. When justifications are given, they are based on one or the 
other of two rules of thumb. These are vague intuitions about the nature of sets, 
intuitions too vague to be expressed directly as axioms, but which can be used in 
plausibility arguments for more precise statements. We will meet with a number of 
these along the way, and the question of their genesis and justification is of prime 
importance. For now, the two in question are limitation of size and the iteratiae 
conception. 

Limitation of size came first. Hallet [I9841 traces it to Cantor, who held that 
transfinites are subject to mathematical manipulation much as finites are (as 
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mentioned above), while the absolute infinity (all finites and transfinites) is God and 
incomprehensible. Later more down-to-earth versions like Fraenkel's hold that the 
paradoxes are generated by postulating sets that are "too large", and that set theory 
will be safe if it only eschews such collections. (Hallet gives a historical and 
philosophical treatment of the role of this rule of thumb in the development of 
modern axiomatic set theory.) Thus, for example, Fraenkel, Bar-Hillel and Levy 
El9731 argue that a pair set is of "very modest size", and that the Union Axiom will 
not produce any thing "too large", because 

. . . the sets whose union is to be formed will not be taken arbitrarily-they 
must be members of a single given set". (pp. 32-34) 

(Hallet, incidentally, disagrees about Union. See [1984, pp. 209-2101.) 
The iteratiae conception originated with Zermelo [I9301 (prefigured perhaps in 

Mirimanoff [1917]). Although Cantor, Fraenkel, Russell [1906], Jordain [1904], 
[1905], von Neumann [I9231 and others all appealed to limitation of size, the 
iteratiae conception is more prevalent today. Because of its general familiarity, I shall 
not pause to describe it here. (See e.g. Boolos [I9711 or Shoenfield [1977].) For the 
record, then, given two objects a and b, let A and B be the stages at which they first 
appear. (On the iterative picture, everything appears at some stage.) Without loss of 
generality, suppose B is after A. Then the pair set of a and b appears at the stage 
immediately following B. Similarly, if a family of sets f appears at stage F, then all 
members of f , and hence all members of members of f ,  appear before F. Thus the 
union off appears at or before F, (Arguments of this form are given in Boolos [1971, 
p. 4961 and Shoenfield [1977, p. 3251.) 

1.4. Separation. The Axiom of Separation is in many ways the most characteristic 
of Zermelo's axioms. Here he sees himself as giving us as much of the naive 
comprehension scheme as possible without inconsistency [1908, p. 2021. We see 
here the emergence of another rule of thumb: one step back from disaster. The idea 
here is that our principles of set generation should be as strong as possible short of 
contradiction. If a natural principle leads to contradiction, this rule of thumb 
recommends that we weaken it just enough to block the contradiction. We shall 
meet this principle again in [BaII, 5VI.31. 

Zermelo steps back in two ways. First, 

. . . sets may never be independently dejined . . .but must always be separated 
as subsets of sets already given. 

[1908, p. 2021. Predictably, Fraenkel, Bar-Hillel and Levy see this as the result of 
applying limitation of size to unlimited comprehension (p. 36). Zermelo's second 
modification is to require that the separating property be "definite" (p. 202), which 
he understood as ruling out such troublesome turns of natural language as 
"definable in a finite number of words". The vagueness of the term "definite" 
brought Zermelo's Separation Axiom under considerable fire until Skolem sug- 
gested that "definite" be replaced by "formula of first-order logic". (Even then, 
Zermelo himself held to a second-order version. See his [1930].) 
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Advocates of the iterative conception have no trouble with Separation: all the 
members of a are present before a, so any subset of a appears at or before the stage at 
which a itself appears (Boolos [1971, p. 4941; Shoenfield [1977, p. 325]).4 

1.5. Infinity. The Axiom of Infinity is a simple statement of Cantor's great 
breakthrough. The rather colorless idea of a collection of elements that had lurked 
in the background of mathematical thought since prehistory might have remained 
there to this day if Cantor had not had the audacity to assume that they could be 
infinite. This was the bold and revolutionary hypothesis that launched modern 
mathematics; it should be seen as nothing less. 

Hallet, in his historical study of Cantorian thought, enshrines Cantor's per- 
spective into a rule of thumb called Cantorian finitism: infinite sets are like finite 
ones. (This was mentioned above in connection with Cantor's belief in the well- 
ordering principle.) The rule and its applications are justified in terms of their 
consequences. In this case: 

Dealing with natural numbers without having the set of all natural 
numbers does not cause more inconvenience than, say, dealing with sets 
without having the set of all sets. Also the arithmetic of the rational 
numbers can be developed in this framework. However, if one is already 
interested in analysis then infinite sets are indispensable since even the 
notion of a real number cannot be developed by means of finite sets only. 
Hence we have to add an existence axiom that guarantees the existence of 
an infinite set. 

(Fraenkel, Bar-Hillel and Levy [1973, p. 451). Iterative conception theorists now 
often take the existence of an infinite stage as part of the intuitive picture (see Boolos 
[1971, p. 4921; Shoenfield [1977, p. 324]), but this would hardly have come to pass if 
Cantor had not taken a chance and succeeded in showing that we can reason 
consistently about the infinite and that we have much to gain by doing so (see 
epigraph). 

1.6. Power set. Cantorian finiteness yields an argument for the Power Set Axiom, 
as it is presumably uncontroversial that finite sets have power sets. The iterative 
conception also makes quick work. If a appears at A, then all the elements of a 
appear before A, so any subset of a appears at or before A. Thus the power set of a 
appears at the stage after A. Advocates of limitation of size suggest that the power set 
of a given set will not be large because all its members must be subsets of something 
small. 

4Wang 119741 has a more philosophical account of the iterative picture in terms of what we can "run 
through in intuition". Thus his justification of Separation is: 

Since x is a set, we can run through all the members of x, and, therefore, we can do so with 
arbitrary omissions. In particular, we can in an idealized sense check against A and delete only 
those members of x which are not in A. In this way, we obtain an overview of all the objects in 
A and recognize A as a set. (p. 533) 

Parsons [I9771 points out that this puts a terrible strain on the notion of intuition, and that the problem 
becomes worse in the case of the Power Set Axiom. See also their exchange on Replacement. 
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Hallet casts some well-deserved doubt on this last form of justification for the 
Power Set Axiom, but he does not mean to reject the axiom entirely. Instead, he 
resorts to a series of extrinsic justifications, the simplest of which is reminiscent of 
that given above by Fraenkel, Bar-Hillel and Levy for Infinity, namely, that Power 
Set is indispensable for a set-theoretic account of the continuum: 

This does not prove the legitimacy of the power-set principle. For the 
argument is not: we have a perfectly clear intuitive picture of the 
continuum, and the power-set principle enables us to capture this set- 
theoretically. Rather, the argument is: the power-set principle . . . was 
revealed in our attempts to make our intuitive picture of the continuum 
analytically clearer; in so far as these attempts are successful, then the 
power-set principle gains some confirmatory support. (p. 2 13) 

Not surprisingly, a similar extrinsic support for the Power Set Axiom is to be found 
in Fraenkel, Bar-Hillel and Levy (pp. 34-35). 

1.7. Choice. The Axiom of Choice has easily the most tortured history of all the 
set-theoretic axioms; Moore in [I9821 makes it a fascinating story. In this case, 
intrinsic and extrinsic supports are intertwined as in no other. Zermelo, in his 
passionate defense, cites both. He begins: 

. . .how does Peano [one of Zermelo's critics] arrive at his own fundamental 
principles and how does he justify their inclusion.. . ?  Evidently by 
analyzing the modes of inference that in the course of history have come to 
be recognized as valid and by pointing out that the principles are intuitively 
evident [intrinsic] and necessary for science [extrinsic]-considerations 
that can all be urged equally well in favor of [the Axiom of Choice]. 
[1908, p. 1871 

First the intrinsic supports predominate: 

That this axiom, even though it was never formulated in textbook style, has 
frequently been used, and successfully at that, in the most diverse fields of 
mathematics, especially in set theory, by Dedekind, Cantor, F. Bernstein, 
Schoenflies, J. Kijnig and others is an indisputable fact.. .Such an 
extensive use of a principle can be explained only by its self-evidence, which, 
of course, must not be confused with its provability. N o  matter if this self- 
evidence is to  a certain degree subjective-it is surely a necessary source of 
mathematical principles . . . 

(Zermelo [1908, p. 1871. See also Fraenkel, Bar-Hillel and Levy [1973, p. 851.) Early 
set theorists did indeed use Choice implicitly, and the continuing difficulty of 
recognizing such uses is poignantly demonstrated by Jordain's persistent and ill- 
starred efforts to prove the axiom (see Moore [1982,$3.8]). Ironically, Choice was 
even used unconsciously by several French analysts who were officially its severest 
critics: Baire, Bore1 and Lebesgue (see Moore [1982, $51.7 and 4.1]).5 

'The referee indicates that the Paris school did eventually distinguish what they considered acceptable 
versions of Choice from the unacceptable ones, and that they were also the first to formulate the prin- 
ciple of Dependent Choice, an important tool in the presence of full Determinacy (see [BAII, SV]). 
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The debates over the intrinsic merits of the axiom centered on the opposition 
between existence and construction. Modern set theory thrives on a realistic 
approach according to which the choice set exists, regardless of whether it can be 
defined, constructed, or given by a rule. Thus: 

In many cases, it appears unlikely that one can define a choice function for a 
particular collection of sets. But this is entirely unrelated to the question of 
whether a choice function exists. Once this kind of confusion is avoided, the 
axiom of choice appears as one of the least problematic of the set theoretic 
axioms. 

(Martin [SAC, pp. 1-21) Iteratizje conception theorists seem also to lean on this 
realism rather than on the iterative picture itself (see Boolos [1971, pp. 501-5021; 
Shoenfield [1977, pp. 335-3361). One might also revert to Cantorian jnitism (see 
Hallet [1984, p. 1151). (I will discuss another rule of thumb supporting Choice in 11.2 
below.) 

Zermelo goes on to emphasize extrinsic supports: 

But the question that can be objectively decided, whether the principle is 
necessary for science, I should now like to submit to judgment by presenting 
a number of elementary and fundamental theorems and problems that, in 
my opinion, could not be dealt with at all without the principle of choice. 

[1908, pp. 189-1901. He then describes seven theorems that depend on the Axiom of 
Choice, including the fact that a countable union of countable sets is countable, as 
well as two examples from analysis. Since then it has become clear that the Axiom of 
Choice and its equivalents are essential not only to set theory but to analysis, 
topology, abstract algebra and mathematical logic as well. 

To take just one example, Moore [1982, 94.51 describes the axiom's growing 
importance in algebra during the 20s and 30s. In 1930, van der Waerden published 
his Modern Algebra, detailing the exciting new applications of the axiom. The book 
was every influential, providing Zorn and Teichmiiller with a proving ground for 
their versions of choice, but van der Waerden's Dutch colleagues persuaded him to 
abandon the axiom in the second edition of 1937. He did so, but the resulting limited 
version of abstract algebra brought such a strong protest from his fellow algebraists 
that he was moved to reinstate the axiom and all its consequences in the third edition 
of 1950. Moore summarizes, "Algebraists insisted that the axiom had become 
indispensable to their discipline" (p. 235). And they were not alone. 

Nowadays, intrinsic arguments for Choice in terms of intuitiveness or obvious- 
ness go hand-in-hand with extrinsic arguments in terms of its indispensability. 
Modern mathematics has sided firmly with Zermelo: 

. . .no one has the right to prevent the representatives of productive science 
from continuing to use this "hypothesisw-as one may call it for all I care- 
and developing its consequences to the greatest extent . . . We need merely 
separate the theorems that necessarily require the axiom from those that 
can be proved without it in order to delimit the whole of Peano's 
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[choiceless] mathematics as a special branch, as an artifically mutilated 
science, so to speak . .. principles must be judged from the point of view of 
science, and not science from the point of view of principles fixed once and 
for all. (p. 189) 

1.8. Replacement. Early hints of the Axiom of Replacement can be found in 
Cantor's letter to Dedekind [I8991 and in Mirimanoff [1917], but it does not 
appear on Zermelo's list in [1908]. This omission is due to his reductionism, that is, 
his belief that theorems purportedly about numbers (cardinal or ordinal) are really 
about sets. Since von Neumann's definition of ordinals and cardinals as sets, this 
position has become common doctrine, but Zermelo first proposed his axioms in the 
context of Cantor's belief that ordinal and cardinal numbers are separate entities 
produced by abstraction from sets. So, while Cantor sometimes stated the well- 
ordering theorem in the form "Every set is isomorphic to some ordinal number", 
Zermelo preferred the form "Every set can be well-ordered". As a result, he had no 
need for Replacement. (See Hallet [1984].) 

Around 1922, both Fraenkel and Skolem noticed that Zermelo's axioms did not 
imply the existence of 

or the cardinal number K,. These were so much in the spirit of informal set theory 
that Skolem proposed an Axiom of Replacement to provide for them. It then took 
von Neumann to notice the importance of Replacement for the ordinal form of the 
well-ordering theorem, as well as in the justification of transfinite r ecu r~ ion .~  
Zermelo included it (in his second order version) in [1930]. 

Replacement is made to order for the limitation of size theorists: 

. . . our guiding principle ... is to admit only axioms which assert the 
existence of sets which are not too "big" compared to sets already 
ascertained. If we are given a set a and a collection of sets which has no 
more members than a it seems to be within the scope of our guiding 
principle to admit that collection as a new set. We still did not say exactly 
what we mean by saying that the collection has "no more" members than 
the set a. It turns out that it is most convenient to assume that the collection 
has "no more" members than a when there is a "function" which correlates 
the members of a to all the sets of the collection . . . 

(Fraenkel, Bar-Hillel and Levy [1973, p. 501). The iterative conception does less well 
because the only way to guarantee stages large enough to cover the range of the 
given function is to assume a version of Replacement in the theory of stages (see 
Shoenfield [1977, p. 3261); Boolos [1971, p. 5001). 

6Von Neumann actually used a stronger principle based on limitation of size, namely, " A collection is 
too large iff it can be put in one-to-one correspondence with the collection of all sets." This implies 
Separation, Replacement, Union and Choice (even Global Choice). Godel found von Neumann's axiom 
attractive because it takes the form of a maximal principle (compare maximize in 11.2 below): anything 
that can be a set, is. See Moore [1982, pp. 264-2651, 
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O n  the extrinsic side stand the deep set theoretic theorems noted in the paragraph 
before last: 

. . . the reason for adopting the axioms of replacement is quite simple: they 
have many desirable consequences and (apparently) no undesirable ones. 

(Booles [1971, p. 5001) Still, the consequences noted are all within set theory; there is 
nothing like the broad range of applications found in the case of Choice. Recently, 
however, Martin used Replacement to show that all Borel sets are determined (see 
Martin [1975]). Earlier work of Friedman establishes that this use of Replacement 
is essential (see Friedman [1971]). Thus Replacement has consequences in analysis, 
consequences even for the simple sets of reals favored by the French analysts. 
Furthermore, these consequences are welcome ones, as we shall see in [BAII, $V]. 

Let me end this survey here, leaving the interested reader to the more informed 
works of the mathematical historians. I think enough has been said to demonstrate 
that from the very beginning, the process of adopting set-theoretic axioms has not 
been a simple matter of noting down the obvious. Rather, the axioms we now hold to 
be self-evident were first justified by reference to vague rules of thumb and purely 
extrinsic consequences, in addition to intrinsic evidence. The arguments offered for 
the new axioms are no different. But first we should pause to look at the problem that 
makes new axioms vital. 

$11. The continuum problem. Cantor first stated his continuum hypothesis in 
1878: 

The question arises.. . into how many and what classes (if we say that [sets 
of reals] of the same or different [cardinality] are grouped in the same or 
different classes respectively) do  [sets of reals] fall? By a process of 
induction, into the further description of which we will not enter here, we 
are led to the theorem that the number of classes is two. 

(See Cantor [1895, p. 451.) The nature of this "process of induction" is never made 
clear, but Hallet reconstructs it from the contents of a letter Cantor wrote to Vivanti 
in 1886 (see Hallet [1984, pp. 85-86]). There Cantor comments on Tannery's 
purported proof of the continuum hypothesis: 

He believed he had given a proof for the theorem first stated by me 9 years 
ago that only two [equivalence] classes [by cardinality] appear among 
linear pointsets, or what amounts to the same thing, that the [cardinality] 
of the linear continuum is just the second. However, he is certainly in error. 
The facts which he cites in support of this theorem were all known to me at 
the time, as anyone can see, and form only a part of that induction of which 
I say that it led me to that theorem. I was convinced at that time that this 
induction is incomplete and I still have this conviction today. 

. . . the theorem to be proved is 
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The facts on which Herr T. believes he can base the theorem are only these: 

These facts suggest the conjecture that c should be the power N, following 
next after No; but they are a long way from furnishing a proof for it. 

Perhaps these facts seem even less persuasive today. 
11.1. Cantor's views. Cantor's writings suggest two other reasons he might have 

had for believing the continuum hyp~thesis .~ In 1874, Cantor proved the first version 
of his famous theorem: no countable sequence of elements from a real interval can 
exhaust that interval. In 1883, he proved that there are more countable ordinals than 
finite ordinals, and that any infinite set of countable ordinals is either countable or 
equinumerous with the set of all countable ordinals. Three things must have struck 
Cantor here: first, the two proofs of nondenumerability are similar (the usual 
diagonal argument for the nondenumerability of the reals came only in 1891), which 
produces an analogy between the reals and the countable ordinals (see below); 
second, the property proved for infinite subsets of the countable ordinals is exactly 
what CH conjectures for the reals; third, that the CH could now be formulated as 
"the reals and the countable ordinals are equinumerous." 

Cantor apparently found evidence for the CH in the structural similarities 
revealed by the two proofs of nondenumerability. In particular, he came to see the 
reals and the countable ordinals as generated by similar processes from similar raw 
materials; in both cases, one begins with a countable set (the rationals and the finite 
ordinals, respectively) and one considers countably infinite rearrangements (Cauchy 
sequences and well-orderings, respectively). This analogy suggests that the two sets 
may also share the same cardinal number. Add to this the discovery that the set 
of countable ordinals has exactly the property Cantor expected to hold for the 
reals, and the CH in its new form seems a fairly natural conjecture (see Hallet 
[1984, pp. 74-81]). 

Of course, wherever there are analogies there are both similarities and dissimilar- 
ities. What makes the 1874 proof of nondenumerability go through is the fact 
that any bounded sequence of reals approaches a limit; likewise, the 1883 proof of 
nondenumerability depends on the fact that any countable sequence of countable 
ordinals has a countable ordinal as its supremum. Still, as Hallet points out (p. 8 I), 
the topologies underlying these limit properties are not really all that similar. 

A second reason Cantor may have had for believing the continuum hypothesis is 
based on the Cantor-Bendixon theorem of 1884, that is, the result that every closed 
infinite set of reals is countable or has a perfect subset, and hence, that CH is true for 
closed sets of reals. At the end of the paper in which this result is proved, he 
promises a proof of the same result for nonclosed sets of reals. He may have believed 
at one time that the proof itself could be generalized, and in fact, it can to a certain 
extent. I will take up the idea that these partial results constitute evidence for CH in 

'Apparently, the term "continuum hypothesis" was first used by Bernstein in 1901. See Moore [1982, 
p 561. 
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11.3.1.In any case, it is clear that for a while he hoped to establish CH by finding a 
closed set of cardinality N,. Such a set would be nondenumerable, so by the Cantor- 
Bendixon theorem, it would have the cardinality of the continuum. But that 
cardinality is 2"" so CH is true. Working along these lines, in 1884 he wrote: 

I am now in possession of an extremely simple proof for the most important 
theorem of set theory, that the continuum has the [cardinality] of the [set 
of countable ordinals] . .. you see that everything reduces to defining a 
closed set having [cardinality N,]. When I have sorted it out, I will send you 
the details. 

(See Hallet [1984, p. 921; Moore [1982, p. 433.) Of course, the details were never 
sorted 

For the record, during the prehistory of CH (that is, before the consistency and 
independence results), opinion seems to have been divided. Hilbert and Jourdain 
were both in favor (Moore [1982, pp. 55, 63]), though Hilbert apparently did not 
expect it to be provable in ZFC alone (Wang C1981, p. 6561). Konig attempted to 
prove it false, but only because he felt the reals could not be well-ordered at all 
(Moore [1982, $2.11). Finally, Godel cites Lusin and Sierpiliski as tending to 
disbelieve it for reasons closer to his own ([1947/64, p. 4793). 

11.2. Consistency and Independence. A wag once suggested that if only Godel had 
announced having proved the continuum hypothesis, instead of its mere consistency, 
there would be no more continuum problem. Strangely enough, Godel does almost 
exactly that in [1938]. Of the Axiom of Constructibility, from which he did prove 
CH, he writes: 

The proposition . . . added as a new axiom, seems to give a natural 
completion of the axioms of set theory, in so far as it determines the vague 
notion of an arbitrary infinite set in a definite way. (p. 557) 

By [1944], however, he has changed his mind and come around to the view now so 
strongly associated with his name: 

[The] axiom [of constructibility] states a minimum property. Note that 
only a maximum property would seem to harmonize with the concept of set 
. . . (pp. 478-479) 

Perhaps Godel's new opinion of V = L was also influenced by his developing belief 
in the falsity of CH (see 11.3.3 below). 

We see here the statement of a new rule of thumb, namely rnaximi~e.~This rule 
is often associated with the iterative conception in two more specific forms: 

Intrinsic necessity depends on the concept of iterative model. In a general 
way, hypotheses which purport to enrich the content of power sets.. .or to 
introduce more ordinals conform to the intuitive model. We believe that the 
collection of all ordinals is very 'long' and each power set (of an infinite set) 

8Cantor's final attempt at proving the continuum hypothesis involved a new method of decomposing 
arbitrary sets of reals. See Moore [1982, pp. 43-44], and Hallet [1984, p. 1031. 

9Recall the earlier hint of this rule in Godel's reaction to von Neumann's axiom. 
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is very 'thick.' Hence, any axioms to such effects are in accordance with our 
intuitive concept. 

(Wang [1974, p. 5531) For example, the Axiom of Choice is widely thought to 
contribute to the "thickness" of the power set (see e.g. Godel in Moore [1982, 
p. 2651; Drake [1974, p. 121). 1 will take up the question of postulating more 
ordinals in the next section, but for now it is clear that the restriction to definable 
subsets at each stage can be seen as an unwelcome curtailment of the full power set. 
The view that V = L contradicts maximize is widespread (see e.g. Drake [1974, 
p. 1311; Moschovakis [1980, p. 6101; Scott [1977, p. xii]).1° 

There are also extrinsic reasons for rejecting V = L, most prominently that it 
implies the existence of a A :  well-ordering of the reals, and hence that there is a A :  
set which is not Lebesgue measurab1e.l It can be proved in ZFC that every Borel 
well-ordering of the reals is countable. A A :  set can be obtained from a Borel set by 
one application of projection followed by one application of complement. Many 
find it implausible that a set as complex as a well-ordering of the real numbers could 
be generated by such simple operations.12 The Axiom of Choice guarantees that 
there is such a well-ordering, but the proofs are highly nonconstructive, so it is 
considered implausible that the well-ordering should be definable at all (see 
Moschovakis [1980, p. 2761; Wang [1974, p. 5473; Martin [1976, p. 881 and 
[PSCN, p. 23). Further extrinsic evidence against V = L will be discussed in 11.3.1, 
below, and in [BAII, SV]. 

After his proof of the consistency of CH, Godel conjectured that it is independent 
as well. The axioms of ZFC, he argues, are true in V and in L, so one can hardly 
expect to decide the numerical question of the size of the continuum until one has 
settled "what objects are to be numered, and on the basis of which one-to-one 
correspondences." Even if one believes that V = L, 

. . . he can hardly expect more than a small fraction of the problems of set 
theory to be solvable without making use of this, in his opinion essential, 
characteristic of sets. [1947/64, p. 4781 

Finally, in 1963, Cohen proved him right (see his [1966]).13 

1°1 should not suggest that no one supports the adoption of V = L as an axiom; sentiment in favor can 
be found (see e.g. Fraenkel, Bar-Hillel and Levy 11973, pp. 108-1091; Devlin 11977, p. iv]). Reasons 
usually given are that it is simple and safe (see Moschovakis [1980, p. 609]), and that it provides answers 
to a great many outstanding problems. Discussion below and in [BAII, SVI] will suggest that these 
answers are "in the wrong direction", but that opinion is surely open to debate. Despite all this, I will stick 
to the anti-(V = L) line because it is favored by the Cabal group. 

"Notation: 2: is the class of open sets of reals; II:  is the class of all complements of 22 sets of reals; 
2:+,is the class of all countable unions of II:  sets; and A: = 2: n II:. All these together are the Borel 
sets. Further, 2;is the class of all projections of closed sets; I I :  is the class of all complements of 2; sets; 
Z:,, is the class of projections of II,' sets; and A,' is Z: n I I : .  These are the projective sets. In 1917, 
Souslin proved that the Borel sets are the A sets. Finally, if R is a well-ordering of the reals, then Fubini's 
theorem implies the R is not Lebesgue measurable. 

12This way of putting the implausibility was suggested by Matt Foreman. 
I3See Scott [I9771 and Wang [I9811 for some discussion of why the independence proof was so long 
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While Godel's result had a temporary discouraging effect on research in set theory 
(for fear that the problem in question was in fact undecidable), Cohen's invention of 
the forcing method led to a boom (see Martin [1976, pp. 82-83]). While the truth of 
CH in the constructible universe has had some influence on opinion as to its truth or 
falsity (see 11.3.4 below), the relevance of forcing models to that question is much less 
clear. The plethora of different models moved Cohen himself to a version of 
formalism (see his [I9661 and [1971]), but Scott, another innovator in the early 
development of forcing, writes: 

I myself cannot agree, however. I see that there are any number of 
contradictory set theories, all extending the Zermelo-Fraenkel axioms; but 
the models are all just models of the first-order axioms, and first-order logic 
is weak. I still feel that it ought to be possible to have strong axioms which 
would generate these types of models as submodels of the universe, but 
where the universe can be thought of as something absolute. [1977, 
p. xiv] 

(See also Kanamori and Magidor [1978, p. 1091.) Perhaps the association of CH 
with the restrictive V = L, combined with the development of this striking new 
technique for adding extra real numbers to models, led some to agree with Godel 
that CH is false in the absolute real world. 

11.3. Informed opinion. Despite the results of Godel and Cohen, there remain set 
theorists who feel the CH is a real question, the sort of thing that is either true or false 
in the real world of sets. Various arguments for and against have been bandied about 
in their ranks. The purpose of this subsection is to summarize the most prominent of 
these. 

11.3.1. Partial results (in favor). Recall that Cantor may have expected the proof 
of the Cantor-Bendixon theorem (that CH holds for closed sets of reals) to 
generalize to all sets of reals. This program was carried forward by Young in 1906 to 
a subset of the 17; sets, then by Hausdorff in 1914 to all 17; sets, and finally, by 
Hausdorff again in 1916 to all Borel sets. Still, Hausdorff himself was reluctant to 
count these results as evidence for the CH: 

If we knew for all sets what we know for closed and IZ; ... then . . . the 
continuum hypothesis would be decided. However, in order to see how far 
we still are from this goal, it is sufficient to recall that the system of sets 
closed or 17: forms only a vanishingly small part of the system of all point 
sets. 

Even after the proof had been extended to all Borel sets, he continued: 

Thus the question of power is clarified for a very inclusive category of sets. 
Nevertheless, one can scarcely see this as a genuine step towards the 
solution of the continuum problem, since the Borel sets are still very 
specialized, and form only a vanishingly small subsystem. 

(Both translations are due to Hallet [1984, p. 1071.) Of course there are 22K0set of 
reals, only 2'0 of which are Borel. 
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Even more damaging to the interpretation of these results as evidence in favor of 
the CH is something Hausdorff apparently did not realize at the time, namely that 
his proofs could be strengthened to the form of the original Cantor-Bendixon result, 
that is, that every infinite Bore1 set is either countable or contains a perfect subset. In 
1916, Alexandroff proved the theorem in this form, and in 1917, Souslin extended it 
to C: sets. (In the presence of a measurable cardinal, this pattern can be extended to 
C t .  See 5IV below.) The trouble arises from Bernstein's proof that there are 
uncountable sets of reals without perfect subsets. Thus these proofs that CH holds 
for restricted classes of sets all depend on establishing a stronger property, the 
perfect subset property, that cannot hold for all sets of reals (see Martin 11976, 
p. 883; Hallet [1984, pp. 103-1 101). For this reason, the technique cannot be fully 
generalized. 

In Cantor's defense, it should be noted that he was probably unaware of the 
existence of uncountable sets without perfect subsets. Most of the sets of reals 
Cantor worked with were Ct  at worst. Furthermore, Bernstein's proof, published in 
1908, made essential use of the Axiom of Choice. Though Cantor often used that 
axiom, he did so to form orderings, or to make simultaneous choices from many 
order types or cardinalities, not to form sets of reals, so he may well not have noticed 
this possibility. 

In 1925, Lusin wondered whether every infinite II: set is either countable or 
contains a perfect subset. He writes: 

My efforts towards settling this question have led to an unwelcome result: 
we do not know and will never know.. . 

(Translation due to Hallet [1984, p. 1081). This may sound overly dramatic, but in a 
sense, Lusin was right, for the Axiom of Constructibility implies the existence of 
an uncountable l7 t  set with no perfect subset, while other hypotheses imply the 
opposite (see [BAII, section SV]). That such a "pathology" should occur so low in 
the projective hierarchy is considered another extrinsic disconfirmation of V = L 
(e.g. Wang [1974, p. 5473). 

11.3.2. The eflectiveness of CH (in favor). The generalized CH is an extremely 
simple and powerful assumption that immediately settles all questions of cardinal 
arithmetic. Furthermore, it allows any power set to be well-ordered in such a way 
that every initial segment is no bigger than the original set. This facilitates many 
complex constructions, such as saturated models of every regular cardinality. 
Sierpinski's book Hypothese du Continu deduces 82 propositions from the CH. In 
stark contrast, Martin and Solovay remark [I9701 that not a single one of these 82 
propositions is known to be decided by the negation of the continuum hypothesis. 

11.3.3. ~Gdel's counterintuitive consequences (against). In [1947/64], Godel 
argues that CH is false because it has certain "highly implausible consequences" 
(p. 479). Several of these assert the existence of sets of reals of cardinality 2'0 with 
strong "smallness" properties. For example, a subset of the unit interval is called 
"absolute zero" if it can be covered by any countable collection of intervals. If 
covering is only required when the intervals are of equal length, then the set would 
have Lebesgue measure zero, but would not necessarily be absolute zero. Thus 
Cantor's discontinuum has Lebesgue measure zero, but is not absolute zero, because 
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it cannot be covered by countably many intervals of length 113". In fact, no perfect 
set can be absolute zero, and Borel conjectured that no set of size 2'0 could be. The 
CH implies that there is such a set. 

Commentators were quick to point out that many consequences of the set- 
theoretic reduction of the continuum that do not depend on CH are similarly 
counterintuitive, for example, Peano's space-filling curve. Godel insists that his 
examples are not of this sort, because in those cases: 

...the appearance [of counterintuitiveness] can be explained by a lack of 
agreement between our intuitive geometrical concepts and the set-
theoretical ones occurring in the theorem. (p. 480) 

While we all might be surprised at Peano curves or the uncountable Cantor set of 
measure zero, this surprise is presumably based on exactly the clash Godel 
mentions: a disagreement between our geometric intuition and our set-theoretic 
geometry, or a vague feeling that sets large in cardinality should not also be small in 
measure. But Godel is basing his reactions on something else. 

What then? Wang suggests that 

. . .it cannot be excluded that someone might have such intimate knowledge 
so that, for example, he can separate out errors coming from using the pre- 
set-theoretical intuition. 

[1974, p. 5491. He reminds us of Godel's view that all intuition must be cultivated. It 
seems to me more likely that Godel had in mind some form of peculiarly set- 
theoretic intuition not connected with pre-set-theoretic geometry. In either case, we 
are left with Godel's bare claims, because even our best set theorists do not share 
these "intuitions": 

While Godel's intuitions should never be taken lightly, it is very hard to see 
that the situation is different from that of Peano curves, and it is even hard 
for some of us to see why the examples Godel cites are implausible at all. 

(Martin [1976, p. 871; see also Martin and Solovay [1970, p. 1771). 
Godel apparently did make at least one attempt to axiomatize his views on the 

continuum. It appears in Ellentuck [I9751 and takes its cue from a conjecture of 
Borel. Suppose that the functions from w to w are ordered so that f is less than g if 
and only if f(n) is always less than g(n) after a proper initial segment. Borel 
conjectured that there is a set S of size K ,  which is cofinal in this ordering. 
The "square axiom", A, is just this conjecture; the "rectangle axioms", A,, are 
generalizations of the square axiom to functions from w, to w. Godel agreed with 
Borel on the plausibility of A; his hope was that the An's could be justified by 
analogy with A, and that they would set bounds on the size of the continuum. 

Now K, is the only value for 2'0 that is known to be consistent with the 
nonexistence of absolute zero sets. Furthermore, A,  implies that 2'0 5 K 2 .Thus it 
seems Godel must have suspected that 2'0 = K, .  Unfortunately, the plan to derive 
this from a theory involving the rectangle axioms was ruined with the discovery that 
A,  implies CH. Alternate versions of the square axiom turned out to be relatively 
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consistent with a wide range of values of 2'0, and A itself implies the existence of an 
absolute zero set of size N,. While this is perhaps not so counterintuitive as an 
absolute zero set of size 2': it must have been an unwelcome result. Thus this effort 
of Godel's to formalize his intuitions about the continuum was quite unsuccessful.14 

11.3.4. CH is restrictive (against). As mentioned earlier, perhaps some of the 
reason CH is felt to be restrictive is because it is true in L. If this line of thought is to 
have any force, it must first meet a difficult challenge, namely that the Axiom of 
Choice, generally regarded as a maximizing principle in itself, is also true in L. If L is 
so impoverished, why does the additional assumption of Choice have no maximizing 
effect? (It doesn't, because it is not an additional assumption, after all.) 

I think the answer to this question is not so difficult. Choice is true in L because 
there is a definable well-ordering of the constructible universe. This reverses the 
intuitive order of things. Why is a given set well-orderable? Because an element can 
be chosen for each ordinal until the set is exhausted. Why should such choices be 
possible? Because realism and maximize guarantee the existence of a choice set. Thus 
the well-ordering principle derives from Choice and not vice versa. 

The maximizing force of Choice lies in its implying the existence of complex, 
probably undefinable sets like a well-ordering of the reals, a non-lebesgue-
measurable set, and an uncountable set with no perfect subset. That the Axiom of 
Constructibility forces such sets far down into the simple projective sets counts as 
extrinsic evidence against it. Thus the Axiom of Choice is true in L, but it does not do 
any maximizing work because it is true for the wrong reason. It is not true because 
there are complex sets; rather it is true because there is an artificially simple well- 
ordering. 

Now what about CH? Is it truly a maximizing principle that just happens to be 
true in the restricted world of L because its maximizing force is masked by some 
unrelated pathology? For what it's worth, I see nothing in the proof of CH in L that 
suggests this. CH is true in L because all the constructible subsets of o appear in L,, , 
and L,, has small cardinality. But why is that cardinality small? Because the limited 
procedure of subset formation in L only allows at most one new element for every 
formula and finite sequence of parameters. Thus CH is true in L because the 
formation of subsets is artificially restricted, not because some other pathological 
condition in L is robbing it of its maximizing force.15 

14The history of the square and rectangle axioms is described in more detail in Moore 119821. 
151 should note that J. Friedman 119711 argues that GCH is a maximizing rather than a restrictive 

principle. He does so by showing it equivalent to what he calls the "generalized maximizing principle," 
namely, the assumption that every "local universe" contains all its smaller-cardinality subsets. (Note the 
similarity to von Neumann's maximizing principle above.) The problem is that a "local universe" is 
defined as a collection closed under Pairing, Union and Replacement. Obviously Replacement is being 
maximized at the expense of Power Set. Thus Friedman is right that: 

A fundamental question is whether the generalized maximizing principle maximizes these 
operations [Pairing, Union and Replacement] at the expense of the power set operation. 

But perhaps he is less than candid when he claims: 

The Generalized Maximizing Principle says nothing explicit about the power set operation, 
but as an afterthought, GCH follows from it. (p. 41) 
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Another way of stating the idea that CH is restrictive is to insist that the 
continuum is somehow too complicated to be numbered by the countable ordinals. 
Drake presents a version of this view: 

Of course, many mathematicians do not feel that the cumulative type 
structure is a well-defined, unique object, and from this point of view the 
independence results may have to be considered the final word on 
the GCH. But there are also many mathematicians who feel that the 
cumulative type structure is real enough, in a sense, for the GCH, or at least 
the CH, to be a real question. It is worth noting that amongst these 
mathematicians, many feel that the GCH is just too simple to be right. 
Perhaps the following illustrates this feeling:. . . [1974, pp. 65-66] 

He goes on to point out that h', is the cardinal number of the collection of all 
countable well-ordering types, while 2'" is the cardinal number of the collection of 
all countable linear ordering types. 

To say of a linear ordering that it is a well-ordering is a very strong 
requirement, so that there should be many more linear orderings than well- 
orderings . . . (p. 66) 

Of course, if CH were true, it would not be the first time that a difference in 
complexity was not mirrored in a difference in cardinality. It is hard to see why the 
CH should be interpreted as saying that there are not very many subsets of owhen it 
could just as easily be taken to say that there are lots of countable ordinals. 

The question of how complexity matches up with cardinality is further muddled 
by results involving Martin's Axiom (see Martin and Solovay [1970]). Recall that 
many of the consequences of CH are made possible by the well-ordering of 2'"ith 
countable initial segments. Though Martin's Axiom is relatively consistent with h', 
< 2K0, it still guarantees that the cardinals smaller than 2'" are well enough behaved 
to allow complicated constructions to go through. As a result, 79 of Sierpinski's 82 
consequences of CH also follow from MA + (h', < 2'") (with the natural modifica- 
tion that the countable/uncountable distinction is replaced by the l e s~ - than -2~" /2~0  
distinction). Thus advocates of the view that the continuum is complex might 
wonder if large cardinality alone is enough to guarantee that complexity. 

11.3.5 Power Set is stronger than Replacement (against). This position is Cohen's. 
As a formalist, Cohen realizes he should reject the question of the truth or falsity of 
CH [1966, p. 1501, but he feels he cannot reject the same question concerning large 
cardinals: 

I, for one, cannot simply dismiss these question of set theory for the simple 

reason of their reflections in number theory. I am aware that there 

would be few operational distinctions between my view and the Realist 

position. [1971, p. 151 


Thus he is willing to speculate on the truth value of the CH from the realist point of 
view: 

A point of view which the author feels may eventually come to be accepted 

is that CH is obviously false. The main reason one accepts the Axiom of 
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Infinity is probably that we feel it absurd to think that the process of adding 
only one set at a time can exhaust the entire universe.. . Now h', is the set of 
countable ordinals and this. is merely a special and the simplest way of 
generating a higher cardinal. The set Cis, in contrast, generated by a totally 
new and more powerful principle, namely the Power Set Axiom. It is 
unreasonable to expect that any description of a larger cardinal which 
attempts to build up that cardinal from ideas deriving from the Replace- 
ment Axiom can ever reach C. Thus C is greater than h',, h',, h', where cr 
= h',, etc: This point of view regards C as an incredibly rich set given to us 
by a bold new axiom, which can never be approached by any piecemeal 
process of construction. Perhaps later generations will see the problem 
more clearly and express themselves more eloquently. 11966, p. 1511 

In this connection, recall that the limitation of size theorists had difficulties with 
Power Set but smooth sailing with Replacement. It should be noted that most set 
theorists who disbelieve CH think 2'0 is more likely to be very large, as Cohen 
indicates, than to be h',, as Godel suggests. 

11.3.6. Finitism (against GCH). Here the argument depends on analogy with the 
finite numbers, where n + 1 = 2" is true only for 0 and 1. This is felt by some to 
constitute an argument against the GCH, if not against the particular case of the CH 
(see Drake [1974, p. 661). 

11.3.7. Whimsical identity (against GCH). This argument depends on the same 
facts as the finitism argument, but it uses them in a different way. Notice that if the 
GCH were true, then h', could be defined as that cardinal before which GCH is false 
and after which it is true (excepting 0 and 1, of course). But this identity would seem 
"accidental", like the identity between "human" and "featherless biped". While the 
physical universe might be too impoverished to falsify such accidental identities, the 
set-theoretic universe should be rich enough to rule them out. Therefore, GCH is 
false. (Kanamori and Magidor 11978, p. 1041 and Martin [1976, p. 851 use 
whimsical identity arguments to support large cardinal axioms. See $111 below.) Of 
course this line of argument faces considerable difficulties in explaining what is 
meant by "accidental", and how this particular identity can be seen to have that 
property. 

11.3.8. The delicate balance (against). This argument is stated by Wang: 

Some set theorist states that if h', = 2'0, then there must be a surprisingly 
delicate balance between the reals and the countable ordinals. [1974, 
pp. 549-5501 

As Wang goes on to point out, the balance must be delicate whatever the cardinality 
of the reals turns out to be. Indeed, it might seem more delicate if 2'" were N,,. 

11.3.9. Gupta's wager (against). Gupta suggests, somewhat facetiously, that since 
N, is only one among the proper-class-many values 2'0 might consistently take, it 
makes more sense to plump for not-CH. 

11.3.10. Freiling's darts (against). Freiling [I9861 suggests a thought experiment 
in which random darts are thrown at the real line. Suppose that a countable set f (x) 
is associated with each real x. Now I throw two darts; the first hits a point x, and the 

http:11.3.10
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second a point x, .  Given that a countable set is very sparsely distributed, the 
probability that my second dart will hit a member of f (x,) is vanishingly small. 
Thus, in all likelihood, the point x, is not a member of f (x,). 

But the situation is symmetric: there is just as little reason to suppose that the first 
dart has hit a point in the set f (x,). Thus Freiling proposes that for every assignment 
of a countable set to each real, there are two reals neither of which is a member of the 
set assigned to the other. This rather innocuous-sounding statement turns out to be 
equivalent to not-CH. 

A common objection to this line of thought is that various natural generalizations 
contradict the axiom of choice as well. For example, if Freiling's principle is 
modified to cover assignments of sets of any cardinality less than that of the reals, 
the result immediately implies that there is no well-ordering of the reals. Similarly if 
we are allowed to throw o + 1darts. Members of the Cabal suggest that Freiling's 
hypotheses yields a picture more like that of the full AD-world (see [BAII, SV]) than 
of the choiceful universe V. Meanwhile, Freiling disputes the "naturalness" of these 
generalizations. He also points out that one step back from disaster could provide a 
rationale for accepting his axiom and rejecting its generalizations even if they are 
"natural." 

11.3.11. Not-CH is restrictive (in favor). This argument uses the same general 
considerations as 11.3.4 in support of the opposite conclusion. While established 
opinion among more mature members of the Cabal is against CH, younger mem- 
bers are sympathetic to this more recent argument and to the considerations raised 
in the next subsection. It has been suggested that the cut-off age is 40. 

To see how not-CH can be considered restrictive, we imagine ourselves con- 
structing the iterative hierarchy. By stage o + 2, we have the set of reals and we 
have a well-ordering of type h',. The question is whether or not a one-to-one 
correspondence between them is included at the next stage. Since it is consistent 
to do so, it would artifically restrict the power set operation to leave it out. The 
thinking behind 11.3.4 sees CH as restricting the size of the power set of o.From the 
present point of view, not-CH is a restriction of the power set operation at the next 
stage.16 

11.3.12. Modern forcing (in favor). Practitioners of modern versions of forcing 
point out that it is much easier to force CH than not-CH; that is, that a wide variety 
of forcing conditions collapse 2'0. Since the addition of generic sets tends to make 
CH true, it is most likely true in the full richness of V itself. 

I think this list includes most of the arguments standardly offered for and against 
the CH. It should be emphasized that few set theorists consider any of them 
conclusive, and even those with fairly strong opinions adopt a decidedly wait-and- 
see attitude toward CH. Let me turn now to the search for new axioms to settle the 
question. 

16Chris Freiling points out that an argument of similar form can be presented against the Axiom of 
Choice. Notice that a choice function for a countable partition of the reals can be coded as a single real. At 
stage w + 1, we have all the reals, so we also have all codes of choice functions for countable partitions. 
Any countable partition can be coded as a set of reals at stage w + 2. Thus the question, at stage w + 2, is 
whether or not to include a countable partition without a choice function. 

http:11.3.11
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$111. Small large cardinals-up from below. There are those who hold that the 
universe of sets is not sufficiently well-defined for the continuum question to have an 
unambiguous answer. Little can be done to rebut this position short of coming up 
with an unambiguous solution, so perhaps this question should be set aside pending 
further developments. A less reasonable view is that the consistency and inde- 
pendence proofs by themselves show that the CH poses a meaningless question. It is 
hard to see any justification for the implicit claim that the axioms of ZFC must be 
taken as the final word: 

Although the ZFC axioms are insufficient to settle CH, there is nothing 
sacred about these axioms.. . 

. . . undecidability [of CHI from the axioms being assumed today can 
only mean that these axioms do not contain a complete description of [set- 
theoretic] reality. 

(Martin [1976, p. 841; Godel [1947/64, p. 4761) 
Where are we to look for the new axioms that will make our description more 

complete? In [1946], Godel suggests: 

. . . stronger and stronger axioms of infinity.. . It is not impossible.. . that 
every proposition expressible in set theory is decidable from the present 
axioms plus some true assertion about the largeness of the universe of sets. 

(p.85)" Skolem's and Fraenkel's introduction of the Axiom of Replacement can be 
seen in this light as they specifically wanted to generate N,. Thus the suspicion that 
adding larger ordinals can produce new results about sets of reals is confirmed by 
Martin's proof of Bore1 determinacy (see Hallet [1984, p. 1021; Kreisel [1980, 
P. 601). 

The first such new axiom of infinity is the Axiom of Inaccessibles, asserting the 
existence of regular, strong limit cardinals. The existence of such cardinals was first 
suggested by Zermelo [1930]; the axiom itself was formulated by Tarski in [1938]. 
Godel presents an intrinsic defense: 

These axioms show clearly, not only that the axiomatic system of set theory 
as used today is incomplete, but also that it can be supplemented without 
arbitrariness by new axioms which only unfold the content of the concept 
of set explained [by the iterative conception]. [1947/64, pp. 476-4771 

(See also Wang [1974, p. 5541.) Of course, maximize presents a simple and 
immediate defense for the Axiom of Inaccessibles. Recall that this rule of thumb is 
actually a pair of admonitions: thicken the power set, and lengthen the class of 
ordinals. Axioms of infinity in general, and the Axiom of Inaccessibles in particular, 
clearly do the second of these. 

The most commonly given argument is more closely tailored to the actual content 
of Inaccessibles (see e.g. Godel [1947/64, p. 4761; Wang [1974, p. 5543; Drake [1974, 

''This conjecture may seem less likely in light of Levy and Solovay's strong theorem [I9671 on the 
stability of large cardinals under most forcing extensions. See §IV below. 



502 PENELOPE MADDY 

pp. 267-2681), It depends on the widespread view that the universe of sets is too 
complex to be exhausted by any handful of operations, in particular by power set 
and replacement, the two given by the axioms of Zermelo and Fraenkel. Thus there 
must be an ordinal number after all the ordinals generated by replacement and 
power set. This is an inacce~sible.'~ Similarly, the universe above a given point 
should not be exhausted by these two operations, so there is another inaccessible, 
and so on. Versions of inexhaustibility can also be used to defend the various 
hyperinaccessibles and Mahlo cardinals. All of these are generated by thinking of 
processes that build up larger ordinals from below. 

The Axiom of Inaccessibles can also be defended by two other rules of thumb 
each incomparably stronger than inexhaustibility. The first of these is ~niformity. '~ 
To understand the thrust of this rule, suppose that a certain interesting situation 
occurs at a low level of the iterative hierarchy. If no similar situation occurred in the 
remainder of the hierarchy, it would be as if the universe had lost its complexity at 
the higher levels, as if it had flattened out, become homogeneous and boring. 
Uniformity says that this does not happen, that situations similar to our chosen 
interesting one will recur at higher levels: 

We mean by uniformity a process of reasonable induction from familiar 
situations to higher orders, with the concomitant confidence in the 
recurring richness of the cumulative hierarchy. 

Uniformity of the universe of sets (analogous to the uniformity of nature): 
the universe of sets doesn't change its character substantially as one goes 
over from smaller to larger sets or cardinals, i.e., the same or analogous 
states of affairs reappear again and again (perhaps in more complicated 
versions). 

(Kanamori and Magidor [1978, p. 1041; Wang [1974, p. 5411; see also Solovay, 
Reinhardt and Kanamori [1978], and Reinhardt [1974, p. 1891. Wang and 
Reinhardt attribute support for this principle to Godel.) Thus, No is inaccessible, so 
there must be uncountable inaccessible cardinals. Otherwise, the universe would be 
sparse above No,  or change its character in an objectionable way. 

Uniformity arguments often go hand-in-hand with whimsical identity arguments. 
In this case, for example, if there are no uncountable inaccessibles, then h', can be 
defined as the inaccessible. But: 

It would seem rather accidental if No can be characterized by [this] 
property. 

(Kanamori and Magidor [1978, p. 1041; see also Martin [1976, p. 851). So there 
must be uncountable inaccessibles. 

180f course, Replacement must be taken in Zermelo's second-order form. 
19Solovay, Reinhardt and Kanamori [I9781 and Kanamori and Magidor 119781 call this principle 

generalization, while Wang 119741 calls it uniformity. I will want to retain the first of these for a slightly 
different rule of thumb(see [BAII, §V1]). Hallet [1984, pp. 114-1 151also connects uniformity to the views 
behind cantorianfinitism, but not in the way suggested here. 
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Unzjormity itself is sometimes defended on the basis of Cantorian finitism: the 
sequence of natural numbers continues to produce interesting complexities 
arbitrarily far out, so the sequence of transfinite ordinals should do the same. Un- 
fortunately, the premise concerning the natural numbers is debatable. While the 
sequence of natural numbers does continue to produce, for example, arbitrarily 
large prime numbers, it may or may not continue to produce twin primes, and it 
definitely runs out of adjacent primes after 2 and 3, and even primes after 2. This 
highlights the delicacy of formulating the property to be projected. Projecting 
properties of K O is similarly chancy. I will return to this point below, in connection 
with weakly compact cardinals. 

The second powerful rule of thumb sometimes cited in support of Inaccessibles is 
rejection: the universe of sets is so complex that it cannot be completely described; 
therefore, anything true of the entire universe must already be true of some initial 
segment of the universe. In other words, any attempt to uniquely describe V also 
applies to smaller R,'s that "reflect" the property ascribed to V.20In particular, V is 
closed under the operations of replacement and power set, so there is an R,  which is 
also so closed. Then K is an inaccessible. Similarly, V is closed under replacement 
and power set above this IC,  SO there is another inaccessible, and so on. 

Hallet [1984, pp. 116-1 181, traces rejection to Cantor's theory that the sequence 
of all transfinite numbers is absolutely infinite, like God. As such, it is incompre- 
hensible to the finite human mind, not subject to mathematical manipulation. Thus 
nothing we can say about it, no theory or description, could single it out; in other 
words, anything true of V is already true of some RE. Reinhardt [1974, p. 1911 
expresses a similar sentiment, though without the reference to God. A related view is 
that the universe of set theory is "ever-growing", so that our attempt to speak of "all 
sets" actually refers to "temporary" partial universes that "approximate" the 
universe of all sets (Fraenkel, Bar-Hillel and Levy [1973, p. 1181; see also Parsons 
[I9741 and Wang [1974, p. 5401). Discussions of this sort characteristically 
emphasize the indefiniteness or incomprehensibility or ineffability of V. 

Martin strikes a somewhat different note: 

Reflection principles are based on the idea that the class O N  of all ordinal 
numbers is so large that, for any reasonable property P of the universe V, 
ON is not the first stage a such that R, has P. [1976, pp. 85-86] 

Here the emphasis is on the largeness and complexity of the class of ordinals rather 
than some mysterious indefinability V; it is not that V is so inscrutable that nothing 
can describe it, but that ON is so vast that whatever happens at the top must already 
have happened before. 

In any case, rejection is probably the most universally accepted rule of thumb in 
higher set theory (in addition to references already cited, see Solovay, Reinhardt and 
Kanamori [1978, p. 1041, and many others). It is partially confirmed by weak, single 
formula versions that are provable in ZFC (see Levy [1960]). More powerful 
applications attempt to use stronger properties involving infinite sets of formulas, 

''Notice that reflection implies ine.uhaustibility. 
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and/or higher order properties, while avoiding "nonstructural" properties, like "x 
= V", which lead to contradiction. 

It should be mentioned that the Axiom of Inaccessibles also has a few extrinsic 
merits. It implies that ZFC has a standard model in the iterative hierarchy, and thus, 
that ZFC is consistent. This last is an arithmetic fact, and the Axiom of Inaccessibles, 
like other axioms of infinity, also implies the solvability of new Diophantine 
equations. (These facts are often cited. See e.g. Godel [1947/64, p. 4771, the 
quotation from Cohen 11971, p. 151, cited in 11.3.5 above, and Kanamori and 
Magidor 11978, p. 1031, to name a few.) In addition, there are the impressive relative 
consistency results of Solovay [1970]. Assuming a model of "ZFC + The Axiom of 
Inaccessibles", Solovay uses forcing to collapse the inaccessible and obtains models 
of ZFC in which all or many sets of reals are Lebesgue measureable ("many" means 
those constructible from the reals). Thus, these conditions are refutable only in the 
unlikely event that inaccessibles are refutable. Solovay's theorem: 

.. .even today rivals any other as the most mathematically significant result 
obtained by forcing since Cohen's initial work. 

(Kanamori and Magidor 11978, pp. 204-2051). And it presupposes the consis- 
tency, if not the existence, of an uncountable inaccessible. 

There are larger small large cardinals, but nothing new appears in the usual 
defenses2' An exception is weakly compact cardinals, from discussions of 
which two morals can be derived. These cardinals can be defined in terms of a 
generalization of Ramsey's theroem; that is, K is weakly compact iff every partition 
of the two-element subsets of K into two groups has a homogeneous set of size k-. 
Because of Ramsey's theorem on No,  the existence of an uncountable weakly 
compact cardinals can be defended by uniformity or by whimsical identity. The first 
point of interest is that the proof of Ramsey's theorem also gives a homogeneous 
set for partitions of n-element set into m groups, but this property cannot be 
consistently generalized to an uncountable cardinal (see Drake [1974, p. 3151). This 
dramatically spotlights the difficulty of knowing when uniformity and whimsical 
identity can be applied without ill effect. 

Second, the property of weakly compactness is equivalent to the compactness of 
the language L,,, and to a certain tree property, and to an indescribability property, 
and to several other natural properties (see Drake [1974,§10.2]). This convergence 
has led some writers to diversity, another rule of thumb: 

It turned out that weak compactness has many diverse characterizations, 
which is good evidence for the naturalness and efficacy of the concept. 

(Kanamori and Magidor 11978, p. 1131). Recall that similar arguments were once 
given for the naturalness of the notion of general recursiveness. 

"Though extrinsic defenses are nothing new, Harvey Friedman has extended the range of such 
defenses for small large cardinals. His [I9811 contains nonmetamathematical statements, statements 
not involving such "abstract" notions as uncountable ordinals or arbitrary sets of reals, which are 
provable with and not without the assumption of Mahlo cardinals. See Drake [I9741 for an account of 
Mahlo cardinals, and Stanley [I9851 for a description of recent extensions of Friedman [1981]. 
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SIV. Measurable cardinals. Measurable cardinals were introduced by Ulam in 
[1930], where he proved that they are inaccessible. They are now known to be much 
larger than that, larger than all the hyperinaccessibles, Mahlos and weakly 
compacts. Indeed, because of their power, they are probably the best known large 
cardinals of all. The voice of caution reminds us that they were invented by the same 
fellow who invented the hydrogen bomb.22 

Unlike the small large cardinals suggested by inexhaustibility, measurable 
cardinals are not usually held to follow naturally from the concept of set or the 
nature of the iterative hierarchy: 

. . . that these axioms are implied by the general concept of set in the same 
sense as Mahlo's has not been made clear yet. 

(Godel 11947164, pp. 476-477])23 Some wish for an inexhaustibility defense: 

What we would really like to do (but are presently unable to do) is to 
reformulate the definition of a measurable cardinal to look like this: k- is 
measurable iff R, is closed under certain operations. 

(Shoenfield [1977, p. 3433) Others are more harsh: 

Also there are axioms such as that of the Measurable Cardinal which are 
more powerful than the most general Axiom of Infinity yet considered, but 
for which there seems absolutely no intuitively convincing evidence for 
either rejection or acceptance. 

(Cohen [1971, pp. 11-12]) Against this we should point out that the very fact that 
the Axiom of Measurable Cardinals implies the existence of so many small large 
cardinals provides evidence based on maximize. 

The rule of thumb most commonly cited in discussions of measurable cardinals is 
uniformity (see Wang [1974, p. 5551; Drake [1974, p. 1771; Kanamori and Magidor 
[1978, pp. 108-1091; Martin [PSCN, p. 81). A measure on a cardinal k- is a division 
of its subsets into large and small in such a way that K is large, @ and singletons are 
small, complements of large sets are small and small sets large, and intersections of 
fewer than K large sets remain large. A measure on KOis formed by extending the 
cofinite filter to an ultrafilter. Thus KOis measurable, so uniformity implies that there 
are uncountable measurable cardinals. To apply whimsical identity instead, notice 
that if there were no uncountable measurable cardinals, then KOcould be defined as 
the infinite measurable cardinal. (2 is also measurable.) 

Unfortunately, as pointed out in connection with weakly compact cardinals, 
uniformity can lead to inconsistencies. Thus in cases where this is the main rule of 
thumb used, extrinsic evidence and evidence for relative consistency are both 
extremely important. Before turning to these, I should mention that Reinhardt 

22This particular voice of caution belonged to my thesis advisor, John Burgess. 
23Moore[198?] points out that Godel's attitude towards measurable cardinals had softened by 1966 

when he thought their existence "followed from the existence of generalizations of Stone's representation 
theorem to Boolean algebras with operations on infinitely many elements". 
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[I9741 has proved the existence of a measurable cardinal from a system which 
embodies what he claims to be a version of rejection. Martin, however, calls these 
"pseudo-reflection principles" [PSCN, p. 83 and Wang remarks that: 

... reflection principles of diverse forms which are strong enough to justify 
measurable cardinals (by way of 1-extendible cardinals) no longer appear 
to be clearly implied by the iterative concept of set. [1974, p. 5553 

I will take this up Reinhardt's ideas later, in [BAII, §VI], in connection with his 
closely-related defense of supercompact cardinals. 

Given how seriously the Axiom of Measurable Cardinals has been pursued, it 
may seem surprising that the intrinsic and rule of thumb evidence is so scarce, but in 
this case the extrinsic evidence is extremely persuasive. The two most impressive 
consequences of the existence of measurable cardinals are that V # L and that 2: 
sets of reals are determined (Martin [1970]). I will discuss the second of these in 
[BAII, §V]. 

The first indication that the presence of measurable cardinals rules out V = L 
came in Scott [1961], where he shows (using an ultrapower construction) that the 
measure on a measurable cardinal cannot be constructible. This is a welcome result 
("so much the worse for the 'unnatural' constructible sets!" says Scott [1977, p. xii]), 
but perhaps not completely surprising given how complicated a measure must be. 
The nonconstructibility was brought closer to home by Rowbottom [I9641 when he 
showed that the presence of a measurable cardinal guarantees a nonconstructible 
set of integers. Even further improvement came in Silver 119661 and Solovay 
119671, where the nonconstructible set of integers is shown to be as simple as A : .  
Notice that these results (as well as Martin's on the determinacy of analytic sets) 
confirm Godel's prediction that the postulation of large cardinal numbers might 
yield new facts about sets of integers and reals. 

Silver's model theoretic results show that V # L can actually be derived from the 
existence of one particular A :  set of integers, 0'. 0' codes a set of formulas which in 
turn show how the constructible universe is generated by a proper class of order 
indiscernibles that contains all uncountable cardinals and more. Thus, not only does 
Silver's theory show that L goes wrong, it shows how L goes wrong: the process of 
taking only definable subsets at each stage yields a model statisfying ZFC at some 
countable stage, and all the further stages make no difference (this countable 
structure is an elementary substructure of L). The range of L's quantifiers is so 
deficient that L cannot tell one uncountable cardinal from another, or even from 
some countable ones. In purpler terms: 

L takes on the character of a very thin inner model indeed, bare ruined 
choirs appended to the slender life-giving spine which is the class of 
ordinals. 

(Kanamori and Magidor [1978, p. 1311) The point is that 0' yields a rich 
explanatory theory of exactly where and why L goes wrong. Before Silver, many 
mathematicians believed that V # L, but after Silver they knew 

241ronically, Silver's subsequent efforts have been to prove that measurable cardinals are inconsistent. 
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Thus the assumption that 0' exists presents a very attractive form of V # L. 
(Actually, the most attractive assumption is that x' exists for every real number x, 
where x' codes the indiscernible construction that shows V # L[x].) This 
assumption turns out to be equivalent to a determinacy assumption and to an 
elementary embedding assumption (see [BAII, @V and VI], respectively). This 
prompts Kanamori and Magidor [I9781 to another application of diversity: 

[This] is a list of equivalences, much deeper than the confluence seen at 
weak compactness. (p. 140) 

Thus the implication of the existence of the sharps provides a very appealing 
extrinsic support for the Axiom of Measurable Cardinals. 

Another sort of extrinsic support comes from the fact that measurable cardinals 
allow patterns of results provable in ZFC alone to be extended. For example, as 
mentioned in 11.3.1, Souslin's theorem that C:sets have the perfect subset property 
can be extended, in the presence of a measurable cardinal, to the C: sets (Solovay 
[1969]). The same goes for Lebesgue measurability and the Baire Property. (Bore1 
determinacy and 2: determinacy provide another example. See [BAII, $V].) 
Kanamori and Magidor emphasize yet another form of extrinsic support when they 
stress: 

...the fruitfulness of the methods introduced in the context of large 
cardinal theory in leading to new 'standard' theorems of ZFC. (p. 105) 

Many of these new methods (e.g. Silver forcing (p. 152), Ulam matrices (p. 162)), 
arose in studies of measurable cardinals. They also mention connections with other 
branches of mathematics (p. 109). 

Finally, as promised, I should mention some of the evidence presented for the 
relative consistency of measurable cardinals. One idea is to show that various strong 
consequences of the Axiom of Measurable Cardinals are relatively consistent 
themselves; then we know at least that any inconsistency that follows from the 
existence of a measurable cardinal is not to be reached by those particular routes. 
So, for example, we know that V # L is relatively consistent (Cohen [1966]), and 
furthermore, that the existence of a A :  nonconstructible set of integers with 
properties much like those of 0' is relatively consistent (Jensen [I9701 and Jensen 
and Solovay [1970]). Another line of argument runs that: 

. . . some comfort can be gained from the fact that any number of attempts at 
showing that measurable cardinals do not exist have failed even though 
must cleverness was expended. 

(Scott [1977, p. xii]). (See footnote 24.) 
This is already a quite impressive list of extrinsic supports, but at least two more 

can be added. First, there is the inner model L[U], where U is a normal measure on 
some uncountable cardinal K .  This model is the smallest in which K is measurable, 
and it does not depend on the particular choice of U. Surprisingly, L[U] shares 
many of the simplifying structural features of L: GCH is true, and there is a A :  well-
ordering of the reals (Silver [1971]). But this is only the beginning. Kunen's analysis 
of L[U] via iterated ultrapowers [1970], and the work of Solovay and Dodd and 
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Jensen [I9771 on the fine structure of L[U] have revealed the "uniform generation 
and combinatorial clarity" of this inner model in considerable detail (Kanamori and 
Magidor [1978, p. 1471). The familiarity and depth of understanding provided by 
this inner model theory leads modern researchers to the view that: 

One of the main plausibility arguments for measurable cardinals is that 
they have natural inner models. 

(Kanamori and Magidor [1978, p. 1471) The canonical inner model makes 
measurable cardinals much less mysterious. 

Second, concentration on the nontrivial elementary embedding of V into a 
transitive model M that is provided by Scott's ultrapower construction revealed that 
the existence of such an embedding is in fact equivalent to the existence of a 
measurable cardinal. (The first ordinal moved by such an embedding must be 
measurable.) 

Thus, the really structural characterization of measurable cardinals in set 
theory emerged. 

(Kanamori and Magidor [1978, p. 1101) Though this is not quite the inexhaustibility 
characterization that was hoped for, it is simple and basic, and it does lead to many 
fruitful generalizations (see [BAII, §VI]). If the definition in terms of measures 
or ultrafilters had once seemed unmotivated, the connection with elementary 
embedding via ultrapowers revealed its true nature. Furthermore, elementary 
embedding cardinals are more amenable to the rule of thumb justifications that 
elude measurable cardinals in their original guise (see [BAII, §VI]). 

Given this wide range of support for the Axiom of Measurable Cardinals, it is 
perhaps not surprising that proof from that axiom, at least among members of the 
Cabal group, has come to be treated as tantamount to proof outright. Here we have, 
as Godel predicted, an axiom so rich in extrinsic supports that: 

. . . whether or not [it is] intrinsically necessary, [it is] accepted at least in 
the same sense as any well-established physical theory. [1947/64, p. 4773 

Unfortunately, for all that, it cannot answer the question we had hoped it would. 
Levy and Solovay [I9671 have shown that measurable cardinals, and indeed all 
large cardinals of the sort developed so far, are preserved under most forcing ex- 
tensions, and thus, that they can be shown to be relatively consistent with both the 
continuum hypothesis and its negation. 

In [BAII], I will consider axiom candidates of a completely different sort- 
hypotheses on determinacy-along with the larger large cardinals. 
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