Theorem 0.0.1 For all $a, \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(a+i)^{k}=(-1)^{k} k$!

Proof:

Let $f_{j}(x)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(a+i)^{j} x^{a+i}$.
We are interested in $f_{k}(1)$.
Note that the derivative of $f_{j}(x)$ is

$$
\begin{gathered}
f_{j}^{\prime}(x)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(a+i)^{j}(a+i) x^{a+i-1}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(a+i)^{j+1} x^{a+i-1}= \\
\frac{1}{x} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(a+i)^{j+1} x^{a+i}=\frac{1}{x} f_{j+1}(x) .
\end{gathered}
$$

So

$$
f_{j+1}(x)=x f_{j}^{\prime}(x) .
$$

Claim: For all $j \in \mathbb{N}$ there exists a function $p_{j}(x)$ such that

- $f_{j}(x)=(-1)^{j} \frac{k!}{(k-j)!} x^{a+j}(1-x)^{k-j}+(1-x)^{k-j+1} p_{j}(x)$
- $p_{j}(x)$ is differentiable.
- $p_{j}(1)$ is defined (counterexample: $p_{j}(x)$ cannot be $1 /(1-x)$.)

This is an easy proof by induction using that $f_{j+1}(x)=x f_{j}^{\prime}(x)$.
Assuming the claim we proceed.
Note that there exists p_{k} such that $p_{k}(1)$ is defined and

$$
f_{k}(x)=(-1)^{k} k!x^{a+k}+(1-x) p_{k}(x)
$$

Recall that our sum is $f_{k}(1)$ which is easily seen to be $(-1)^{k} k$!. We needed that $p_{k}(1)$ was defined to make that last term be 0 .

