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ABSTRACT. We survey determinacy, definability, and complexity issues of Banach-Mazur games on
finite and infinite graphs.
Infinite games where two players take turns to move a token through a directed graph, thus tracing
out an infinite path, have numerous applications in different branches of mathematics and computer
science. In the usual format, the possible moves of the players are given by the edges of the graph;
in each move a player takes the token from its current position along an edge to a next position. In
Banach-Mazur games the players instead select in each move a path of arbitrary finite length rather
than just an edge. In both cases the outcome of a play is an infinite path. A winning condition is thus
given by a set of infinite paths which is often specified by a logical formula, for instance from S1S,
LTL, or first-order logic.
Banach-Mazur games have a long tradition in descriptive set theory and topology, and they have re-
cently been shown to have interesting applications also in computer science, for instance for planning
in nondeterministic domains, for the study of fairness in concurrent systems, and for the semantics
of timed automata.
It turns out that Banach-Mazur games behave quite differently than the usual graph games. Of-
ten they admit simpler winning strategies and more efficient algorithmic solutions. For instance,
Banach-Mazur games with ω-regular winning conditions always have positional winning strate-
gies, and winning positions for finite Banach-Mazur games with Muller winning condition are com-
putable in polynomial time.

1 Banach-Mazur Games

Game playing is a powerful metaphor that fits situations in which interaction between au-

tonomous agents plays a central role. Indeed, numerous problems in computer science and

other fields can be understood, mathematically treated, and solved in terms of appropriate

mathematical models of games. There is of course a large variety of game models, leading

to vastly different mathematical theories of games.

A prominent class of games, which is particularly useful for problems such as the syn-

thesis and verification of interactive systems (with non-terminating behaviour and ongoing

interaction between system and environment), or for the evaluation of fixed point logics and

other important specification formalisms, are infinite games, where two players take turns

to move a token through a directed graph thus tracing out an infinite path. The objectives of

the players are given by suitable properties of infinite paths, often specified by logical for-

mulae, for instance frommonadic second order logic (S1S), linear-time temporal logic (LTL),

or first-order logic (FO). Some central mathematical questions concerning such games are:

Which games are determined (in the sense that from each position, exactly one player has a

winning strategy)? How to compute winning positions? Are there optimal strategies, and if

so, what is their complexity and how to compute them efficiently? Howmuch knowledge of

the play history is necessary to compute an optimal next action? In what logical formalisms

can we define winning positions and winning strategies? And so on.
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These questions are not just of theoretical interest. They are in fact standard design and

verification problems (of interactive systems) in purified form. For background on such

methodologies, based on the interplay between logic, automata, and games, see e.g. [8].

In the usual format of infinite games on graphs, the possible moves of the players are

given by the edges of the graph; in each move a player takes the token from its current

position along an edge to a next position. Here we study a different variant of graph games

where, in each move, the players select a path of arbitrary finite length rather than just an

edge. We call these games Banach-Mazur games on graphs.

DEFINITION 1. A Banach-Mazur game BM(G, v,Win) is given by an a directed graph G =
(V, E) without terminal nodes, an initial position v ∈ V, and a winning condition Win ⊆
Paths(G, v) where Paths(G, v) ⊆ Vω denotes the set of infinite paths through G that start at

node v.

The game BM(G, v,Win) is played by two players, called Player 0 and Player 1. In the

opening move, Player 0 selects a finite, non-empty path x0 from v through G. The players

take turns, extending in each move the finite path x0x1 . . . xm−1 played so far by a new

segment xm (which again has to be a non-empty and finite path). In an infinite number of

moves, the players thus trace out an infinite path π ∈ Paths(G, v). Player 0 wins the play, if

π ∈ Win, otherwise Player 1 wins.

In somewhat different forms, Banach-Mazur games have been extensively studied in

descriptive set theory (see [13, Chapter 6] or [14, Chapter 8.H]) and topology (see e.g. [21]).

In their original variant (see [15, pp. 113–117]), the winning condition is a set W of real

numbers; in the first move, one of the players selects an interval d1 on the real line, then

her opponent chooses an interval d2 ⊂ d1, then the first player selects a further refinement

d3 ⊂ d2 and so on. The first player wins if the intersection
⋂

n∈ω dn of all intervals contains

a point ofW, otherwise her opponent wins.

A similar game can be played on any topological space. Let V be a family of subsets

of a topological space X such that each V ∈ V contains a non-empty open subset of X, and

each nonempty open subset of X contains an element V ∈ V . In the Banach-Mazur game

defined on X,V with winning winning condition W ⊆ X, the players take turns to choose

sets V0 ⊃ V1 ⊃ V2 ⊃ . . . in V , and Player 0 wins the play if
⋂

n<ω Vn ∩Win 6= ∅. We refer

to [21] for a survey on topological games and their applications to set-theoretical topology.

Notice that Banach-Mazur games on graphs are just a special case of this general topological

setting. Indeed, the set Paths(G, v) of infinite paths through G from v is a topological space

whose basic open sets are O(x), the sets of infinite prolongations of some finite path x ∈
FinPaths(G, v). Thus, when a player prolongs the finite path x played so far to a new path

xy, she reduces the set of possible outcomes of the play from O(x) to O(xy), and she wins

an infinite play x0x1 . . . if, and only if
⋂

n<ω O(x0 . . . xn−1) ∩Win 6= ∅.

Applications of Banach-Mazur games. Banach-Mazur games on graphs have recently ap-

peared in several application areas in computer science. Pistore and Vardi used a variation

of Banach-Mazur games for planning in nondeterministic domains [20]. In their scenario,

the desired infinite behaviour of a system, which should be enforced by a plan, is specified

by formulae in linear temporal logic LTL. It is assumed that the outcome of actions may be
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nondeterministic. Hence a plan does not have only one possible execution path in the plan-

ning domain, but an execution tree. Between weak planning (some possible execution path

satisfies the specification) and strong planning (all possible outcomes are consistent with

the specification), there is a spectrum of intermediate cases such as strong cyclic planning:

every possible partial execution of the plan can be extended to an execution reaching the

desired goal. In this context, planning can be modelled by a game between a friendly player

E and a hostile player A selecting the outcomes of nondeterministic actions. The game is

played on the execution tree of the plan, and the question is whether the friendly player E

has a strategy to ensure that the outcome (a path through the execution tree) satisfies the

given LTL-specification. In contrast to the general scenario of Banach-Mazur games, the

main interest here are games with finitely many alternations between players. Pistore and

Vardi show that the planning problems in this context can be solved by automata-based

methods in 2EXPTIME.

Banach-Mazur games appear also in the characterisation of fair behaviour in concurrent

systems. There are many different notions of fairness. A very convincing one [23] defines a

fairness property in a transition system as a set of (infinite) runs that is topologically large

(co-meager). This is equivalent to say that, in an associated Banach-Mazur game, the first

player (the scheduler) has a winning strategy to ensure fairness. It is a consequence of

the positional determinacy of Banach-Mazur games with ω-regular winning conditions (see

Theorem 17 below) that, on finite graphs, ω-regular fairness properties coincide with ω-

regular properties that are probabilistically large under positive Markov measures. Hence

, any ω-regular fairness property has probability one under randomised scheduling. As a

further consequence, one can use results about finite Markov chains for checking whether a

finite system is fairly correct with respect to LTL or ω-regular specifications.

Finally, Banach-Mazur games have recently been used to describe the semantics of

timed automata [1, 2]. Timed automata are an important model for verification, but for

many purposes, its idealizedmathematical features such as infinite precision, instantaneous

events lead to violations of specifications due to unlikely sequences of events. Therefore al-

ternative semantics for the satisfaction of LTL specifications have been proposed, based on

probability or on topological largeness, to rule out unlikely runs. By means of Banach-

Mazur games, it has been established, that the two semantics coincide.

Here we study Banach-Mazur games on graphs, and focus on the above-mentioned

central mathematical questions, such as determinacy, the structure and algorithmic proper-

ties of winning strategies, and the definability of winning regions.

Acknowledgement. This survey is based on joint research with Dietmar Berwanger and

Stephan Kreutzer.

2 Topology and determinacy

For any arena (G, v) of a Banach-Mazur game, the space Paths(G, v) is endowed with a

topology whose basic open sets are O(x), the sets of infinite prolongations of some finite

path x ∈ FinPaths(G, v). A set X ⊆ Paths(G, v) is open if it is a union of basic open sets

O(x), i.e., if X = W ·Vω ∩ Paths(G, v) for some setW ⊆ V∗. A tree T ⊆ FinPaths(G, v) is a
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set of finite paths that is closed under prefixes. It is easily seen that X ⊆ Paths(G, v) is closed
(i.e., the complement of an open set) if, and only if, it is the set of infinite branches of some

tree T, denoted X = [T]. Notice that Paths(G, v) itself is a closed set in the space Vω, the set

of all infinite sequences on V.

The class of Borel sets is the closure of the open sets under countable union and com-

plementation. Borel sets form a natural hierarchy of classes Σ
0
η for 1 ≤ η < ω1, whose first

levels are Σ
0
1 (or G), the collection of all open sets, Π

0
1 (or F), the closed sets, Σ

0
2 (or Fσ), the

countable unions of closed sets, and Π
0
2 (or Gδ), the countable intersections of open sets. In

general, Π
0
η contains the complements of the Σ

0
η-sets, Σ

0
η+1 is the class of countable unions

of Π
0
η-sets, and Σ

0
λ =

⋃

η<λ Σ
0
η for limit ordinals λ.

We recall that a set X in a topological space is dense, if its intersection with every (basic)

non-empty open set is non-empty.

LEMMA 2. For any strategy g of Player 1 in a Banach-Mazur game on a graph (G, v), the set
Plays(g) of all plays that are consistent with g is a countable intersection of dense open sets.

PROOF. Clearly, Plays(g) =
⋂

n∈ω Playsn(g) where Playsn(g) is the set of all plays that may

arise if Player 1moves according to g during her first nmoves. Obviously, Playsn(g) is open.
But it is also dense, since every finite path x can be used by Player 0 as her opening move,

so there must be a prolongation of x in Playsn(g), which means that O(x) ∩ Playsn(g) 6= ∅.

Notice that, if X ⊆ Paths(G, v) is a dense open set, then any finite path x has a finite

prolongation xy such that O(xy) ⊆ X. In a topological sense, the dense open sets are large

sets, and so is any countable intersection of such. Hence, by any strategy in a Banach-Mazur

game, Player 1 can exclude only a topologically small set of plays. This means that she can

only have a winning strategy if the set Win of winning plays for Player 0 is small, and her

own set of winning plays, Paths(G, v) \W, is large.

For strategies of Player 0, the situtation is slightly different, since she starts the play.

Hence, for any strategy f of Player 0, Plays( f ) ⊆ O(x) where x is the opening move by

f . After the first move, the remaining game is one where the role of the players have been

switched (i.e. Player 1 now moves first). By the same argument as in the previous lemma

we infer that the set of plays consistent with a strategy of Player 0 is large inside some basic

open set of plays.

LEMMA 3. For any strategy f of Player 0 in a Banach-Mazur game, Plays( f ) is a countable
intersection of dense open subsets of O(x), where x is the opening move by f .

The observations that we made on the set of plays that are consistent with strategies in

Banach-Mazur games give a quite precise characterisation, in term of topological notions,

of the games for which Players 0 and 1 have winning strategies.

A set in a topological space is nowhere dense if it is not dense in any open set or, equiva-

lently, if its complement contains a dense open set. A set is meager (or topologicaly small) if

it is a union of countably many nowhere dense sets, and co-meager (or topologically large) if

its complement is meager. A topological space is called a Baire space if no non-empty set is

both open and meager, or equivalently, if any countable intersection X =
⋂

n<ω Xn of dense

open sets Xn is dense. The spaces Paths(G, v) are Baire spaces since, for any finite path x,
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we find an infinite extension xy0y1 · · · ∈ X by choosing, for each n, a finite prolongation

xy0 . . . yn of xy0 . . . yn−1 such that O(xy0 . . . yn) ⊆ Xn. In Baire spaces a set is co-meager if,

and only if, it contains a dense Π
0
2 set.

Hence we have shown that, in Banach-Mazur games, Plays(g) is co-meager for every

strategy g of Player 1 and Plays( f ) is co-meager in some basic open set for every strategy f

of Player 0. Conversely, for any meager set W ⊆ Paths(G, v), Player 1 has a strategy g such

that Plays(G) ∩W = ∅. Indeed, if W =
⋃

n<ω Xn with Xn nowhere dense, then in her n-th

move, Player 1 prolongs the path constructed so far to a path xn such that O(xn) ∩ Xn = ∅

which is always possible since the complement of Xn contains a dense open set. Clearly

every play consistent with this strategy avoids W. Analogously, for every set that is co-

meager in some basic open set, Player 0 has a strategy f such that Plays( f ) ⊆ W.

Our observations are summarized by the Banach-Mazur-Theoremwhich gives a precise

characterisation of the games where Player 0 or Player 1 has a winning strategy.

THEOREM 4.[Banach-Mazur]

(1) Player 1 has a winning strategy for the game BM(G, v,Win) if, and only if, Win ⊆
Paths(G, v) is meager.

(2) Player 0 has a winning strategy for BM(G, v,Win) if, and only if, there exists a finite
path x ∈ FinPaths(G, v) such that O(x) \Win is meager in Paths(G, v) (i.e., Win is
co-meager in some basic open set).

This result appears, in different terms, in the Scottish Book [15, Problem 43] where it

is mentioned as a conjecture due to Mazur, with an addendum by Banach, dated August 4,

1935 saying that “Mazur’s conjecture is true”. The Banach-Mazur-Theorem was published

for the first time by Mycielski, Świerczkowski, and Zieba [18], without proof; the first pub-

lished proof is due to Oxtoby [19].

¿From Theorem 4 we easily get strong results on determinacy of Banach-Mazur games.

COROLLARY 5. Every Banach-Mazur game BM(G, v,Win) such thatWin ⊆ Paths(G, v) has
the Baire property is determined.

Recall that a set X in a topological space has the Baire property if its symmetric dif-

ference with some open set is meager. Since Borel sets have the Baire property, it follows

that Banach-Mazur games are determined for Borel winning conditions. Standard winning

conditions used in computer science applications (in particular the ω-regular winning con-

ditions) are contained in very low levels of the Borel hierarchy.

A converse to Corollary 5 in terms of specific games does not hold. Indeed one can

construct determined games with winning conditions of arbitrary complexity by combining

a trivial game won by Player 0 with an arbitrarily complex game in such a way that Player 0

can avoid the complicated part.

A more interesting question is whether one can prove a converse for winning condi-

tions that guarantee determinacy in the following sense. LetW ⊆ Cω be a set of infinite words

on some alphabet C. On every graph G = (V, E) equipped with a function Ω : V → C, the

set W defines a winning condition Ω−1(W) := {π ∈ Paths(G, v) : Ω(π) ∈ W}. We then

say that W guarantees determinacy for Banach-Mazur games if all games with a winning

condition Ω−1(W) are determined.
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We can link the Baire property with the determinacy of Banach-Mazur game in the

following class-wise sense.

THEOREM 6. For every class Γ ⊆ P(Cω) the following are equivalent.

(1) All winning conditionsW ∈ Γ guarantee determinacy for Banach-Mazur.
(2) All setsW ∈ Γ have the Baire property.

PROOF. IfW ⊆ Cω has the Baire property then so has Ω−1(W), for all functions Ω : V → C

that label the nodes of a graph G = (V, E) with elements of C. Thus, by Corollary 5 W

guarantees determinacy.

For the converse, suppose that W ⊆ Cω does not have the Baire property. To construct

a non-determined game, let G(C) be the complete directed graph on C itself (and let Ω be

the identity function on C). We do not useW directly as a winning condition, but modify it

as follows. Let S := {x ∈ C∗ : O(x) \W is meager} and let Z be the symmetric difference

ofW with the open set Y =
⋃

x∈S O(x).
We claim that the Banach-Mazur game on G(C) with winning condition Z is not de-

termined. Since Z is the symmetric difference of W with an open set, it cannot be meager

(otherwiseW would have the Baire property), hence Player 1 does not have a winning strat-

egy. So suppose that Player 0 has a winning strategy. This can only happen if Z is co-meager

in some basic open set O(x). For x ∈ S, this is impossible since O(x) ∩ Z = O(x) \W is

meager. Hence x ∈ C∗ \ S. But then O(x) ∩ Y = ∅. Otherwise we would have some y ∈ S

such that O(x) ∩ O(y) 6= ∅, which means that O(x) ⊆ O(y) or O(y) ⊆ O(x). In either

case, since O(y) ∩ Z = O(y) \W is meager, Z cannot be co-meager in O(x).
Now, since O(x) ∩ Y = ∅, we have O(x) ∩ Z = O(x) ∩W, and if this set were co-

meager in O(x) then x ∈ S, a contradiction.

Thus, none of the players has a winning strategy.

A specific example of a non-determined Banach-Mazur game can be obtained by modi-

fying a well-known construction on the basis of ultrafilters. Let G2 be the complete directed

graph with vertices 0,1, and for any setU ⊆ P(ω), let letWU be the set of infinite sequences

x0x1x2 · · · ∈ {0, 1}ω such that {n : xn = 0} ∈ U.

An ultrafilter over ω is a set U ⊆ P(ω) that does not contain ∅, that includes with any

set also all its supersets, with any two sets also their intersection, and such that for any set

x ⊆ ω either x ∈ U or ω \ x ∈ U. An ultrafilter is free if it contains all co-finite sets. As a

consequence, it does not contain any finite set. The Boolean Prime Ideal Theorem (a weak

form of the Axiom of Choice) implies that free ultrafilters exist.

PROPOSITION 7. If U is a free ultrafilter, then the Banach-Mazur game on G2 with winning
conditionWU is not determined.

PROOF. Without loss of generality, we may assume that Player σ plays in each move a

finite word in σ+. Hence the game is equivalent to the game where the players play a

strictly increasing sequence a0 < a1 < a2 < . . . and Player 0 wins the resulting infinite play

if, and only if, the set [0, a0) ∪ [a1, a2) ∪ [a3, a4) ∪ . . . belongs to U.

Assume that Player 0 has a winning strategy f which maps any increasing sequence

a0 < a1 < · · · < a2n−1 of even length to a2n = f (a0a1 . . . a2n−1) > a2n−1. We consider two

intertwined counter-strategies of Player 1, essentially forcing Player 0 to simultaneously
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perform two plays against herself. In reply to the first move a0, Player 1 selects an arbitrary

a1 > a0 and then sets up the two plays as follows: In the first one she replies to a0 by a1 and

waits for the answer a2 = f (a0a1) by Player 0. She then uses a2 as her own reply to a0 in the

second play and gets the answer a3 = f (a0a2) by Player 0, which she now uses as her next

move in the first play. There Player 0 responds by a4 = f (a0a1a2a3) which is again used by

Player 1 as her answer to a0a2a3 in the second play. And so on.

In this way, the two infinite plays result in sequences a0 < a1 < a2 < . . . and a0 <

a2 < a3 < . . . . Since Player 0 plays with her winning strategy in both plays. it follows that

X = [0, a0)
⋃

n∈ω[a2n+1, a2n+2) ∈ U, but also X′ = [0, a0] ∪
⋃

n>0[a2n, a2n+1) ∈ U. By closure

under intersection, it follows that X ∩X′ = [0, a0) ∈ U. ButU is a free ultrafilter, so it cannot

contain a finite set.

It follows by the same argument that Player 1 cannot have a winning strategy.

3 Determinacy by simple strategies

In general, strategies can be very complicated as they may depend on the entire history of

a play. However, there are interesting classes of games that are determined via relatively

simple winning strategies. We will discuss several kinds of restricted strategies:

(1) Decomposition invariant strategies are strategies that depend only on the finite path

that has been produced so far, and not on its decomposition into the moves of the

players. Thus, a decomposition invariant strategy is a function assigning to each fi-

nite path a finite prolongation. We will show that, whenever a player has a winning

strategy in a Banach-Mazur game, then she also has one that is decomposition invari-

ant.

(2) Positional strategies (also called memoryless strategies) depend only on the current

position, and not on the history of the play. On a game graph G = (V, E) a po-

sitional strategy is a function f : V → V∗ assigning to every node v a finite path

f (v) ∈ FinPaths(G, v). It is easy to find determined games that require non-positional

winning stategies, but we will prove that all Banach-Mazur games with ω-regular

objectives are determined via positional winning strategies.

(3) More generally, strategies with memory M depend on the history of the play in a re-

stricted way, via a memory structure M, consisting of a set of memory locations and

an update function that changes the memory location as the play proceeds. Strategies

with a finite memory structure can be implemented by a finite automaton. We will

show that, for Banach-Mazur games, finite memory structures are irrelevant in the

sense that winning strategies with finite memory can always be transformed into po-

sitional winning strategies. This is in sharp contrast to the usual graph games where

already quite simple ω-regular winning conditions (such as, in particular, Muller con-

ditions) lead to games that are determined by finite-memory strategies , but not by

positional ones.

3.1 Decomposition invariant strategies
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DEFINITION 8. A decomposition invariant strategy in a Banach-Mazur game on a graph

(G, v) is a function f : FinPaths(G, v) → FinPaths(G, v) such that x ≤ f (x) for all x.

THEOREM 9. Every Banach-Mazur game that is determined is also determined via a decom-
position invariant strategy.

PROOF. Suppose that Player 1 has a winning strategy for the game BM(G, v,Win). Then
Win =

⋃

n<ω Xn with Xn nowhere dense. This means that the complement of each Xn

contains a dense open setYn. Hence there exists a function gn assigning to each finite path y a

prolongation gn(y) such that O(gn(y)) ⊆ Yn. We define a decomposition-invariant strategy

g as follows. Given a finite path x ∈ FinPaths(G, v), there are only finitely many n < ω such

that gn(y) ≤ x for some y ∈ FinPaths(G, v). Take the minimal n such that this is not the case

and set g(x) = gn(x).
It remains to show that g is a winning strategy for Player 1. Let π be any infinite play

that is consistent with g. For every n < ω there exists a prefix y such that gn(y) < π. Hence

π ∈ Yn for all n, which means that π is won by Player 1.

The argument for Player 0 is analogous

3.2 Positional determinacy

To start, we present a simple example of a Banach-Mazur game that is determined, but does

not admit a positional winning strategy.

Example 10 Let G2 be the completely connected directed graph with nodes 0 and 1, and let the
winning condition for Player 0 be the set of infinite sequences with infinitely many initial segments
that contain more ones than zeros. Clearly, Player 0 has a winning strategy for this game, but not a
positional one.

Note that this winning condition is on the Π2-level of the Borel hierarchy. As we show

next, this is the lowest level with such an example.

PROPOSITION 11. If Player 0 has a winning strategy for a Banach-Mazur game with a
winning conditionWin ∈ Σ

0
2, then she also has a positional winning strategy.

PROOF. Suppose that Player 0 has awinning strategy f for the Banach-Mazur game BM(G, v,Win)
such that Win is a countable union of closed sets. We have Win =

⋃

n<ω[Tn] where each

Tn ⊆ FinPaths(G, v) is closed under prefixes. Further, we can assume that the winning

strategy f is decomposition invariant. We claim that, in fact, Player 0 can win with one

move, i.e. there is a finite path x such that O(x) ⊆ Win.

We construct this move by induction. Let x1 be the initial path chosen by Player 0

according to f . Let i ≥ 1 and suppose that we have already constructed a finite path xi 6∈
⋃

n<i Tn. If xiy ∈ Ti for all finite y, then all infinite plays extending xi remain in Win, hence

Player 0 wins with the initial move w = xi. Otherwise choose some yi such that xiyi 6∈ Ti,

and suppose that Player 1 prolongs the play from xi to xiyi. Let xi+1 := f (xiyi) the result of
the next move of Player 0, according to her winning strategy f .

If this process did not terminate, then it would produce an infinite play that is consistent

with f and won by Player 1. Since f is a winning strategy, this is impossible. Hence there
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exists somem < ω such that xmy ∈ Tm for all y. Thus, if Player 0 moves to xm in her opening

move, then she wins, no matter how the play proceeds afterwards. In particular, Player 0

wins with a positional strategy.

While many important winning conditions are outside Σ
0
2, they may well be Boolean

combinations of Σ
0
2-sets. For instance, this is the case for parity conditions, Muller condi-

tions, and more generally, all ω-regular winning conditions. In the classical framework of

infinite games on graphs (where moves are along single edges rather than paths) it is well-

known that parity games admit positional winning strategies [6, 17, 9], whereas there are

simple games with Muller conditions that require strategies with some memory. We will

see that for Banach-Mazur games, the class of winning conditions guaranteeing positional

winning strategies is much larger than for classical graph games.

3.3 Banach-Mazur games with Muller winning conditions

A Muller condition is any property of infinite sequences x ⊆ Cω that depends only on

which symbols c ∈ C occur infinitely often in x. Muller conditions are of crucial importance

in automata theory and in the theory of infinite games. It is one of the standard acceptance

conditions for automata on infinite words or infinite trees

DEFINITION 12. A Muller condition on a set C is written in the form (F0,F1) where F0 ⊆
P(C) and F1 = P(C) \ F0. Given a game graph G = (V, E) whose nodes are labelled by

a function Ω : V → C, a play π ∈ Paths(G, v) is won by Player σ if, and only if, the set of

colours occurring infinitely often on π belongs to Fσ.

Usually it is assumed that the set C of colours is finite. In that case there is a pre-

cise characterisation, due to Zielonka [24] of the Muller winning conditions that guarantee

positional determinacy for the classical form of graph games. It sates that all games with

winning condition (F0,F1) are positionally determined if, and only if, neither F0 nor F1

contains a strong split, which means that there do not exist two sets X,Y ∈ Fσ such that

X ∩Y 6= ∅ and X ∪Y ∈ F1−σ.

However, as we show now, all Muller conditions (on a finite set of colours) guarantee

positional determinacy for Banach-Mazur games.

PROPOSITION 13. All Banach-Mazur games BM(G, v0, (F0,F1)) with a Muller winning
condition on a finite set of colours are positionally determined.

PROOF. We write w ≥ v to denote that position w is reachable from position v. For every

position v ∈ V, let C(v) be the set of colours reachable from v, that is, C(v) := {Ω(w) : w ≥
v}. Obviously, C(w) ⊆ C(v) whenever w ≥ v. In case C(w) = C(v) for all w ≥ v, we call v

a stable position. Note that from every u ∈ V some stable position is reachable. Further, if v

is stable, then every reachable position w ≥ v is stable as well.

We claim that Player 0 has a winning strategy in BM(G, v, (F0,F1)) if, and only if, there

is a stable position w that is reachable from the initial position v, so that C(w) ∈ F0.

To see this, let us assume that there is such a stable position v with C(w) ∈ F0 for a

stable position w ≥ v. Then, for every u ≥ w, we choose a path p from u so that, when

moving along p, each colour of C(u) = C(w) is visited at least once, and set f (u) := p. In
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case v is not reachable from w, let f (v) be some path that leads from v to w. Now f is a

positional winning strategy for Player 0 because, after the first move, no colours other then

those in C(w) are seen. Moreover, every colour in C(w) is visited at each move of Player 0,

hence, infinitely often.

Conversely, if for every stable position w reachable from v we have C(w) ∈ F1, we can

construct a winning strategy for Player 1 in a similar way.

Note that in a finite arena all positions of a strongly connected component that is termi-

nal, i.e., with no outgoing edges, are stable. Thus, the above characterisation translates as

follows: Player 0 wins the game if, and only if, there is a terminal component whose set of

colours belongs to F0. Obviously this can be established in linear time w.r.t. the size of the

arena and a suitable description of the Muller condition.

COROLLARY 14. On a finite arenaG, Banach-Mazur gameswith aMuller winning condition
(F0,F1) can be solved in time O(|G| · |Fσ|).

We remark that solving single-step graph games with Muller winning conditions is

PSPACE-complete. This is not too difficult to derive from the analysis presented in [5]. A

detailed complexity analysis, for a number of different presentations of Muller conditions,

can be found in [11].

3.4 Elimination of finite memory

We introduce a general notion of a memory structure and of a strategy with memory. The

memory can be finite, as in the finite memory strategies studied for instance in [5], or infinite

is in the strategies used in [7].

DEFINITION 15. A memory structure for a game graph G = (V, E) is given by a triple

M = (M,m0, update), with a set of memory states M, an initial state m0 and a memory up-

date function update : M× V → M. The size of the memory is the cardinality of the set M.

A strategy with memory M for a Banach-Mazur game on G is given by a next-move function

f : V × M → V∗ such that f (v,m) ∈ FinPaths(G, v) for all v ∈ V,m ∈ M.

Notice that the local memory update function extends to a function memory : M ×
V∗ → V, where memory(m, x) is the memory state that is reached by a sequence of updates

along a path x, starting with memory state m. This function is defined inductively by

memory(m, ε) = m, memory(m, xv) := update(memory(m, x), v).

In particular, if a play has gone from initial position v0 through a finite path x ∈
FinPaths(G, v0) ending at node v, then the memory state is m = memory(m0, x), and the

strategy defined by M and F will prolong x by the path F(v,m).

Wewill say that a game is determined viamemoryM if one of the players has awinning

strategy with memory M.
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THEOREM 16. ABanach-Mazur game that is determined via a finite-memory winning strat-
egy is in fact positionally determined.

PROOF. Let us assume that Player 0 wins a Banach-Mazur game on (G, v0) with a strategy

f : V × M → V∗ based on a finite memory structure M = (M,m0, update). For any node

v ∈ V, we denote by M(v) the set of memory locations memory(m0, x) such that x is path

from v0 to v that may arise as an initial segment of some play consistent with f .

M(v) := {memory(m0, x) : x prolongs f (v0,m0) and leads to v}.

Let {m1,m2, . . . ,mn} be an enumeration of M(v), in which the initial memory m0 is

taken first, in case it belongs toM(v). We construct paths y1 < y2 < · · · < yn ∈ FinPaths(G, v).
First, set y1 := f (v,m1). Then, for 1 ≤ i < n, let yi+1 be the concatenation of yi with the path

f (vi,memory(mi, yi)) where vi is the end node of yi. Finally, set f
′(v) := yn.

Clearly f ′ is a positional strategy. We claim that it is a winning strategy for Player 0.

Consider any play π that is consistent with f ′. Cleary f (v0,m0) is an initial segment of π.

Further, suppose that after some finite number of moves, an initial segment x ending at

position v has been produced. Player 0 now prolongs x by the path f ′(v).
We claim that the path f ′(v) can be written in the form z1z2z3 such that there exist

v′ ∈ V and m′ ∈ M with

• z1 ends at node v
′

• memory(m0, xz1) = m′,

• z2 = f (v′,m′)
Indeed, if M(v) = {m1, . . . ,mn}, we have memory(m0, x) = mi for some i ≤ n. Let

z1 := yi. Then v′ = vi, m
′ = memory(m0, xyi) = memory(mi, yi), and f ′(v) = z1 f (v

′,m′)z3
for appropriate z3.

In other words, every move of Player 0 has some “good part” z2 that would also have

been produced by the strategy f if Player 0 had to choose at the position v′ with current

memeory state m′. But this means that the play cannot be distinguished from a play where

Player 0 always moved according to the strategy f while all the “bad parts” were produced

by Player 1. Hence the play is also consistent with f and therefore won by Player 0.

The same construction works for Player 1, if we define M(v) := {memory(m0, x) :

x is a path from v0 to v}.

This result has very interesting consequences for Banach-Mazur games with ω-regular

winning conditions. Let G = (V, F) be a game graph with a colouring Ω : V → C of

the nodes by a finite number of colours and consider winning conditions given by an ω-

regular setW ⊆ Cω. Such conditions can by defined by a formula in some appropriate logic

over infinite paths. In the most general case, we have S1S-formulae (i.e. MSO-formulae on

infinite paths with vocabulary {<}∪ {Pc : c ∈ C}). It is well known that every S1S-definable

class of infinite words can be recognised by a deterministic Muller or parity automaton (see

e.g. [8]). Hence, by a standard construction, any game on a graph G with an ω-regular

winning condition can be reformulated as a game on a graph G × M, for a finite memory

structure M, with a Muller (or parity) winning condition. This means that we get for G a

winning strategy with memory M for one of the players. Theorem 16 tells us that in the case

of Banach-Mzur games, we can get rid of this finite memory.
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THEOREM 17. All Banach-Mazur gameswith ω-regular winning conditions are positionally
determined.

4 Definability

We now discuss the question in what logics (MSO, µ-calculus, FO, CTL∗, . . . ) winning po-

sitions of Banach-Mazur games with ω-regular winning conditions can be defined. Given

any formula ϕ from a logic on infinite paths (like S1S or LTL), we define the game formula

aϕ, to be evaluated over game graphs, with the meaning that

G |= aϕ(v) ⇐⇒ Player 0 wins the Banach-Mazur game BM(G, v, ϕ).

Note that the operation ϕ 7→ aϕ maps a formula over infinite paths to a formula on

graphs. Given a logic L over infinite paths, and a prefix let Game-L := {aϕ : ϕ ∈ L}. As

usual we write L ≤ L′ to denote that every formula in the logic L is equivalent to some

formula from the logic L′.

Our main definability result can be stated as follows.

THEOREM 18.

(1) Game-S1S ≤ Lµ

(2) Game-LTL ≡ Game-FO ≤ CTL∗.

Obviously, the properties expressed by formulae aϕ are invariant under bisimulation.

This has two relevant consequences:

(a) We can restrict attention to trees (obtained for instance by unravelling the given game

graph from the start node).

(b) It suffices to show that, on trees, Game-S1S ≤ MSO, and Game-FO ≤ MPL where

MPL is monadic path logic, i.e., monadic second-order logic where second-order quan-

tification is restricted to infinite paths.

Indeed, it has been proved by Janin and Walukiewicz [12] that every bisimulation-

invariant class of trees that is MSO-definable is also definable in the modal µ-calculus. Simi-

larly, it is known from results by Hafer and Thomas [10] and byMoller and Rabinovitch [16],

that every bisimulation invariant property of trees expressible in MPL is also expressible in

CTL∗.

PROPOSITION 19. On trees, Game-S1S ≤ MSO.

PROOF. Let x ≤ y denote that y is reachable from x. A (decomposition-invariant) strategy

for Player 0 in a game BM(T, r,Win) on a tree T = (V, E) with root r is a partial function

f : V → V, such that w < f (w) for every w; it is winning if every infinite path through T

containing r, f (r), y1, f (y1), y2, f (y2) . . ., where f (yi) < yi+1 for all i, is contained inWin. An

equivalent description can be given in terms of the set X = f (V). A set X ⊆ V defines a

winning strategy for Player 0 in the game BM(T, r,Win) if

(1) (∀x ∈ X)∀y(x < y → (∃z ∈ X)(y < z))
(2) every path hitting X infinitely often is in Win (i.e. it is winning for Player 0)

(3) X is non-empty.
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Clearly these conditions are expressible in MSO.

To deal with winning conditions defined in first-order logic (or equivalently, LTL), we

use a normal form for first-order logic on infinite paths (with <) that has been established by

Thomas [22]. A first-order formula ϕ(x) is bounded if it only contains bounded quantifiers

of form (∃y ≤ xi) or (∀y ≤ xi).

PROPOSITION 20. On infinite paths, every first-order formula is equivalent to a formula of
the form

∨

i

(

∃x(∀y ≥ x)ϕi ∧ ∀y(∃z ≥ y)ϑi

)

where ϕi and ϑi are bounded.

THEOREM 21. On trees, Game-FO ≤ FO.

PROOF. Let ψ =
∨

i

(

∃x(∀y ≥ x)ϕi ∧ ∀y(∃z ≥ y)ϑi

)

be a first-order formula on infinite

paths describing a winning condition. We claim that, on trees, aψ is equivalent to the first-

order formula

ψ∗ := (∃p1)(∀p2 ≥ p1)(∃p3 ≥ p2)
∨

i∈I

ψ
(b)
i where

ψ
(b)
i := (∃x ≤ p1)(∀y . x ≤ y ≤ p2)ϕi ∧ (∀y ≤ p2)(∃z . y ≤ z ≤ p3)ϑi.

Let T = (V, E) and suppose first that Player 1 has a winning strategy for BM(T, r,ψ).
We prove that T |= ¬ψ∗. To see this we have to define an appropriate Skolem function

g : p1 7→ p2 such that, for all p3 ≥ p2 and all i ∈ I,

T |= ¬ψ
(b)
i (p1, p2, p3).

Fix any p1 that we can consider as the first move of Player 0 in the game BM(T, r,ψ) and
any play P (i.e., any infinite path through T) that prolongs this move and that is consistent

with the winning strategy of Player 1. Since Player 1 wins, we have that P |= ¬ψ. Hence,

there exists some J ⊆ I such that

P |=
∧

i∈J

∀x(∃y ≥ x)¬ϕi ∧
∧

i∈I−J

∃y(∀z ≥ y)¬ϑi.

To put it differently, there exist

• for every i ∈ J and every a ∈ P, a witness hi(a) ∈ P such that P |= ¬ϕi(a, hi(a)), and
• for every i ∈ I − J, an element bi such that P |= (∀z ≥ bi)¬ϑi(bi, z).

Now set

p2 := max({hi(a) : a ≤ p1, i ∈ J} ∪ {bi : i ∈ I − J}).

For any p3 we now obviously have that T |= ¬ψ
(b)
i (p1, p2, p3).

For the converse, let f : V → V be a winning strategy for Player 0 in BM(T, r,ψ). We

claim that T |= ψ∗. Toward a contradiction, suppose that T |= ¬ψ∗. Hence there exists a

Skolem function g : V → V assigning to each p1 an appropriate p2 ≥ p1 such that T |=
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¬ψ
(b)
i (p1, p2, p3) for all p3 ≥ p2 and all i ∈ I. We can view g as a strategy for Player 1 in

the game BM(T, r,ψ). If Player 0 plays according to f and Player 1 according to g, then the

resulting infinite play f ˆg = q1q2q3 . . . satisfies ψ (because f is a winning strategy). Hence

there exists some i ∈ I such that

f ˆg |= ∃x(∀y ≥ x)ϕi ∧ ∀y(∃z ≥ y)ϑi.

Let a be a witness for x so that f ˆg |= (∀y ≥ a)ϕi(a, y). Choose the minimal odd k,

such that a ≤ qk, and set p1 := qk. Then qk+1 = g(qk) = g(p1) = p2. Since f ˆg |= ∀y(∃z ≥
y)ϑi(y, z), we have, in particular, for every b ≤ p2 a witness h(b) ≥ b on f ˆg such that

f ˆg |= ϑi(b, h(b)). Choose p3 = max{h(b) : b ≤ p2}. It follows that f ˆg |= ψ
(b)
i (p1, p2, p3).

Since ψ
(b)
i is bounded, its evaluation on T is equivalent to its evaluation on f ˆg. Hence we

have shown that there exists p1 such that for p2 = g(p1), given by the Skolem function g,

we can find a p3 with T |= ψ
(b)
i (p1, p2, p3). But this contradicts the assumption that g is an

appropriate Skolem function for ¬ψ∗.

We have shown that whenever Player 0 has a winning strategy for BM(T, r,ψ) then

T |= ψ∗ and whenever Player 1 has a winning strategy, then T |= ¬ψ∗. By contraposition

and determinacy, the reverse implications also hold.

Theorem 18 is implied by Proposition 19 and Theorem 21.

We have seen that for every fixedwinning condition expessible in S1S, the winner of the

associated Banach-Mazur games is uniformly definable in the µ-calculus. Notice however

that this requires that we consider games with a fixed number of local parameters (colours)

by which this winning condition is defined. But in the theory of infinite game, a number of

algorithmic question concerns classes of games where the number of coulours to define the

winning condition is not fixed, but may depend on the game graph.

The most important example is the parity condition: Given a function Ω : V → ω,

Player 0 wins those infinite plays in which the least value appearing infintely often is even.

For the usual format of graph games, one of the most prominent open problems is the ques-

tion whether the winning regions of parity games are computable in polynomial time. This

problem is equivalent to the question whether the modal µ-calculus admits a polynomial-

time model checking algorithm. Even if the range of Ω, i.e. the number of colours, is as-

sumed to be finite, it is not bounded.

For parity games with a fixed number d of colours, which can be viewed as struc-

tures (V, E, P0, . . . , Pd−1), it is well-known that the winner is computable in polynomial-

time and definable by a µ-calculus formula (with d alternations between least and greatest

fixed points). The interesting problem concerns the case of an unbounded number of prior-

ities, and the current algorithms for solving parity games only have upper time-complexity

bounds that are exponential in the number of colours.

What about the definability of winning positions in parity games with an unbounded

number of colours? First, of all we have to represent the structures in a different way, to

avoid an infinite vocabulary. For instance we can describe game graphs as structures

(V, E,≺, Odd)
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where u ≺ v means that u has a smaller colour than v, and Odd is the set of nodes with an

odd colour. We denote this class of structures by PG.
The descriptive complexity of parity games, i.e. the question in which logics, winning

regions of parity games are definable, has been considered in [4]. The descriptive complex-

ity of a problem provides an insight into the structure of the problem, and the sources of

algorithmic difficulty, as the logical resources needed to specify the problem are closely tied

to its structure. In the case of parity games, the questions that naturally arise are whether

the problem is definable in the least fixed-point logic (LFP) and in monadic second-order

logic (MSO), as these are logics with which it is closely associated.

It has been proved in [4] that on arbitrary (finite or infinite) game graphs, parity games

are not definable in the least fixed point logic LFP. On finite games graphs, it turned out that

the winning regions are LFP-definable if, and only if, they are computable in polynomial-

time (despite the fact that, on unordered finite structures, LFP is weaker than PTIME).

Again, it turns out that the analogous question for Banach-Mazur games is simpler.

THEOREM 22. Winning regions of Banach-Mazur games with the parity winning condition
are uniformly definable in least fixed-point logic LFP.

PROOF. In the proof of Proposition 13 we have shown that Player 0 wins a Banach-Mazur

game on (G, v) with a Muller condition (F0,F1) if, and only if, there is a stable position w,

reachable from v, such that C(w) ∈ F0. For parity games C(w) ∈ F0 means that the least

colour in C(w) is even. Clearly, this condition is uniformly definable in least-fixed point

logic on PG.

This result in fact applies to weaker logics than LFP. It suffices that reachability state-

ments “there is a path from x to y” are expressible. Also, the result may apply to stronger

classes of Muller conditions, but it depends on how these are described. In what ever way,

such a condition (F0,F1) is presented on the given game graphs, the necessary condition to

express is that C(w) ∈ F0.

5 Path games with bounded alternations

Banach-Mazur games have an infinite sequence of alternating moves of the two players.

There is an interesting variation of such games where one of the player only makes finitely

many moves and eventually one player plays alone. To describe the alternation patterns of

such games, we now call the players Ego and Alter, and denote a move where Ego selects a

finite path by E, and an ω-sequence of such moves by Eω; for Alter, we use corresponding

notation A and Aω.

Hence, for any graph G initial position v, and winning condition Win we have the

following games.

• (EA)ω(G, v,Win) is the ususal Banach-Mazur games with infinite alternation between

the two players. By exchanging the roles of the players, we get the game (AE)ω(G, v,Win).
• (EA)kEω(G, v,Win) and A(EA)kEω(G, v,Win), for arbitrary k ∈ ω, are the games end-

ing with an infinite path extension by Ego.

• (AE)kAω(G, v,W) and E(AE)kAω(G, v,W) are the games where Alter chooses the fi-

nal infinite lonesome ride.
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All these games together form the collection Path(G, v,W) of path games. (Obviously

two consecutive finite path moves by the same players correspond to a single move, so

there is no need for quantifier strings containing EE or AA.)

Pistore and Vardi [20] used path games of this form for task planning in nondetermin-

istic domains.

5.1 Comparison of path games

For two games G and H we write G � H if, from the point of view of Ego, H is better than

G. More precisely, G � H if, whenever Ego has a winning strategy for G then he also has

one for H, and if Alter has a winning strategy for H then he has one also for G. Finally,

G ≡ H if G � H and H � G.

It turns out that this infinite collection of games defined by the game quatifier prefixes

over E and A collapses in a uniform way to a finite lattice of just eight different games. This

has been observed independently in [3] and [20].

THEOREM 23. For every arena G and every winning condition Win, we have

Eω(G, v,Win) � EAEω(G, v,Win) � AEω(G, v,Win)

g| g|

(EA)ω(G, v,Win) � (AE)ω(G, v,Win)

g| g|

EAω(G, v,Win) � AEAω(G, v,Win) � Aω(G, v,Win)

Further, every path game H ∈ Path(G, v,Win) is equivalent to one of these eight games.

PROOF. The comparison relations in the diagram follow by trivial arguments. We just

illustrate them for one case. To show that G � H for G = EAEω(G, v,Win) and H =
(EA)ω(G, v,Win), consider first a winning strategy f of Ego in H. Ego can use this strategy

also for G: he just plays as if he would play G, making an arbitrary move whenever it would

be Alter’s turn in H. Any play in G that is consistent with this strategy, is also a play in H
that is consistent with f , and is therefore won by Ego. Second, consider a winning strategy

g of Alter in G. In H = (EA)ω(G, v,Win), Alter answers the first move of Ego as prescribed

by g, and moves arbitrarily in all further moves. Again, every play that can be produced

against this strategy is also a play of G that is consistent with g, and is therefore won by

Alter. In all other cases the arguments are analogous.

To see that any other path game over (G, v,Win) is equivalent to one of those displayed,

it suffices to show that

(1) (EA)kEω(G, v,Win) ≡ EAEω(G, v,Win), for all k ≥ 1, and

(2) A(EA)kEω(G, v,Win) ≡ AEω(G, v,Win), for all k ≥ 0.

By duality, we can then infer that (AE)kAω(G, v,Win) ≡ AEAω(G, v,Win) for k ≥ 1 and

E(AE)kAω(G, v,Win) ≡ EAω(G, v,Win) for all k ≥ 0.
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The equivalences (1) and (2) follow with similar reasoning. Ego can modify a strategy

f for EAEω(G, v,Win) to a strategy for (EA)kEω(G, v,Win). He chooses the first move ac-

cording to f and makes arbitrary moves the next k − 1 times; he then considers the entire

A(EA)k−1-sequence of moves, which were played after his first move, as one single move

of A in EAEω(G, v,Win) and completes the play again according to f . The resulting play

of (EA)kEω(G, v,Win) is also consistent with f in EAEω(G, v,Win). Conversely a strategy

of Ego for (EA)kEω also works if his opponent lets Ego move for him in all moves after the

first one, i.e., in the game EAEω(G, v,Win). All other equalities are treated in a similar way.

The question arises whether the eight games displayed in the diagram are really differ-

ent or whether they can be collapsed further. The answer depends on the game graph and

thewinning condition but for each comparison� in the diagramwe find simple cases where

it is strict. Indeed, standard winning conditionsWin ⊆ {0, 1}ω on the completely connected

graph G2 with nodes 0 and 1 show that the eight games in the diagram are distinct.

If the winning condition requires a particular initial segment then Ego wins the path

games where he moves first and loses those where Alter moves first. Thus, starting con-

ditions separate the left half of the diagram from the right one. Games with reachability

conditions and safety conditions separate games in which only one player moves, i.e. with

prefix Eω or Aω respectively, from the other ones. A game with a Büchi condition is won by

Ego if he has infinite control and lost if he only has a finite number of finite moves (prefix

ending with Aω). Similarly, Co-Büchi conditions separate the games which are controlled

by Ego from some time onwards (with prefix ending in Eω) from the others.

5.2 Positional determinacy of ω-regular path games

We have seen that Banach-Mazur games are positionally determined for any ω-regular win-

ning condition. Does this also hold for path games with bounded alternation between the

players?

To establish positional determinacy for ω-regular Banach-Mazur games, we first no-

ticed that the reduction of S1S to deterministic parity automata gives us determinacy by

finite-memory strategies. In a second step, we proved that for Banach-Mazur games we

can eliminate the finite memory, and reduce finite memory strategies to positional ones.

The first of these two steps does not depend on the alternation pattern in the game, and

therefore also holds for path games with bounded alternation.

PROPOSITION 24. For any winning condition ψ ∈ S1S and any game prefix γ, the path
games γ(G,ψ) admit finite-memory winning strategies.

However, the reduction from finite memory strategies to positional ones in the proof

of Theorem 16 does rely on infinite alternation between the players. For games where the

players alternate only finitely often the situation changes. Intuitively, a winning strategy of

the solitaire player eventually forms an infinite path which may not be broken apart into

finite pieces to serve as a positional strategy.
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PROPOSITION 25. For any prefix γ with finitely many alternations between the players,
there are arenas G and winning conditions ψ ∈ S1S so that no positional strategy is winning
in the game γ(G, v,ψ).

PROOF. Consider, for instance, the arena G2 from Example 10 and a winning condition ψ ∈
S1S that requires the number of zeroes occurring in a play to be odd. When starting from

position 1 Ego obviously has winning strategies for each of the games Eω(G,ψ), AEω(G,ψ),

and EAEω(G,ψ), but no positional ones.

Nevertheless, these games are positionally determined for one of the players. Indeed,

if a player wins a game γ(G, v,ψ) that is finally controlled by his opponent, he always

has a positional winning strategy. This is trivial when γ ∈ {Eω, Aω, AEω, EAω}; for the
remaining cases EAEω and AEAω a positional strategy can be constructed as in the proof of

Theorem 16.

Finally we consider winning conditions that do not depend on initial segments. We say

that ψ is prefix independent, if, for any ω-word π and any finite words x and y, we have

xπ |= ψ if, and only if, yπ |= ψ .

THEOREM 26. For any prefix-independent winning condition ψ ∈ S1S and every γ, the
games γ(G, v,ψ) admit positional winning strategies.
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