ROTH’'STHEOREM ON PROGRESSIONS REVISITED

By

JEAN BOURGAIN*

§0. Statement and discussion of the argument

This paper is a sequel to [B]. Our main result is an improvement of the density
conditionfor asubset A C {1,..., N} to contain anontrivial arithmetic progression
of length 3. More specifically, we prove the following

Theorem 1. IfAcC {1,...,N},|A| =6N and

(loglog N)?

(0. o> (log N)2/3

(N assumed sufficiently large), then A contains nontrivial progressionsof length 3.

Recall that the condition required in [B] is

loglogN)l/2

0.2) 5> ( b

Roth’s original argument [R] assumes

1

this was subsequently improved by Heath—Brown [H-B] and Szemeredi to

1

(0.4) 6 < Gog N

for somec > 0 (¢ = 1/20in [Sz]).

The main technical advancein [B] istheincrement of the density of A in‘Bohr
sets' rather than arithmetic progressions. In [B], we introduce a notion of ‘regular
Bohr set’ and developed a variant of the usual circle method approach in this
context.
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Very schematically, the condition (0.2) can be explained as follows. Following
the circle method as in Roth’s original argument, the density of A in a suitable
Bohr set A,, isincreased from §,, t0 4,1, Where

(0.5 Sas1 > 0p + 62

(the Bohr sets A, being the replacement for a decreasing sequence of subprogres-
sions P, of {1,..., N}, |Par1| > |Pa|'/?).

The passage from A, to A1 involves adding one generator. Thus, basically,
Ao = Mgy e g, iNVOlves some element 9(*) in T4, d,, = «, and consists of the
integersn € Z, |n| < M, satisfying

(0.6) [n\|| < e forj=1,....da.

Here:s(®) ¢ R, isadecreasing parameter. We can take

1

(a+l) — = (o)
(0.7) € (Tog N)loe .
Also,
M,

Since (0.5) requires essentially 1/§ steps to reach density 0(1) and, crudely speak-
ing,
(0.9) Aol 2 [ Mo,
it is clear from the preceding that the condition
log N > 111 log N
og 53 0g 10g

should be imposed. This explains (0.2).
Let us point out that in the purely algebraic setting, considering (say) subsets
A C F3, our Bohr sets A, aresimply subgroupsand |A,1| = 3|A«|. Thecondition

on g = 4l thus becomes

(0.10) d>1/n
(which would correspond to § > 1/log N in the arithmetic setting).

Improving on the condition (0.10) in the algebraic context is a most interesting
problem that most likely requires a major new idea.
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Returningto A c Z and (0.1), we again rely on the Bohr set technology of [B].
Sections 1-6 in this paper are, in fact, just arepetition of [B]. The only difference
is that we need more general Bohr sets Ay ., where 6 € T?, £ € R%, defined as

(0.11) Moenr ={n€Z:|n| <Mand |nb;| < e, forj=1,....d}

(instead of ¢; = ¢). But dealing with this variant does not require any significant
changes, and the setup reached in Section 6 isthe same asin [B].

Section 7 corresponds to Section 8 from [B]. In fact, a dlightly more careful
check of the argument in [B] shows that we may actually achieve a density in-
crement ~ 6; (rather than ~ 67) under that particular assumption (see (7.1) in the
paper). The novelty hereisto provide a more elaborate treatment of the alternative
considered in Section 7 of [B] (see Sections 8-10 here). Let us describe the main
ideasin asimplified way. Our exponential sums associated to A are of the form

(0.12) Sa(x) =) e,

neA

) _{ﬁ ifn e A

where

0 otherwise

and A is some Bohr set.
We are in the situation that

(0.13) 1S4 — A(A)S||oc = 71,

where 7 > 61, AM(A) = >, ca A = 01 and S(z) = Y, o, Mpe*™*. The increment
(0.5) corresponds to the worse case scenario that = ~ §;. Let us assume so (the
optimal dichotomy as worked out in this paper turns out to distinguish the cases
7251/2 and755}/2).

Instead of considering asingle point 6 € T with

(0.14) S4(0) — A(A)S(0)] > &3
to perform the density increment (asin [B]), consider the entire level set
(0.15) F={0€cT: [Sa(0) — \(A)S()] > 61}.

With a dlight twist of things for the sake of simplicity, let us assume not only that
F # ¢, but that also F carries afraction of the L2-massof S,. Thus

2 2 AMA) &
(0.16) /f|SA| ~/|SA| =S
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(the true situation encountered is a bit different — several Bohr sets need to be
involved — but thisisinessential for this discussion).

Along the lines of [B1] or [Ch], consider a maximal ‘independent’ subset
¥1,...,%g Of F. Thusall elements of F are ‘well approximable’ by sums of the
form Zle £, where ¢, € {0,1,—1}. We distinguish 2 cases. If R issmall (in
particular, R < log N), then we may reduce our Bohr set A to a new Bohr set A
by adding R generators and reaching density A\(A) = |[ANA|/|A| ~ 0(1). In this
situation, we are done.

If R is large, we proceed differently. Our aim is to find a (large) subset
I c {1,...,R} such that we may introduce a new Bohr set A C A of dimension
d+ |I|,d = dim A, in such away that the density increment A(A) — \(A) isat least
|I|6%. Such an increment would have been obtained as well in |I| steps, adding
each time 1 generator and increasing the density by 67. However, obtaining the
increment |1|67 in asingle step is advantageous with respect to the size of the new
Bohr set A, since now

A
(1og N)lO(dHI\) ’
while the iterative process would give us essentially

< 1Al
>
(0.18) A2 g Ny

The reason comes from (0.7), which is applied at each step. 1t should now also be
clear to the reader why the more general Bohr sets (0.11), with ¢; depending on
the generator 6, are necessary with this more refined approach.

Thereisaformal similarity with the mainideain [HB] to improve over Roth’s
method by involving many points rather than a single point at each step. What is
different hereis, of course, that we work with Bohr sets rather than progressions,
but also that a different strategy is applied depending on the structure of the level
set 7 in (0.15). From the harmonic analysis point of view, the new input appears
in our Section 10 and in the Appendix, which analytically speaking are the most
interesting parts of the paper.

Finally, it isclear that the noveltiesintroduced have other applicationsin combi-
natorial number theory. In particular, one may expect to improve the dependences
on the ‘additive doubling constant’ K for the sumset inequality

(0.17) A 2

(0.19) A+ Al < K|A| (AcCZ)

in M. Chang’s quantitative Freiman theorem [Ch], following T. Sanders’ approach
in the F3-setting (see [San]).
More precisely, one may establish the following (see Sanders’ Appendix)
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Theorem 2. Let A C Z be afinite set satisfying |[A + A| < K.|A|. Then A is
contained in a generalized arithmetic progression P of dimensiond < [K — 1] and
size
(0.20) |P| < |A]exp{C.(log K)°.K"/*}

(where C is some constant).

Thus, theimprovement over [Ch] liesin the exponent 7/4 in (0.20) (rather than
2).

Following essentially the same argument as in [Ch] (or [TV]), Theorem 1 is
derived from

Theorem 3. Under theassumptionsof Theorem1, the sumset 24 —2 A contains
aBohr set B ond < K3/*(log K)© generators and such that

(0.21) |B| > |A]. exp{—C(log K )3.K3/1}.

The proof of Theorem 2 is, roughly speaking, an adaptation of [San] (F4 ishow
replaced by Z) invoking the Bohr-set technology and the method described in this
paper to improve density (note that in the F3-context of [San], the exponents 7/4
in (0.20) and 3/4 in (0.21) become 3/2 and 1/2, resp.; the reason for the weaker
result obtained in the Z-case relates again to the earlier discussion on Bohr-setsvs.
subspaces).

§1. Definitions

Letd € RY, d > 1,e; > 0, N apositive integer. Define
1.1 Npen={n€Z:|n|<N,|nbj|| <e;forj=1,...,d}
and \g . v = A, where
Ao N7t ifneAg,
(1.2) Am) = 4 Ao TE RN
0 otherwise.

Thus ) is probability measure on Z.

§2. Estimateson Bohr Sets

Lemma 2.0.

. 1
(2.1) @) [Ag e n| > e cegN
(2.2) (i) [Agon| <8YA,

£ﬂ|-
12172
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Proof. Consider functions

1
Tj_
7
—Ej &j
Thus,
Inly T- I\ T
- +
23 X (1— W) [I75 ) <1Moenl <2 (1 - ﬁ) [T+ o))
In|<N j=1 In|<2N j=1
and
d
_Inl —(n.) — 7 (k) F (k.0
Z 1 Hj(nj)_ HT](])N( )
[n|<N Jj=1 kezd j=1
L sin? e ik,
— Jva
(2.4 = H — i (k)
kezdj=1 77 I
|n| d & sin?2me k;
25 2 1—— F(nb;) =2 — LI N (k.6).
@92 3 gy T =2 3 TTCmg e
Clearly, from k& = 0 contribution and positivity,
1
(2.6) (24) > [[=-Fn(0) = 5 I1=-V.
implying (2.1).
Since
Fon(z) < 4F N2 ()
sin? 2z = 4sin® x cos® < 4sin’ z <16 sin? g,
it follows that
4 sin?Te k;
(2.7 25 <8 > 1] ——2—5 " Fx (k.0)
kezd j=1 szkj
(2.8) <88y ¢ xl,

proving (2.2).
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§3. Regular Valuesof (¢, N)

Lemma 3.0. For given (¢, N) € RY x Z, there exist

(3.1 gf2<e<e
3.2 N/2 < N1 <N
suchthat for 0 < x < 1,
(3.3) 1< Boemal g
|A97617N1|

if

]. - d
3.9 g1 — o] < — 100d inRY
and

1 &

(3.5 [Ny — No| < 100dN

Proof. Assumefor eacht € [1/2,1], thereisx = x(t) < 1 such that

(3.6) |Ag, -1 =

100 d

Yte,(1— =

v < (LK) A (e (142 sen-

From a standard covering argument of [1/2,1] by a collection of intervals, we

deduce that

40 4

(3.7) Moz 41

[Ag 2eon]| —

wherethe intervals [(1 —

[ |A0’(1+1C1)0

|A9;(1*1%ﬁTﬁ)ta57(1 100 d #)ta N| < H 1"‘/@1) ,
T") a57(1+100 Jta N

55 ) ta, (14 155 % )to] aredisjoint of total measure

1 1
Hence
D ko >12d
and
3.9 H(l + Kq) > e2/3L Ko 5 8d

On the other hand, (2.2) implies that

(3.10)

Aoz x|

’4’4

3(d+1).
[Ag e 2n]

> 87
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Thus from (3.7), (3.9), (3.10), we have
(3.11) g3d+1) - —8d,

acontradiction.
Lett; € [1/2,1] besuchthat forall 0 <« <1,

(3.12) (1+ H)|A9,(1—mg)tls,(l+ﬁ sy N| 2 |A9,(1+WlO %)tls,(l+wlog)t1N|
and take
(313) &1 = t1€, N1 = th.

If (3.4), (3.5) hold, then

(3.14) Ao (1- e (1— )Ny C Nosea,Na C Ao (14 w8 )er (14 28 )N 5
and by (3.12),
1 |A6.co, N |
3.15 S22 <]+ K.
( ) 1+k |A97€17N1|
This provesthe lemma. O

Definition. We cal (¢, Ny) satisfying Lemma 3.0 regular.

Lemmag3d.16. Let A = Ay nx With(e, N)regularand X' = A\p_= . = n. Then
(3.17) AN = A1 = A% N = A|az) < 2k.
Proof. Write

(AxX) Z)\’ m).

If (A% X)(n) # 0, then thereism

K
(3.18) |m| < mN, [n—m| <N
such that
K
(3.19) Imb | < geae;
(320) I = m)8s ] < e5.

Hence, from (3.18)—(3.20),

(3.22) In| < (1 + —)N

(3.22) Im6 ) < (



ROTH’S THEOREM ON PROGRESSIONS REVISITED 163

and

(3.23) n € Ag,(14+18)e, (14 1255 )N-

Similarly, one seesthat if

(3.24) n € Np (1— 5 )e,(1— 185N
then
(3.25 A XN)(n) = E1| = A(n).

From the preceding,
(326) A+ X = Al = [[(AxX) = Ao

Do, (14 1) e, 1+ 157N \No, (- Yo (1— 157)N)

T00d
1

(3.27) < o] (186, (14 7257)e, (14 ris) N | = X0, = 1o, (1— 25 ) |

(3.28) < %,

using Lemma (3.0).
This proves (3.17). O

Lemma 3.29. Under the assumption of Lemma 3.16, we also have
(330) (A% X) = All2 < 2V/E[|Al2.
Proof. By (3.17) and the definition of ), i.e., (1.2),

IO ) = Az < 1O ) = AR V) = M < V2R(2] A1)
= 2V/K[AI7Y?
= 2V/F|Alz- -

§4. Estimation of exponential sum

Let§ € T¢, X = Mg, n With (¢, N) regular.
Lemma4.0. Assumez € T and

4.1 ‘ E A€ ™| > K.
Then, thereis k € Z? such that
1,21
. -2 —) =
(4.2) k| < Cdr (}:1og€j) =
121
(4.3) |z — k0| < Cd®k (§ 1og€j) =
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Proof. Consider the functions 7; and o defined by the graphs below

T 1

—)N N

Here ¢ is an appropriately chosen constant and Fourier transforms 7;,5 satisfy
decay estimates

(@49 B 0)1 < 22500 (— (22 kl) ")

(4-5) G| < 2N exp ( - (%w)”z

Thus

“o S e | < on e (— (Seel) ).

Clearly, from the definition of r; and o, we get

<

d
(47) ‘ Z /\n€2min:1c _ |_[1x| Z o H 7 (noj)e%rinm
j=1

R

1
m(|Ao,s,N| — Ao a—2)e, 1—22)n ) < 10

for an appropriate choice of ¢ (cf. §3).
Thus, if (4.1),

d
(48) ’ ZJnHTj(ngj)e%Tinz
j=1

K K
PIALS Ber e N
>2| |>2€1 €alN,

by (2.1). Hence
@9 TR S S

kezd
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and from (4.4), (4.6),

410 Y exp—[( ) 3 (el ) (%)muxw.enl/ﬂ > .

U

kezd j=1
One has
411) Zexp [_ (ﬁgk )1/2] %
keZ
Kelk|\ 1/2 cd 1/ kekg\1/2
@ 3 el () < e[ 505"
Split the sumin (4.10) as
(4.13) >+ X =m+UDn.
[kj| <K ma. ‘k ‘>1
Then, by (4.11),
C /
@19 < era () may ew (- [Gle ] )
and by (4.12),
e 1/2
(4.15) (I1) < (e1- ( )ZQXP{ (Cj‘d) ]
Take
Cd2 112 cd Cd12
to insure that
(4.17) 1) < %Cd"””'

Hence, by (4.10), (4.13), (4.14), (4.17), we get for some k € Z¢,

(4.18) kil < K; (1<j<d),
that
(4.19 exp — [ﬂﬂx + k@H} v > %(m)dcdnsl g
2
(4.20) |z + k6] < —[Zl Cdr < o (ngg ) .
J

From (4.18), (4.16), (4.20), the conclusion (4.2), (4.3) in Lemma 4.0 clearly
follows. O
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§5. Density
Let Ac {1,...,N} satisfy
(5.1 |A] > 6N.

For )\ aprobability measure on Z, define

(5.2 AA) =" A
neA

Starting from )y = ﬁﬂ{,]\, ,,,,, ~} and assuming A does not contain a nontrivial
triple in progression, we construct a sequence of probability measures \ of the
form A = \g. \ for varying d,0 € T?,c € R and M such that at each step, \(4’)
increases suitably for some translate A’ of A.

We agree, when introducing measures of the form Xy . »s, always to assume
(e, M) regular.

Themainissuein the argumentisthen how d, 6, £, M evolve along theiteration.

Assume for sometranslate A’ of A

(5.3 AA) =61 >0,

where A = Ag e .
Fix x > 0, to be specified, and define

(5.4) N = Ny eng enpy

vd T d

(55) N = )\97(%)257(%)21\4.
Let )" denote the measure

N =Xy if e 2z

(5.6) .

=0 otherwise
Thus

"

(5.7) AT =g (emy2e a(ex )2
where

-~ 0 1
Observe that

(59) Aé,e’,]ﬁ’ C Ae,Qs’,]W"
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According to Lemma 3.16 and the preceding regularity assumption, it follows
that

(5.10) A= (A X1 < &
(5.11) IN = (N * A1 < K
(5.12) IN = (V% X))y < &

(for an appropriate choice of constants c in (5.4), (5.5)).
Assume that for each m € Z,

(5.13) IN(A +m) — AA)| > 106 or  |[N(A +m)— AA)| > 10x.
Then, clearly, for either A\ = X or A! = )",

(5.14) D Am[A(A = m) = AA)| > 5.

Since, by (5.10), (5.11), also

(5.15) ‘Z)\m[Al(A’—m)—)\(A')] = [(AxA)(A) = AA)] < [(AxAY) =All1 < 3k,

it follows that for some m,
(5.16) M(A +m) > MA) + &
Hence, thereis either sometranslate A” = A’ +m of A satisfying
(5.17) IN(A") = NAN| < 10K;  |N'(A") = XNA)| < 10k
or, for sometranslate A” = A’ + m, thereis adensity increment
(5.18) NANY > MNAY+rk or N'(A") > NA) + k.
In the sequel, we assume

(5.19) 8?2 € Kk < 0.
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§6. Comparison of thelntegrals

Assume (5.17) for some translate A” of A. Following the circle method, consider
the sums

(6.2) S'= N, errine
6.2 S/ _ )\/ 627rin:r
A n
neA
(63) Sl/ _ Z )\Ze%rinw
(6.4) Sh= > AneminT
neA”
(64/) S/// — Z )‘ZI e%mw.

Since A (and hence A”) does not contain a nontrivia triple in progression,
(6.5) n= / S (2)? S (~2m)dw = 3 (N)2AL.
T neA’

On the other hand,
I = A[A’(A”)S'(@P [\"(A")S" (~2)]da

:)\/(A//)Q)\//(A//) Z )\/ )\/ )\//

niy m2”"m
ni+ns=22m

(66) :)\/(A//)Q)\//(A//) Z )\/ )\/ )\//

n ‘n—2m ‘m*
n,m

By construction of X', X', X", cf. (5.6), (5.12), we have
S = (D Mo M) | < IV = VX < s
©n (X

2\ 1/2
Vo= (X Xau N[ ) <IN = RN

Hence, from (5.17), (5.19), (6.7), it follows that

(69) (6:6) > (51— 10)*(1 — /%) X3
519 1
(6.9) o2 RINIE

We assume throughout the construction of the measures A = g . ar, 0 € T,
that the condition

1 d
(6.10) log M > Z log g + dlog 5
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is satisfied.
Thus
(6.11) (65) < ﬁ S0 <

and from (6.6), (6.9), (6.11),

1
M(%)2(d+1)51 - Eq |

N3 < M3

1
(6.12) |1y — Io| > 3 SN 3.
Estimate
(6.13) [y — I S/T|521($)|2-|5}§ = X"(A")S"|(—22)
(6.14) +/ S () = [N(A")S" ()] \"(A")] 8" (—2x)).
T

§7. Density Increment (1)
Assume first that
(7.0 (6.14) > SHINB.
Since
(7.2) [[(SW)? =[N (APl < [[SAI3+N (A2 N5 < 2N (A" [IN']15 < 3. [IX'|I3,

(7.1) clearly implies that

2
(7.3) / [(57)% = N(A")S?| > —B||X|\§,
where
(7.4) F={zeT:|9"(-2z)| > 10735,}.

Estimating the left side of (7.3) as
187 = N (A")S"| 15 + N (A [N [l2 1S — X' (A")S"| 2|2
we see that
01
(7.5) 187 = N'(A")S| 22 > 70!V ll2-

In order to specify F, apply Lemma 4.0 with X replaced by X"’ given by (5.7).
Thusif 2 € F, there exists k ¢ Z¢ such that

(7.6) k| < ¢ (

)—j (1<j<d
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and
- ds 1\21
(7.7) |l — k)| < C(S—I(Zlog gj,) =,
where d is given by (5.8).
Thus, if we let

(7.8) A=A
with

~ & 12
(7.9 € —CE(ZIOg g) 3

~ B 5519 1\-2
(7.10) M—cﬁ(ZIOg g) M,

it follows from (7.6), (7.7) that for z € F and n € A,

Inz|| < [k;| 06| + [n] (7.7)

d 1,2 ~ ~
< 5—Z(Zlog g) Z €;/e; + M.(1.7)
(7.11) < 107362
Recall (5.4), (5.19)

(712) )‘I = )\976%676%1\4;

then from (7.9), (7.10), (3.16), the multiplier j associated with 7\ also satisfies

~

(7.13) IOV X) = N[y < 107567
Hence

(7.14) IOV % A) = Nl < 1073652 \|J2.
Write

Sg(x) _ Z )\;627rinw

neA”
(7.15) = 3 (X A)pering
neA”
(7.16) + 50 (X = (V5 ), exmine,
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From (7.14),
Write
(715) = Z )‘fminfm 627rinw
neA” m
(718) — Z )‘;n eQTrimm X(AH - m)
(719) + Z Ainxn—m(e%rinw _ 627rima:).
neA” m

By (7.11), one hasfor z € F

(7.19)| = ‘ S Ny (e2Rine — 2nitn—m)
neA’ m
= ‘ ij(e%\'imm _ |: Z /\n . eQﬂ'Z‘(nfm)x:|
neA
(720) <10~ 352 |:Z )\m:| ’ Z )\/ omike
keA’ —m

hence
(7.21) 1(7.29)] .|, < 10252 X'

Thus, from (7.17), (7.21),

N AN Q! / 2mimazy "no_ A Q!
15 = X (A M|zl < | e A" = m) = X (4) 0

(7.22) = () = X =) 2L

m

Consequently, (7.5), (7.22) give

(S =34 —mp) > 2y,

m

(7.23) SOOIV (AT) = XA = m)]2 > o

4.104

and

(724)  [N(A") + max A" —m)] (> XA - XA ] > 0

4.10%

1711

T2
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From (7.24), either for some m
N 4

(7.25) MA” = m) > 2 6

or

(7.26) STV (A = A(A” —m)| > 8,/10.
Since again

(7.20) | SN VA = XA = m)l| = VA - (e 2]

(7.26), (7.27) imply that
N NI (AN 1 01 _ 5? 5_1
AT —m) A(A)>2(105 106)>1o6

~ 5.1
( >7) A

(7.28) AA" —m) (A") — 10k + 10756, > 6, + 10776,

for some m. Thus (7.25), (7.28) again give the increment

~ ~
R

(7.29) AMA) > 61+ 10776,
for some translate of A

~

(7.30) A=A" —m.

§8. Density Increment (11)

Assume next

1
(8.1) (6.13) > 67| 3.

Since || [la = N (A2 X |2 ~ 617%|N||2, (8.1) clearly implies

1
(8.2 / 1S () P|S% — X"(A")S"|(=2x) > —=67|IN]13,
[—2z€F] 10
where
1
(8.3) F={xeT:|S% -\ (A"S"|(x) > E(Sf}.

Distinguishing level sets, we may further specify some

(8.4) 61/10 <7 <2

7.13)

3
< 107569
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so that
2
(85) [ 1si@P > SV,
[—2z€Fo] Tloga
where
(8.6) Fo={zxeT: |5 —\N(A")S"|(x) ~ T}

In particular, Fy # (). Thisfact allows usto perform afirst density increment (that
will be advantageousfor ‘large’ 7). Take zg € T with

(8.7) |8 (zo) — N (A")S" (x0)] > T61.

Recalling (5.5) where § € T4, replaced by d + 1 and 9 by § = 0 U {xo} € T4+1,
Take

©8) RiF 5 2= (%))
=5 )

and let

(8.9) A=\

Then

(810) Silwo)= > Me®™™ ™ = 3 AL Aa-me®™ 0 £ 0(]N = (V% A)h)

neA” neA’” m
(8.11) G190 §™ v e2mimeo X (A" — m) + o( 3 Anfe?mimee 1) 4 asf)
(8.12) <D ONRAA” = m)e’Tme 57,

since ||naol| < 562 forn € A.
Thusfrom (8.4), (8.7), (8.12),

(813) ‘ Z )\l/ A/l )\l/ (A/I) 2mimaxo > 51,7_
(8.14) D ONLIMA” —m) — X'(A")] > 517
Again,

(8.15) ] STNLIMA” = m) = N(AN)]| = [V % A (A7) = N(A”)] < 8.
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From (8.14), (8.15), we conclude that for sometranslate A = A” — m of A,

(8.16) AA) > N(A") + %(%517 - asf) > N(A") + éﬂsl.
Assume
(8.17) 791 > 10kK.

Recalling (5.18), we obtain the density increment

(8.18) NA) > 6 — K+ %751 > (1 + 7/10)51 > 61 + k.

§9. Density Increment (I11)

Our next aim isto exploit (8.5) to produce a density increment (to be used when 7
is‘small’, more precisaly, 76; < 10k).
Depending on the structure of F,, we distinguish two cases. Recall (8.5)

01

(9.1 1S4 lgll2 > X1z,

Tlog%
whereG = {z € T: —2z € Fy}.
Lett,...,tr—1 beamaximal subset of G subject to the condition that for each

r=1,...,R—1

d
1
(9.2) H%T + ijaj +2) lit| > .y
j=1 S#T
whenever k; € Z,|k;| < K; and /, € {0,1,—1} with0 < v < 1 and K; to be
specified later.
Set

tr=1/2.

Thusif = € G, thenfor somek; € Z, |k;| < K; and ¢, € {0,1, -1}, we have

1< . 1
(9.3) Hx+§j§_:1kj9j+§ertr < F

Let then ) )
0 — (= - d+R
0= (291,...,29d,t1,...,t1{) eT

and
ECRUE Mezy
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to be specified.
For
n e /~\ = A§7§71\;f

and z € G, (9.3) implies

~ d R
M
(94) HTLJ?” < ’}/—M + ZKjéj + Zéd+7‘ < 1073(5411
j=1 r=1
if we assume
(9.5) M < %5?M
(9.6) é-<ifor1<j<d
) J QdKJ -0
54
9.7 €j<2—ilford+1§j§d+R.
Proceed asin §7.
Recall that

N =N esecsm,
and let \ be associated to A introduced above.
Assume, moreover, that

(9.8 g < cg—gsj for1<j<d.
From (9.5), (9.8),

(9.9 [N = N« Allp < 107364

and

(9.10) [N =X % A2 < 107362 || X2

Write

554(],‘) — Z )\;leQWinx — Z (/\/ * 5\)n€2mﬁnm + (911),

neA” neA”

where (9.11) is defined by above equation and by (9.10),
(9.12) 19.12)]2 < 107383 |[X'[|2.
Write

(9.13) D (N xA)e?min =

neA”
Z Afm'j\n_meQﬂ'imm + Z )\;nﬂn_me%rimw [627ri(n7m):r _ 1]

neA” m neA” m
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Invoking (9.4), we see that for = € G, the second term in (9.13) is at most
(9.14) ‘ Z S\m [627rim:r o 1] [ Z )\/n_m62m(n7m)m}

neA”
1079603 M| D0 N,
m

<

keA” —m
Thus
Z (}\/ 27mnw _ Z )\ Al/ _ I 27rim:r + (915)
neA
with
(9.16) 1(9.15)|gl2 < 10735L.| N |2

From (9.1), (9.12), (9.16), it follows that

[Z(;\(A" —m)A\L,) } > HZ)\ (A" — m)N, e2mima

o1

,/Tlog%

ol

> ( — 107362 — 107751 ) 1N |2

Hence
- 1\-1
/ " 2
(9.17) SN AA 2542 (Tlog 51) .
The left side of (9.17) is at most

[max A(A” —m)].(N * A)(A") < (N(A")+ 10*45;*)m7%xX(A" —m)

m (99

< 261 max A(A” — m);

and we conclude that for sometranslate A = A” — m of A,

- 51
9.18 AMA _
( ) (4) > QTlog%

In the definition of X, from (9.5)<9.8), d = d + R and M, ¢ are subject to the

conditions

(9.19) M < ﬁéﬁ

and

59
(920) {Ej < cd2 mln(£]7 K )fOI' 1 < J < d

£ < ﬁford<]§d+R.
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The parameters~ and K; (1 < j < d) remain to be chosen.

The construction described in this section leading to (9.13) isuseful only if Ris
not too ‘large’ (to be specified later). If R islarge, we follow adifferent procedure
described next.

§10. Density Increment (1V)

This section contains the new analytical ingredients.
Recalling the definition of F, and G, denote v, = —2¢.(1 < r < R). Thus
P, € Fo; and from (9.2),

d
1
(10.1) ‘ Uy + Z k0 + > Lt > i
j=1 S#T

whenever k; € Z, |kj| < K; and £, € {0,1,—1}.

Recall that
(10.2) Sh(x)= > Ane’™ne,

neA’
where
(10.3) N = Ng.cn g
and
/ n_ (CR)2 n_ (CR)2

(10.3) e—(d)eandM_(d)M.

Returning to (8.6), we havefor each 1 < r < R, either

1
(10.4) S ()| > 5761
or
(105) 18" ()] > 37
If (10.5), application of Lemma4.0 to \” implies by (4.2), (4.3), (10.3) that
&, 1\21

(10.6) i — kOl < C 57 (Zlog Zj) -

with & € 77 satisfying

dt 1321
(10.7) %51 <ot (Zlog Ej/) -



178 JEAN BOURGAIN

In order for (10.6) to contradict (10.1), take in (9.2), (9.20)

, 6 s—14 1N\21 .
(10.8) K ~ cd’0; (Zlog 6j,) - (1<j<d).
andin (9.19)

1\-2
16510 1

(10.9) v =cd” 07 (Zlog Ej) .
Hence
(10.10) IS4 > groifori <7< R

Next, fix R c {1,...,R—1},|R| < é;* andlet a, € C,|a,| < i forr € R.
Set

(1011) 0< Qn — H (1 + Re areQWian‘).
reR

We first analyze the expression

(10.12) > X,

n

again relying on (10.1).
Proceeding asin §4, definefor each j = 1, ..., d the smooth function 7;

e 'I(l + c%)s}’
and o
1
t M// | (1+C§)M”

In particular, recalling (10.3), our construction gives

d
(10.13) Xar(n) £ 3 on [ ] 7i(nby) < (),
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where

(10.14) A= e e

From regularity and Lemma 3.0,

10.15 Al — [A] < 82|
1
(10.16) IN = X[l < ed2.

From positivity,

(10.17) Z)\” n < |A”| Zan H 7;(n0; H 1+ Rea,e*™mvr),

reR

where the right side of (10.17) equals

d
(10.18) | Al,,| > on [ 7i(nb;)
n j=1
(10.19)
+%O( Z 87° Z ‘ Zan H 7i(nb;)e(n(v1hr, + -+ + vsidy,)) D
| | 1<|s|<|R| T1< <r_€i713 n

From (10.13), (10.15),

(10.20) (10.18) < ||/f,,|| <1462,

We estimate the inner sum in (10.19) by Fourier expansion of the functions r;, as
in §4. By construction of 7;, we may ensure the decay estimates

(10.21) 175 (k)| < 22 exp(— (c—s |k|) )
Also
(10.22) |3(A)|<2M"exp(_(ch"||A||) )
Hence

‘ ZUn H 7i(nbj)e(n(vir, +---+ szrs))‘ <
S T Imks I\Zon n(k O+t + - vatn,)|

kezd
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Invoking the bounds (10.21), (10.22), we obtain the estimate

9d+1 HEH M Z exp — [( Z(Eljl|kj|))l/2
kezd
(10.23) + (%M IO+ v+t )
Split the summation as

2= 2t )

d . .
keZ Ik |<K; max‘}};ff‘>1
Fi

Invoking (10.1) and recalling (10.3") and (10.9), we see that the contribution of the
first sumin (10.23) is at most

ﬁM”)W} @D

d
(10.24) 2%+, H ef.M" . exp [— ( d I

j=1

6\1/2 _
2d+2|A//| exp [_ (%) } < 6—251 2|A//|

Recalling (10.8), we get the bound

d —2\d 4
) ) —2
(10.25) A" L) [— C—l(ngj)l/Q} < e 2077 |A"]
j J

d2

for the contribution of the second sum.
It follows from (10.24), (10.25) that certainly

(10.26) (10.19) < c6%;
and hence by (10.20), (10.17),

(10.27) D> NI, <1+ cdt
At this point, we invoke the following general property (see Appendix).

Proposition () . Let (Q2, 1) be a probability space and (¢;)1<;< real func-
tions on  satisfying

() il <3 (1<i<h)

and

k
(ii) /H 1+ a;¢;)du < 2 for all a; € [—1,1].
j=1
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Let A Cc Q, u(A) = ¢ and assume that

(iii) [idu>rs a<i<n.
A

Then

. 1

(iv) k< Cr7%log 5

and thereisa subset 7 C {1,..., k} such that

7k
I ~
) e,
and
(vi) / T1 +ei)du > 601+ g|I|).
Ajer

We apply Proposition (x) to the probability measure A" on Z and the set A”.
If R< 672 letR ={1,...,R—1}. Otherwise, takeasubset R  {1,...,R—1}
of size 5; 2. From (10.10), we may take b, € C, |b,| < 1 such that

7'51

" _ " e2mint, e
(10.28) Reb,S%(¢¥y) = Y Nl Re(bre ) > 55

neA’
In Proposition (x), let
k=R]
Or = Re(b,,e%mw’”) forre R

Then (10.27) implies condition (ii), and (10.28) implies (iii). From (iv), it follows
that in fact

(10.29) IR| < 77 %log (%
1
We obtain asubset I C R satisfying
R

(10.30) 0= |I] ~ 1T| o

01
and
(10.31) ST NI (1 + Rebre(nyy)) > (1+ 410|1|)A"(A").

neA’ rel

Recall (5.5)

N = Ng e(5)2e,e(5)2 M-
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Define
(10.32) AV =\ 52
0,c(5)2(1+ 1)5 c(8)2(1+-F)Mm
and
A=A

where

6= (01,....000.(r €1)) € T4
(10.33) 5= (cg—gs K(re I)) € RIH

M = cZ M.

By construction, A” ¢ A° and
(10.34) 1A < (14 e82)|A].

If ne A" andm € A, thenn —m € A°. Therefore,

_ _ 1 1
0 _ 2 "
Em An—mAm, E A = A > (1 — ¢dy )|A“| forne A
and

(10.35) an mAY > (1 — o2\
From (10.31), (10.35),

> oA [T (1+ Re(pe(nisy) > (1 —263)(1+ TE)/\”(A”)

neA’” m rel

(10.36) > ( Tt ) N (A",
Write the left side of (10.36) as

(10.37) Zx (A" —m)X9, T (1 + Re(bre(ma,)))

rel
(1038) + > Rl [H (1 + Re(be(nyy))) - [[ (1 +Re(b,,e(m¢,,)))]
neA’” m rel rel
We need to estimate (10.38). Expanding the product [], . ;, we obtain
Z M Al Z ( H %bg’“))e(m Z V7-¢T) (1 —e((n—m) Z err));
neA” m ScI res resS res

ve{l,—-1}°
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wherewelet b = b, b0 ~ b,
It follows from (10.33) that if \; # 0, then

(10.39) H Vpthy ‘ < o2,
We now use the spectral synthesis property of the point 0 € T.
Thus
(10.40) 1— ™0 =" p.e?™ for [|0]| < c67,
Z€EZ
where
(10.41) D lps| Sedt.

Substitution of (10.40) in (10.38) gives

(10.42)
—sz Z ;\n,—mx\om Z (H%bg’” ) (m—|—z n—m (ZVT¢T))
ZEZL neA’” m Scl
1/6{1,71}5
= —sz Z MmN H (1+ Re(bre(m + z(n —m)i,)))
z2€Z neA’” m rel
and

(10.42) < Z |p2| Z An—mA2, H (1+ Re(bre(m+ z(n—m)yy))))

Z€EZL n,m rel
(10.43) (1041) co? max maxz A\ H (1 + Re(bre(zktpr)e(map,))).
m rel

From estimate (10.27), which remain valid with )" replaced by \°, and letting

Q= [T (1 + Re(bre(zkt,)e(nn))),

rel

we conclude that
(10.44) (10.38), (10.42) < co?.
Recalling (10.36), we find

(14 co?). max)\ A" —m) > Z MA" —m)A2, H (1 + Re(bre(map,)))

rel

_E AN 82
(10.45) > (1+ 50))\ (A") — cd2.
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Hence, we get adensity increment for some translate A = A” —m of A

2
)(51 —H—C(S%) >0, — 2Kk + Lﬁ'él.
loga

Tt

(10.46) AA) > (1 + 55

We may now specify for which ranges of R we apply procedure (111) or (1V).
Requiring in (10.46)

(10.47) AMA) > 61 + &,
apply (IV) if
1
(10.48) R> "85
~ 7'2(51

In fact, assuming (10.48) and reducing R to a set of size (10.48), we obtain
from (10.30)

(10.49) 0~

7'(51

(recall the assumption that 76; < 10x).
The new Bohr set A is specified by (10.33).
If
log %
’7'251 ’

(10.50)

we apply the procedurein §9.

§11. Summary

Let A = Mg - a St. for sometranslate A’ of A,
(11.1) MA") =6, > 6.

We summarize the different scenarios of density increment occurring in the previ-
ous analysis. Let
6 < Kk < 6y

be afixed parameter.
If (5.18), thereis an increment « for anew Bohr set A = A; . ;; for which

d=d
(11.2) E> c(g)ze
M > c(§)2M
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If (7.1), we obtained in §7 an increment 10~76, for

d=d+
(11.3) e> (c% ( Slog L) i %)
M > %(Zk@ )2M

(cf. (7.9), (7.10)).
If 761 > 10k, thereis an increment « for

o = §<< i)'

= % ((er)/d)* M

Sy
||

(cf. (8.8),(8.9)).
If 701 < 10k, there are 2 alternatives.
In the alternative considered in §10, (10.47) gives adensity increment of « for

d=d+ /¢
_ 5% . 8%
(11.5) £ (CW’QL)
14
M = cg—ZM,
where by (10.49),
(11.6) (< k)82

The alternative considered in §9 is of a different nature. Here we obtain a new
density

(11.7) % i
27log -~ 20klog 5-
for
d=d+R
_ 4
_ 5320 1 1
E> (e (Xlog=) &
(11.8) ( ( ) \_Sfl/ )
d-d

M > cd_85%6(2 log %)7 M,
recalling (9.19), (9.20), (10.8), (10.9), and where by (10.50),

/ilog%

’7'251

(11.9)
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Cases (11.2), (11.3), (11.4), (11.5) thus alow a density increment

(11.10) 56 4n
for

d<d+ 5
(11.11) €> C—E(Zlog %)_Q(EL/L)

d—d
_ 59 1 —2
M>cd—},»(210g€—j) M.

Since we always assume § > 1, d < log N, g; > 5, werewrite (11.11) as
d<d+ &
S 1
(11.12) &> g (5L 1)
id
M > fiogmym M.
We take
(11.13) o — 5?2-

If, the alternative from §9 occurs, we obtain a new density

_ 18 5%/2
(49 log logN ~ loglog N
for
d<d + M
(11.15) E>W(s,1...1)
d—d
/] M
M > g vy
for some
(11.16) 5 <7 <106
Next we explain the strategy.

Starting from A c {1,...,N}, |A| = 6N (d = 0,M = N), we increase the
density in Bohr sets according to procedures (1), (I1), (1V). If, a some point,
procedure (I11) is required, we apply (111) and continue the process, taking each
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time x = 67 with at each step an increment of the number of generators by 1 and
the density by at least 67.

Thus process (111) is applied at most once.

In the first stage, the parameters 6, d., €., M, evolve according to (11.10),

(11.12)
5()¢+1 Z 504 + 52/2

dos1 < do + 05"

(1117) Eat+l > W(&a, ]., A | )

dot1—da

M,
Ma+1 > (Tog N)20

Assume we encounter (I11) at some step a. Then, according to (11.14), (11.15),
for some

(11.18) 55 <1 < 62

we get

(11.19) Saps > —%
' 17 Tloglog N

5;/2 (log log N)

dat1 < ds + =
1
(11.20) Ea+1 > W(Z‘:&, 1,...1)
dat1—da

Mair > (i iy
For o > & (third stage),

5a+1 > 0y + 5(2)[

dot1 < do+1
(11.21) + 1
Ea+1 > W(Em 1)
M,
Ma+1 > (]og N)20 .
The processterminates at « = 3 if
(1122) Ep ~ 1

orif (6.10) isviolated, i.e.,

1
(11.23) log Mg S E log o + dgloglog N.
,- B.J
j
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Assume (I11) is not encountered. Then (11.17) is iterated (only the first stage
appears). Starting from &, = 4, the doubling appearsin o ~ §~1/? steps; and the
number of generatorsis at most §—1. Certainly,

1
(1124) €a,j > W

N

11.25 My>-— 2
( ) (log N)206~%/

Since we reach (11.22) againin 5 ~ §—1/2 steps, we need to ensure that

1
(11.26) log N > =75 loglog N,
and thisis satisfied for
loglog N\ 2/3
(11.27) 5> (W) .

Next assume (I11) occurs at some stagea < 6—/2. Thus

1

. -1
and
(11.29) Mg > N

(log N)206-1/2"

According to (11.19), (11.20),

da
6&+1 > 7 loglog N

/
dos1 S 071 + loglog N %"
(11.30) cas > ((1og N)7205 (log N )‘40)
da dat1—da

i N
MaJrl > (log N)Qolrl/z :

Continuing with the iteration (11.21) until reaching (11.22) clearly gives

B<a+1+C651, So-12 4 tloaloall

dg < dayr+CoLL S 671+ 65272 loglog N + 65 '7loglog N
(1131) ep > ((10g N)—206_1/2—(10g10g N)Té;l, (10g N)—(log log N)76;" )
ds dg—da

M5> N

(log N)105_1/2+(log log N)'régl .
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Examining (11.23), using (11.31) and (11.18), we see that we need to ensure that
(11.32)
1/2

log N >> (loglog N)26~1/2 + 6= (loglog N)26~1/2 + (loglog N)? (5 (%).75;1.
72 a

Hence
log N > (log log N)2673/% + (loglog N )365%/?

log N >> (loglog N)3.673/2,
and from which we obtain the final density condition

(loglog N)?

Appendix

We prove Proposition (x). Let usrecall the statement

Proposition () . Let (©2, 1) be a probability space and (¢;)1<;< real func-
tions on  satisfying

(i) lpjl <1/2 (1<j<k)
and
k
(i) /H (1+ajp;)dp <2 foralla; €[-1,1].

Let A Cc Q,u(A) = § and assume that

(iii) [ idu>rs a<i<n.
A

Then

. 1

(iv) k< Cr%log 3

and thereisasubset 7 c {1,..., k} such that

Tk
I| ~
v 1~
and
(vi) /H 1+ @)du > 61+ 1))

jerl
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Proof. Letl<p<2Q={1,-1}* andwrite

(1) H/H 1"‘\/—1“’]% /“

12@)

> (p—l)‘s‘[/ [H%}dur}m.

Sc{l,...k} A "jes

By hyper-contractivity, the left side of (1) is bounded by

k
IV e B A 2
2 A}Jf +we)du| = ITXale@) < 1Tl

where T is the operator

©) o= [1 f[ (1 + wypy)d

Obvioudly,
k
176l < [ 1r@I[ [ TT0 +wjosde]dn =171
Jj=1
hence
4 [T)1-1 < 1.
By (ii),

17l < [ [ TL0 -+ wsos)du] 111 < 20
j
which implies that
©) 1Tl co—00 < 2.
I nterpolation between (4), (5) gives

(6) IT|lp—p <2 forall<p<c.

Thereforefrom (1), (2), for1 < s <k,

(7) { > | [/A {jens%}dﬂr}l/z SQ(ﬁ)S/Qél/P.
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Choosing
1
P + log1/4’
we have that
1/2 1\ /2
(8 Z /H%dﬂ < (log 5) 0.
Sc{l ..... geS
IS1=
Taking s = 1 and recalling (iii), we have
1/2
roVE < (1og5) s,

SO
9) k< (1og1)7'*2

5 )
whichis (v).

ThesetI C {1,...,k},|I| = ¢ = nk ischosen at random. Write

/HH% )dp = (A +Z/sogdu+ > Z/H%du

jer jel 2<s</ SCI jes
(iii) V4 1/2
(10) > 0+ Lrd — Z ( ) Z / H gojdu
2<s<¥t SCI JjES

We bound the last term in (10) by averaging over al sets I C {1,...,k} of size
|I| = ¢. Denote this averaging operator E;. Clearly,

EI{Z‘Aijdu‘}1/2<{SC —‘/H% u‘ 1/2

|S1=s Size*
(12) @ (%)S/Q(logg)mé < (20108 5)”25.
Hence
(12) /JEHI 1t 5)dp | >5(1+nk7—2§g (%)m).
Take
(13) n=c—

log%'
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From (9),
1 2k
2
n°klog = =c—— < 1;
1) log %
and therefore,
2k log 1
(14) (12) > 5(1 4kt — 2k log 5) > 5(1 n 277/@7),
which is (vi). This proves Proposition (x). O
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