The Canonical VDW Theorem
An Exposition by Bill Gasarch

We first recall the following version of van der Waerden’s theorem.

VDW For every \(k \geq 1 \) and \(c \geq 1 \) for every \(c \)-coloring \(\text{COL} : \mathbb{N} \rightarrow [c] \) there exists a monochromatic \(k \)-AP. In other words there exists \(a, d \) such that

\[
\text{COL}(a) = \text{COL}(a + d) = \cdots = \text{COL}(a + (k - 1)d).
\]

What if we use an infinite number of colors instead of a finite number of colors? Then the theorem is false as the coloring \(\text{COL}(x) = x \) shows. However, in this case, we may get something else.

Def 0.1 Let \(k \in \mathbb{N} \). Let \(\text{COL} \) be a coloring of \(\mathbb{N} \) (which may use a finite or infinite number of colors). A *rainbow \(k \)-AP* is an arithmetic sequence \(a, a + d, a + 2d, \ldots, a + (k - 1)d \) such that all of these are colored differently.

The following is the *Canonical van der Waerden’s theorem*. Erdos and Graham [?] claim that it follows from Szemerédi’s theorem on density. Later Prőmel and Rödl [?] obtained a proof that used the Gallai-Witt theorem.

Theorem 0.2 Let \(k \in \mathbb{N} \). Let \(\text{COL} : \mathbb{N} \rightarrow \mathbb{N} \) be a coloring of the naturals. One of the following two must occur.

- There exists a monochromatic \(k \)-AP.
- There exists a rainbow \(k \)-AP.

Proof:

Let \(\text{COL}^* \) be the following *finite* coloring of \(\mathbb{N} \times \mathbb{N} \). Given \((a, d) \) look at the following sequence

\[
(\text{COL}(a), \text{COL}(a + d), \text{COL}(a + 2d), \ldots, \text{COL}(a + (k - 1)d)).
\]

This coloring partitions the numbers \(\{0, \ldots, k - 1\} \) in terms of which coordinates are colored the same. For example, if \(k = 4 \) and the coloring was \((R, B, R, G)\) then the partition is \(\{\{0, 2\}, \{1\}, \{3\}\} \). We map \((a, d) \) to the partition induced on \(\{0, \ldots, k - 1\} \) by the coloring. There are only a finite number of such partitions. (The Stirling numbers of the second kind are \(S(k, L) \) are the number of ways to partition \(k \) numbers into \(L \) nonempty sets. The Bell numbers are \(B_k = \sum_{L=1}^{k} S(k, L) \). The actual number is colors is \(B_k \).)
Example 0.3

1. Let \(k = 10 \) and assume

\[
(COL(a), COL(a+d), \ldots, COL(a+(9d))) = (R, Y, B, I, V, Y, R, B, B, R).
\]

Then \((a, d)\) maps to \({\{0, 6, 9\}, \{1, 5\}, \{2, 7, 8\}, \{3\}, \{4\}}\).

2. Let \(k = 6 \) and assume

\[
(COL(a), COL(a + d) \ldots , COL(a + (5d))) = (R, Y, B, I, V, Y).
\]

Then \((a, d)\) maps to \({\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}}\).

Let \(M \) be a constant to be picked later. By the Gallai-Witt theorem there exists \(a, d, D \) such that all of the following are the same \(COL^* \)

\[
\{(a + iD, d + jD) \mid -M \leq i, j \leq M\}.
\]

There are two cases.

Case 1: \(COL^*(a, d) \) is the partition of every element into its own class. This means that there is a rainbow \(k \)-AP and we are done.

Case 2: There exists \(x, y \) such that \(COL^*(a, d) \) is the partition that puts \(a + xd \) and \(a + yd \) in the same class. More simply, \(COL(a+xd) = COL(a+yd). \)

Since for all \(-M \leq i, j \leq M, \)

\[
COL^*(a, d) = COL^*(a + iD, d + jD).
\]

we have that, for all \(-M \leq i, j \leq M, \)

\[
COL(a + iD + x(d + jD)) = COL(a + iD + y(d + jD)).
\]

Assume that \(COL(a + xd) = COL(a + yd) = RED. \) Note that we do not know \(COL(a + iD + x(d + jD)) \) or \(COL(a + iD + y(d + jD)) \), but we do know that they are the same.

We want to find the \((i, j)\) with \(-M \leq i, j \leq M\) such that \(COL^*(a + iD, d + jD) \) affects \(COL(a + xd). \)

Note that
if

\[
a + xd = a + iD + x(d + jD)
\]
then

\[xd = iD + xd + xjD \]

\[0 = iD + xjD \]

\[0 = i + xj \]

\[i = -xj. \]

Hence we have that

\[a + xd = (a - xj)D + x(d + jD). \]

So what does this tell us? For all \(-M \leq i, j \leq M\),

\[COL(a + iD + x(d + jD)) = COL(a + iD + y(d + jD)). \]

Let \(i = -xj\) and you get

\[COL(a - xjD + x(d + jD)) = COL(a - xjD + y(d + jD)). \]

\[\text{RED} = COL(a + xd) = COL(a + yd + j(yD - xD)). \]

This holds for \(-M \leq j \leq M\). Looking at \(j = 0, 1, \ldots, k - 1\), and letting \(A = a + yd\) and \(D' = yD - xD\), we get

\[COL(A) = COL(A + D') = COL(A + 2D') = \cdots = COL(A + (k-1)D') = \text{RED}. \]

This yields an monochromatic \(k\)-AP.

What value do we need for \(M\)? We want \(j = 0, 1, \ldots, k - 1\). We want \(i = -xj\). We know that \(x \leq k - 1\). Hence it suffices to take \(M = (k - 1)^2\).

\[\square \]

\textbf{Note 0.4} We used the two-dimensional VDW to prove the one-dimensional canonical VDW. For all \(d\) there is a \(d\)-dimensional canonical VDW, and it is proven using the \(d+1\)-dimensional VDW. The actual statement is somewhat complicated. The interested reader can see [?].
References
