
The Canonical VDW Theorem
An Exposition by Bill Gasarch

We first recall the following version of van der Waerden’s theorem.
VDW For every k ≥ 1 and c ≥ 1 for every c-coloring COL : [N] → [c] there
exists a monochromatic k-AP. In other words there exists a, d such that

COL(a) = COL(a + d) = · · · = COL(a + (k − 1)d).

What if we use an infinite number of colors instead of a finite number
of colors? Then the theorem is false as the coloring COL(x) = x shows.
However, in this case, we may get something else.

Def 0.1 Let k ∈ N. Let COL be a coloring of N (which may use a finite
or infinite number of colors). A rainbox k-AP is an arithmetic sequence
a, a + d, a + 2d, . . . , a + (k− 1)d such that all of these are colored differently.

The following is the Canonical van der Waerden’s theorem. Erdos and
Graham [?] claim that it follows from Szemerëdi’s theorem on density. Later
Prömel and Rödl [?] obtained a proof that used the Gallai-Witt theorem.

Theorem 0.2 Let k ∈ N. Let COL : N → N be a coloring of the naturals.
One of the following two must occur.

• There exists a monochromatic k-AP.

• There exists a rainbox k-AP.

Proof:
Let COL∗ be the following finite coloring of N× N. Given (a, d) look at

the following sequence

(COL(a), COL(a + d), COL(a + 2d), . . . , COL(a + (k − 1)d)).

This coloring partitions the numbers {0, . . . , k − 1} in terms of which
coordinates are colored the same. For example, if k = 4 and the coloring
was (R,B,R,G) then the partition is {{0, 2}, {1}, {3}}. We map (a, d) to
the partition induced on {0, . . . , k − 1} by the coloring. There are only a
finite number of such partitions. (The Stirling numbers of the second kind
are S(k, L) are the number of ways to partition k numbers into L nonempty
sets. The Bell numbers are Bk =

∑k
L=1 S(k, L). The actual number is colors

is Bk.)
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Example 0.3

1. Let k = 10 and assume

(COL(a), COL(a+d), . . . , COL(a+(9d)) = (R, Y,B, I, V, Y, R, B, B, R).

Then (a, d) maps to {{0, 6, 9}, {1, 5}, {2, 7, 8}, {3}, {4}, }.

2. Let k = 6 and assume

(COL(a), COL(a + d) . . . , COL(a + (5d)) = (R, Y,B, I, V, Y ).

Then (a, d) maps to {{0}, {1}, {2}, {3}, {4}, {5}}.

Let M be a constant to be picked later. By the Gallai-Witt theorem there
exists a, d, D such that all of the following are the same COL∗

{(a + iD, d + jD) | −M ≤ i, j ≤ M}.

There are two cases.
Case 1: COL∗(a, d) is the partition of every element into its own class. This
means that there is a rainbow k-AP and we are done.
Case 2: There exists x, y such that COL∗(a, d) is the partition that puts
a+xd and a+yd in the same class. More simply, COL(a+xd) = COL(a+yd).
Since for all −M ≤ i, j ≤ M ,

COL∗(a, d) = COL∗(a + iD, d + jD).

we have that, for all −M ≤ i, j ≤ M ,

COL(a + iD + x(d + jD)) = COL(a + iD + y(d + jD)).

Assume that COL(a + xd) = COL(a + yd) = RED. Note that we do not
know COL(a + iD + x(d + jD)) or COL(a + iD + y(d + jD)), but we do
know that they are the same.

We want to find the (i, j) with −M ≤ i, j ≤ M such that
COL∗(a + iD, d + jD) affects COL(a + xd).

Note that
if

a + xd = a + iD + x(d + jD)
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then

xd = iD + xd + xjD

0 = iD + xjD

0 = i + xj

i = −xj.

Hence we have that

a + xd = (a− xj)D + x(d + jD).

So what does this tell us? For all −M ≤ i, j ≤ M ,

COL(a + iD + x(d + jD)) = COL(a + iD + y(d + jD)).

Let i = −xj and you get

COL(a− xjD + x(d + jD)) = COL(a− xjD + y(d + jD)).

RED = COL(a + xd) = COL(a + yd + j(yD − xD)).

This holds for −M ≤ j ≤ M . Looking at j = 0, 1, . . . , k − 1, and letting
A = a + yd and D′ = yD − xD, we get

COL(A) = COL(A+D′) = COL(A+2D′) = · · · = COL(A+(k−1)D′) = RED.

This yields an monochromatic k-AP.
What value do we need for M? We want j = 0, 1, . . . , k − 1. We want

i = −xj. We know that x ≤ k − 1. Hence it suffices to take M = (k − 1)2.

Note 0.4 We used the two-dimensional VDW to prove the one-dimensional
canonical VDW. For all d there is a d-dimensional canonical VDW, and it is
proven using the d+1-dimensional VDW. The actual statement is somewhat
complicated. The interested reader can see [?].
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