Note

An Elementary Proof of the Canonizing Version of Gallai–Witt's Theorem

HANS JÜRGEN PRÖMEL*

Department of Mathematics, University of California, Los Angeles, California 90024

AND

Vojtěch Rödl

FJFI CVUT, Husova 5, 11000 Praha 1, Czechoslovakia

Communicated by the Managing Editors

Received July 1, 1984

1. INTRODUCTION

A homothetic mapping (homothety) of the *t*-dimensional lattice grid \mathbb{N}^t is a mapping $h: \mathbb{N}^t \to \mathbb{N}^t$ of the form $h(\mathbf{b}) = \mathbf{a} + d\mathbf{b}$, where $\mathbf{a} \in \mathbb{N}^t$ is a translation vector and *d* is a positive integer describing a dilatation.

A multidimensional version of van der Waerden's theorem on arithmetic progressions is independently due to Gallai and to Witt (for general references see [5]). It asserts that for every mapping Δ : $\{0,..., n-1\}^t \rightarrow$ $\{0, 1\}$, where $n \ge n(t, m)$ is sufficiently large, there exists a homothety h: $\mathbb{N}^t \rightarrow \mathbb{N}^t$ such that $\Delta(h(\mathbf{b})) = \Delta(h(\mathbf{c}))$ for all $\mathbf{b}, \mathbf{c} \in \{0,..., m-1\}^t$.

A canonizing version of this theorem was proved by Deuber, Graham, Prömel, and Voigt [1]. Let $U \subseteq \mathbb{Q}^t$ be a linear subspace of the *t*-dimensional vector space over the rationals. Let $\Delta_U \colon \mathbb{N}^t \to \mathbb{N}$ be a mapping with the property that $\Delta_U(\mathbf{b}) = \Delta_U(\mathbf{c})$ iff $\mathbf{b} - \mathbf{c} \in U$. Of course, Δ_U acts constantly on each coset of U and different cosets get different images.

Obviously, $\Delta_U(h(\mathbf{b})) = \Delta_U(h(\mathbf{c}))$ iff $\Delta_U(\mathbf{b}) = \Delta_U(\mathbf{c})$ for every homothety. Thus, Δ_U induces the same pattern on all homothetic copies of $\{0, ..., m-1\}^t$.

A vector $\mathbf{b} \in \mathbb{Q}^{t}$ is called *admissible* for $S \subseteq \mathbb{N}^{t}$ iff there exists $\mathbf{a} \in \mathbb{Q}^{t}$ such that the affine line $\{\mathbf{a} + \lambda \mathbf{b} | \lambda \in \mathbb{Q}\}$ intersects S in at least two points. Let

* Current address: Institut für Operations Research, Universität Bonn, Nassestr. 2, 5300 Bonn 1, West Germany.

 $\mathscr{A}(S)$ denote the set of linear subspaces of \mathbb{Q}^t possessing a basis of admissible vectors. Additionally the null-space $\{\mathbf{0}\}$ belongs to $\mathscr{A}(S)$.

Note that $\Delta_{\{0\}}$ is an one-to-one mapping. Furthermore for every two different subspaces U and V in $\mathscr{A}(S)$ the partitions on S which are induced by Δ_U and Δ_V are different. Hence the following canonizing version of the Gallai-Witt theorem is best possible:

THEOREM [1]. Let $S \subseteq \mathbb{N}^t$ be a finite set. Then there exists a finite set $T \subseteq \mathbb{N}^t$ such that for every mapping $\Delta: T \to \mathbb{N}$ there exists a homothety h: $\mathbb{N}^t \to \mathbb{N}^t$ and a linear subspace $U \in \mathscr{A}(S)$ with the property that $\Delta(h(\mathbf{b})) = \Delta(h(\mathbf{c}))$ iff $\mathbf{b} - \mathbf{c} \in U$ for every $\mathbf{b}, \mathbf{c} \in S$.

The original proof is based on Fürstenberg and Katznelson's [3] density version of the Gallai–Witt result. Since Fürstenberg and Katznelson use heavy ergodic tools, the question remained open (cf. [1, 2, 4]) to find an elementary proof of the canonizing version of Gallai–Witt's theorem.

The aim of the note is to give such an elementary proof. As it turns out, a slight modification of this proof also yields a canonization theorem due to Spencer [6] which characterizes the canonical partitions of finite subsets of \mathbb{R}^{t} with respect to the group of homotheties acting on \mathbb{R}^{t} .

2. PROOF OF THEOREM

Put $n^{t} = \{0, ..., n-1\}^{t}$. The main tool for proving the theorem is the following:

LEMMA. Let t, m be positive integers. Then there exists a positive integer n = n(t, m) such that for every mapping Δ : $n' \to \mathbb{N}$ there exists a homothety $h: \mathbb{N}' \to \mathbb{N}'$ such that for every line $L \in \mathscr{A}(m')$ the following is valid:

if
$$\Delta(h(\mathbf{y}_0)) = \Delta(h(\mathbf{y}_1))$$
 for some $\mathbf{y}_0, \mathbf{y}_1 \in m^t$ satisfying $\mathbf{y}_1 - \mathbf{y}_0 \in L$,

then
$$\Delta(h(\mathbf{z}_0)) = \Delta(h(\mathbf{z}_1))$$
 for every $\mathbf{z}_0, \mathbf{z}_1 \in m'$ satisfying $\mathbf{z}_1 - \mathbf{z}_0 \in L$

First, we show how the theorem can be deduced from the lemma: Without loss of generality let $S = k^t$ for some nonnegative integer $k = \{0, ..., k-1\}$. Assume that the assertion of the lemma holds for some m = m(k) which is sufficiently large with respect to k. Let $\{x_0, ..., x_{s-1}\} \subseteq k^t$ be a maximal linear independent set (considered as a subset of \mathbb{Q}^t) with the property that $\Delta(\mathbf{x}_i) = \Delta(\mathbf{0})$ for every $i \in s$ and let X be the linear subspace of \mathbb{Q}^t generated by $\{\mathbf{x}_0, ..., \mathbf{x}_{s-1}\}$. We claim that

$$\Delta \upharpoonright (X \cap k') = \text{const.} \tag{1}$$

Assuming (1), from the lemma it follows that $\Delta \upharpoonright ((\mathbf{b} + X) \cap k')$ is constant for every coset $\mathbf{b} + X$. Thus, since $\{\mathbf{x}_0, ..., \mathbf{x}_{s-1}\}$ is maximal independent we can infer the theorem.

To prove (1) let $\mathbf{z} \in X \cap k^t$. Then there exist $\lambda_0, ..., \lambda_{s-1} \in \mathbb{Q}$ such that $\mathbf{z} = \sum_{i=0}^{s-1} \lambda_i \mathbf{x}_i$. Furthermore there exists (a minimal) $p \in \mathbb{N}$ such that $p\lambda_i \in \mathbb{Z}$ for every $i \in s$. For m = m(k) large enough, we have $\sum_{i=0}^{s-1} p \cdot |\lambda_i| \cdot \mathbf{x}_i \in m^t$. Hence, also $p\mathbf{z} \in m^t$. Note that $\Delta(p\mathbf{z}) = \Delta(\mathbf{0})$ implies $\Delta(\mathbf{z}) = \Delta(\mathbf{0})$. Thus, it remains to show that

$$\Delta(\mathbf{pz}) = \Delta(\mathbf{0}). \tag{2}$$

We do this by induction on the length of the basis representation of z. If $pz = p\lambda_0 \mathbf{x}_0$ then (2) follows from $\Delta(p\lambda_0 \mathbf{x}_0) = \Delta(\mathbf{x}_0) = \Delta(\mathbf{0})$. Thus, assume that for all $pz = \sum_{i=0}^{r-1} p\lambda_i \mathbf{x}_i \in m^i$ for some r < s, it holds that

$$\Delta\left(\sum_{i=0}^{r-1} p\lambda_i \mathbf{x}_i\right) = \Delta(\mathbf{0}).$$
(3)

Let $p\mathbf{z} = \sum_{i=0}^{r} p\lambda_i \mathbf{x}_i$. Note that from (3), the lemma and the fact that $\Delta(\mathbf{x}_r) = \Delta(\mathbf{0})$ it follows that

$$\Delta\left(\sum_{i=0}^{r-1} p \cdot |\lambda_i| \cdot \mathbf{x}_i + p \cdot |\lambda_r| \cdot \mathbf{x}_r\right) = \Delta\left(\sum_{i=0}^{r-1} p \cdot |\lambda_i| \cdot \mathbf{x}_i\right) = \Delta(\mathbf{0})$$

Assume that for some *l*, where $0 < l \le r$, it is valid that $\Delta(\sum_{i=0}^{l} p |\lambda_i| \mathbf{x}_i + \sum_{i=l+1}^{r} p \lambda_i \mathbf{x}_i) = \Delta(\mathbf{0})$. Then, using $\Delta(\mathbf{x}_i) = \Delta(\mathbf{0})$ and the lemma we have

$$\Delta\left(\sum_{i=0}^{l-1}p\cdot|\lambda_i|\cdot\mathbf{x}_i+\sum_{i=l}^rp\lambda_i\mathbf{x}_i\right)=\Delta(\mathbf{0}).$$

Thus we get $\Delta(\sum_{i=0}^{r} p\lambda_i \mathbf{x}_i) = \Delta(p\mathbf{z}) = \Delta(\mathbf{0})$, which proves the theorem.

Proof of the Lemma. Let $(L_{\mu})_{\mu < \xi}$ be the family of all lines in $\mathscr{A}(m^{t})$. We shall proceed by induction on μ . Let $N = n_{\xi - \nu}(t, m)$ be very large and suppose $\Delta: N^{t} \to \mathbb{N}$ satisfies the assertion of the lemma for every line L_{μ} with $\mu < \nu < \xi$. Our object will be to find a homothetic copy $h(n^{t})$ of n^{t} in N^{t} , where $n = n_{\xi - \nu - 1}(t, m)$ is sufficiently large, so that Δ restricted on the set $h(n^{t})$ satisfies the assertion of the lemma for every L_{μ} where $\mu \leq \nu$. Repeating this ξ times we finally obtain a homothetic copy of m', $m = n_0(t, m)$, satisfying the lemma. Choose $p = \lfloor N/n \rfloor$ and let Δ^* : $p'^{+1} \to B_{n'}$ (where $B_{n'}$ is the n'th "Bellnumber") be the mapping which associates to every (t+1)-tuple $(\mathbf{a}, d) \in p'^{+1}$ the pattern of equivalence on the homothetic copy $\{\mathbf{a} + d\lambda | \lambda \in n'\}$ of n'. More formally, let $\Delta^*(\mathbf{a}, d) = \Delta^*(\mathbf{a}', d')$ iff $(\Delta(\mathbf{a} + d\lambda) = \Delta(\mathbf{a} + d\lambda'))$ iff $\Delta(\mathbf{a}' + d'\lambda) = \Delta(\mathbf{a}' + d'\lambda')$ for every $\lambda, \lambda' \in n'$). Put $r = n^2$. According to the Gallai–Witt theorem there exists (for N is large enough with respect to n) a homothety $\{(\mathbf{a}, b) + d\lambda | \lambda \in r'^{t+1}\}$ of r'^{t+1} in p'^{t+1} on which Δ^* is constant. Thus, the homothetic copies of n' in N' given by $\{(\mathbf{a} + d\mathbf{i}) + (b + dj) \lambda | \lambda \in n'\}$, where $\mathbf{i} \in r', j \in r$, have the same pattern with respect to Δ .

Assume that there exist $\mathbf{x}_0, \mathbf{x}_1 \in m'$ satisfying $\mathbf{x}_1 - \mathbf{x}_0 \in L_v$ such that

$$\Delta((\mathbf{a}+d\mathbf{\tilde{i}})+(b+dj)\mathbf{x}_0) = \Delta((\mathbf{a}+d\mathbf{\tilde{i}})+(b+dj)\mathbf{x}_1)$$

Fix $\mathbf{i}_0 \in r^t$ and let $\mathbf{y}_0 = (\mathbf{a} + d\mathbf{i}_0) + b\mathbf{x}_0$ (setting j = 0). Denote by $M(\mathbf{y}_0)$ the set of all points in \mathbf{x}_1 -position with respect to \mathbf{y}_0 , i.e.,

$$M(\mathbf{y}_0) = \{ \mathbf{y} \in n^r | \exists \mathbf{i} \in r^r, \ j \in r \text{ such that} \\ \mathbf{y} = (\mathbf{a} + d\mathbf{i}) + (b + dj) \mathbf{x}_1 \\ \text{and} \quad \mathbf{y}_0 = (\mathbf{a} + d\mathbf{i}) + (b + dj) \mathbf{x}_0 \}.$$

Clearly,

$$\Delta \upharpoonright M(\mathbf{y}_0) = \text{const.} \tag{4}$$

We show that

$$M(\mathbf{y}_0) = \{\mathbf{a} + d\mathbf{i}_0 + b\mathbf{x}_1 + d\mathbf{j}(\mathbf{x}_1 - \mathbf{x}_0) | \mathbf{j} \in \mathbf{r} \text{ satisfying } \mathbf{i}_0 - \mathbf{j}\mathbf{x}_0 \in \mathbf{r'}\}.$$
 (5)

If $\mathbf{y} = (\mathbf{a} + d\mathbf{i}) + (b + d\mathbf{j}) \mathbf{x}_1 \in M(\mathbf{y}_0)$, then

$$\mathbf{y}_0 = (\mathbf{a} + d\mathbf{\tilde{i}}) + (b + dj) \mathbf{x}_0 = (\mathbf{a} + d\mathbf{\tilde{i}}_0) + b\mathbf{x}_0.$$

Therefore $\mathbf{i} = \mathbf{i}_0 - j\mathbf{x}_0$. Hence, every $\mathbf{y} \in M(\mathbf{y}_0)$ can be written as

$$\mathbf{y} = \mathbf{a} + d\mathbf{i}_0 + b\mathbf{x}_1 + dj(\mathbf{x}_1 - \mathbf{x}_0),$$

where $j \in r$ and $\mathbf{i} = \mathbf{i}_0 - j\mathbf{x}_0 \in r'.$ (6)

On the other hand, if y' satisfies (6) then

$$\mathbf{y}' = \mathbf{a} + d(\mathbf{i}_0 - j\mathbf{x}_0) + (b + dj) \mathbf{x}_1$$

and as

$$\mathbf{y}_0 = \mathbf{a} + d(\mathbf{i}_0 - j\mathbf{x}_0) + (b + dj) \mathbf{x}_0$$

we infer that $\mathbf{y}' \in M(\mathbf{y}_0)$.

Let $g \in \mathbb{N}$ be such that for any $z, c \in m^t$ satisfying $z - c = \rho(x_1 - x_0)$ for some $\rho \in \mathbb{Q}^+$ we have that $g \cdot \rho \in \mathbb{N}$. For *n* sufficiently large it follows already that $g \cdot \rho \in n$. Then, in particular, $g \in n$.

We claim that the homothetic copy $h(n') = \{(\mathbf{a} + b\mathbf{x}_1 + d\mathbf{s}) + dg\lambda | \lambda \in n'\}$ of n' in N', where $\mathbf{s} = (r - mn, ..., r - mn) \in r'$, has the property that any two points on a line which is parallel to L_{ν} have the same image with respect to Δ . Let $\mathbf{z}_1 = \mathbf{c} + \rho_1(\mathbf{x}_1 - \mathbf{x}_0)$, $\mathbf{z}_2 = \mathbf{c} + \rho_2(\mathbf{x}_1 - \mathbf{x}_0)$ be two points on a parallel line to L_{ν} in n'. Without loss of generality we can assume that $\rho_1, \rho_2 \in \mathbb{Q}^+$. Then

$$h(\mathbf{z}_i) = (\mathbf{a} + b\mathbf{x}_1 + d\mathbf{s}) + dg(\mathbf{c} + \rho_i(\mathbf{x}_1 - \mathbf{x}_0))$$

= $\mathbf{a} + d(\mathbf{s} + g\mathbf{c}) + b\mathbf{x}_1 + d(g\rho_i)(\mathbf{x}_1 - \mathbf{x}_0)$
for $i = 1, 2,$

where $\mathbf{s} + g\mathbf{c} \in r'$ and $(\mathbf{s} + g\mathbf{c}) - (g\rho_i)\mathbf{x}_0 \in r'$. Let $\mathbf{z}_0 = \mathbf{a} + d(\mathbf{s} + g\mathbf{c}) + b\mathbf{x}_0$. Then $\mathbf{z}_1, \mathbf{z}_2 \in M(\mathbf{z}_0)$ and we infer from (4) that $\Delta(h(\mathbf{z}_1)) = \Delta(h(\mathbf{z}_2))$.

3. CONCLUDING REMARKS

More generally, $h: \mathbb{R}^t \to \mathbb{R}^t$ is a homothety iff h is of the form $h(\mathbf{b}) = \mathbf{a} + d\mathbf{b}$, where $\mathbf{a} \in \mathbb{R}^t$ and $d \in \mathbb{R} \setminus \{0\}$. Then the following version of the Gallai-Witt theorem is also true (cf. [5, p.38]). For every finite $V \subseteq \mathbb{R}^t$ there exists a finite $W \subseteq \mathbb{R}^t$ such that for every mapping $\Delta: W \to \{0, 1\}$ there exists a homothety $h: \mathbb{R}^t \to \mathbb{R}^t$ such that $\Delta(h(\mathbf{b})) = \Delta(h(\mathbf{c}))$ for all $\mathbf{b}, \mathbf{c} \in V$.

Using this result, the same proof as before (with technical modifications concerning the different structure of $S \subseteq \mathbb{R}^{t}$) can be used to obtain also the following theorem of Spencer. For $S \subseteq \mathbb{R}^{t}$, S finite, let $\mathscr{A}(S)$ be defined as above with respect to subspaces of \mathbb{R}^{t} .

THEOREM [6]. Let $S \subseteq \mathbb{R}^t$ be a finite set. Then there exists a finite set $T \subseteq \mathbb{R}^t$ such that for every mapping $\Delta: T \to \mathbb{R}$ there exists a homothety h: $\mathbb{R}^t \to \mathbb{R}^t$ and a linear subspace $U \in \mathcal{A}(S)$ with the property $\Delta(h(\mathbf{b})) = \Delta(h(\mathbf{c}))$ iff $\mathbf{b} - \mathbf{c} \in U$ for every $\mathbf{b}, \mathbf{c} \in S$.

Details are left to the reader.

GALLAI-WITT'S THEOREM

References

- 1. W. DEUBER, R. L. GRAHAM, H. J. PRÖMEL, AND B. VOIGT, A canonical partition theorem for equivalence relation on Z', J. Combin. Theory Ser. A 34 (1983), 331-339.
- 2. W. DEUBER AND B. VOIGT, Der Satz von van der Waerden über arithmetische Progressionen, Jahresber. Dtsch. Math.-Verein. 85 (1983), 66-85.
- 3. H. FÜRSTENBERG AND Y. KATZNELSON, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275-291.
- R. L. GRAHAM, Recent developments in Ramsey theory, in "Proc. of the International Congress of Mathematicians, Aug. 16–24, 1983, Warszawa" (Z. Ciesielski, C. Olech, Eds.), pp. 1555–1569, Polish Scientific Publishers, Warszawa, 1984.
- 5. R. L. GRAHAM, B. L. ROTHSCHILD, AND J. H. SPENCER, "Ramsey Theory," Wiley, New York, 1980.
- 6. J. H. SPENCER, Canonical configurations, J. Combin. Theory Ser. A 34 (1983), 325-330.