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Abstract

The cell probe model is a general, combinatorial model of data structures. We give a survey of known

results about the cell probe complexity of static and dynamic data structure problems, with an emphasis

on techniques for proving lower bounds.

1 Introduction

1.1 The ’Were-you-last?’ game

A Dream Team, consisting of m players, is held captive in the dungeon of their adversary, Hannibal. He
now makes them play his favourite game, Were-you-last?. Before the game starts the players of the Team
are allowed to meet to discuss a strategy (obviously, Hannibal has the room bugged and is listening in).
After the discussion they are led to separate waiting rooms. Then Hannibal leads each of the players of the
team, one by one, to the playing field. The players do not know the order in which they are led to the field
and they spend their time there alone. The playing field is a room, containing an infinite number of boxes,
labelled 0, 1, 2, 3, . . . . Inside each box is a switch that can be either on or off, but one cannot tell which is the
case without opening the box. When the game starts, all switches are off. After Hannibal has led a player
to the field, the player may open and inspect at most t boxes. He is also allowed to change the status of
the switches in the boxes he opens. He must close a box before opening the next one. After he is done, he
must leave the playing field. As he leaves, Hannibal asks him if he was the last of the m players to visit the
field. If all m players answer correctly, the Dream Team wins and is free to leave the dungeon. Otherwise
Hannibal wins and the Dream Team faces a gory destiny.

Not surprisingly, who wins this game (if it is played well by both parties) depends on how the two
parameters m and t relate. If t ≥ blog2 mc+ 1 the Dream Team has the following simple winning strategy:
They agree to maintain the invariant that the switches of the boxes labelled 0, 1, . . . , t− 1 form the binary
radix representation of the number of players having already visited the field. Thus, these t boxes will act as
a counter. When a player visits the field he opens boxes 0, . . . , t−1 and increments the counter by switching
the appropriate switches. By reading off the resulting binary number, he can compare it to m and will know
if he is the last player to visit the field.

Alas, on this particular day, Hannibal, in a cruel mood, decides to set the parameter t to something much
smaller than blog mc+ 1, such as t = 10 log log m. Is the Dream Team doomed?

1.2 A combinatorial model of data structures

Before resolving the fate of the Dream Team, let us explain the real motivation behind studying games
such as Were-you-last?, namely, their connection to the complexity of dynamic data structure problems. A
dynamic data structure problem (or just “dynamic problem”) is the problem of maintaining a finite object
(such as a set) in a data structure on a digital computer while certain operations are performed on the object.
Each operation may change the object (for instance, we may add an element to the set) and/or query the
object (for instance, we may ask if a certain element is a member of the set).

Formally, we could model a dynamic problem as a finite state transducer, with a state set corresponding
to the possible states of the objects, input alphabet corresponding to the possible operations, and output
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alphabet corresponding to the possible answers to queries. In general, the transducer may be nondeterministic
as not all operations may be permitted in all states and sometimes more than one answer can be a valid
answer to a query. While the transducer point of view can sometimes be useful for graphically defining
problems, we shall not pursue it here. Rather, we shall be content with informal definitions of the dynamic
data structure problems we consider.

A solution to a dynamic problem is given by devising a representation of the object as a memory image
on a digital computer, so that each of the desired operations on the object has an associated correct and
hopefully efficient algorithm.

The cell probe model gives a clean, combinatorial concretization of this informal notion of a solution to
a dynamic problem. In the cell probe model, the memory image we maintain is modelled by a sequence of
cells C0, C1, C2, . . . , each holding a w-bit string. The parameter w is the word size of the model. Initially,
every cell contains an all-zero string.

A solution to a dynamic problem is given by assigning to each operation a decision assignment tree. A
decision assignment tree is a combinatorial representation of an algorithm acting on the data structure. A
decision assignment tree is a rooted tree. When performing an operation we proceed from the root of the
corresponding tree to one of its leaves. Each internal node in the tree is labelled with an index of a cell and
has exactly 2w sons. Each of the 2w outgoing edges e from a node is labelled with 2 values, a read value
re and a write value we in {0, 1}w. Each of the possible values in {0, 1}w occurs exactly once as a value
re. There are no constraints on the values we. When we encounter a node labelled i, we read the content
c ∈ {0, 1}w of cell Ci and proceed along the unique edge with re = c. Doing so, we at the same time change
the content of Ci to we. Each leaf of the tree may be labelled with a value. When we reach a leaf, we have
finished executing the operation and return the label of the leaf as the result of the operation.

The time complexity of a solution is given by the depth of the deepest tree in the solution.
A crucial aspect of the cell probe model of computation is that we only charge the operations on the data

structure for the number of times they read or change a memory cell in the data structure. All computation
is for free. Thus, a lower bound proved in the cell probe model is a lower bound, up to a constant factor,
on the (worst case) complexity of any implementation of the problem on a unit cost random access machine
with the same word size, no matter which instruction set the random access machine is given, as long as
each instruction operates on only a constant number of w-bit memory registers. Thus, lower bounds in the
cell probe model are stronger than lower bounds proven in models which make specific assumptions about
which operations are allowed on atomic data, such as the comparison model, where we assume that the only
allowed operations on atomic data are comparisons.

The Were-you-last? game can easily be described in the framework above. The Dream Team wants to
maintain a representation of the set of players having already entered the field, so that each player knows
whether he is the last to enter the field. The actions of each player in the playing field correspond to
performing one operation. Thus, we model the game as the dynamic data structure problem of maintaining
a subset S ⊆ {1, . . . , m} under m possible operations, Insert(i), 1 ≤ i ≤ m. A precondition for performing
Insert(i) is that i 6∈ S. When Insert(i) is performed, i is inserted into S and a Boolean is returned,
indicating whether S = {1, . . . , m}. We want to give a solution to this problem in the cell probe model with
word size w = 1.

1.3 Back to the game...

Facing the parameter t = 10 log log m, the Dream Team has to modify the simple strategy based on a binary
counter. In fact, they will still just represent the number of players having already entered the field but
using a representation different from the usual binary radix representation.

The representation they choose is as follows. Given a number between 0 and m whose binary represen-
tation is some string x of length blog mc+ 1, we can partition x into a number of blocks where each block
contains only 0’s or only 1’s. We can reconstruct the original number if we know

1. if the rightmost block consists of 0’s (a Boolean value),

2. the number of blocks (an ≈ log log m-bit integer), and

3. the length of each block (each being an ≈ log log m-bit integer).
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The players agree to represent the single Boolean value using the switch of Box 0. The rest of the boxes
they group into collections, superboxes, containing log log m + O(1) boxes each, so that each collection can
represent a number between 1 and dlog me+ 1 . Then, they agree that the integer in Superbox 1 should be
the number of blocks, and the integers in Superboxes 2, 3, . . . , should be the lengths of the blocks.

For example, if m = 31 and the number to be represented is 23, we have x = 10111 and would make the
three blocks 1, 0 and 111, which the players represent by the value true in Box 0, the value 3 in Superbox
1 and the values 1, 1, 3 in Superboxes 2,3,4.

In is now easy to see that a player can increment a counter so represented by inspecting and flipping
the switch of Box 0, reading the value in Superbox 1, reading the value of at most 3 other superboxes
(representing the lengths of the 3 rightmost blocks), and then changing the value of Superbox 1 and at most
2 other superboxes. Thus, at most ≈ 7 log log m boxes need to be opened, well within the constraint imposed
by Hannibal. However, it does not seem possible to read off the value of the entire counter very easily, so
the player would not be able to answer Hannibal’s question after all.

The players can deal with this using a simple trick. Testing if the value of the counter is m is expensive.
On the other hand, it is cheap to check if its value is 0: We just need to check Box 0, telling us if the
rightmost block consists of zeros and Superbox 1, telling us if there is only one block. Thus, the players
decide to start the counter at value m and decrement (rather than increment) the counter and test for zero
(rather than m).

Only one problem remains: Starting the counter at value m is not really possible, as a constraint of
the game is that each switch is off when the game begins. But, we now have a strategy using boxes
C0, C1, . . . , Cs−1 which is correct and efficient if the initial state of the boxes is given by some fixed vector
y = (y0, y1, . . . , ys−1) ∈ {0, 1}s. We can convert it into an implementation which is correct when the initial
state of the boxes is all-zeros as follows: For each decision assignment tree T in the old implementation, we
construct a new tree T ′ in the following way. T ′ is as T but with every label pair re, we on an edge e going
out from a node labelled i replaced with re ⊕ yi, we ⊕ yi, where ⊕ denotes XOR of bits.

Thus, the Dream Team wins the game after all. But it was a narrow escape indeed: Suppose that
Hannibal were in a still more cruel mood and decided to set t = 1

10 log log m. We will now show that the
Dream Team is doomed: No matter which strategy they come up with, Hannibal has a counter strategy
(i.e., a sequence in which to lead the players to the playing field) that will make at least one of the players
answer incorrectly.

To prove this, we need to appeal to some simple and well-known extremal combinatorics. A sunflower
with p petals is a collection S1, S2, . . . , Sp of (not necessarily distinct) sets so that the intersection Si ∩Sj is
the same for each pair of distinct indices i and j. The intersection is called the center of the sunflower. The
following well known result is due to Erdös and Rado.

Lemma 1 (Sunflower lemma) Let S1, . . . , Sm be a system of (not necessarily distinct) sets each of car-
dinality at most l. If m > (p − 1)l+1l!, then the collection contains as a subcollection a sunflower with p
petals.

Fix now a strategy for the m players with each player opening at most t = 1
10 log log m boxes. For

i ∈ {1, . . . , m}, let Si be the union of the set of memory locations appearing in the decision assignment
tree corresponding to the operation of player i. We have that |Si| ≤ l where l = 2t − 1. By Lemma 1, we
find a sunflower Si1 , . . . , Sip with p petals, where log p ≥ log m

l+1 − O(log(l + 1)). Let C be the center of the
sunflower. Thus, C is a set of boxes.

Now Hannibal adopts the following strategy. First he leads all players, except i1, i2, . . . , ip to the playing
field.

Let s0 ∈ {0, 1}|C| be the state of C after these m − p operations. Hannibal now leads player i1 to the
field. Let s1 be the new state of C. Now, he leads player i2 to the player field and we let s2 be the new state
of C etc.

Suppose all players answer correctly in the above scenario. We now construct a scenario where they
don’t. By the pigeon hole principle, there must be j 6= k so that sj = sk. Then, instead of leading players
i1, i2, . . . , ip to the playing field, Hannibal leads players i1, . . . , ij , ik+1, . . . , ip, in that order, to the playing
field. The sunflower property ensures that each of these players will behave exactly as in the first scenario.
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Thus, the last player, player ip, will answer incorrectly that he was the last of the m players to enter the
field, even though players ij+1, . . . , ik never went there.

1.4 Structure of this survey

This paper is a survey of the theory of cell probe complexity. The rest of the paper has two more or less
orthogonal parts. In the first part of the survey (Section 2), we give a taxonomic overview of the problems
which can be and have been studied in the cell probe model and we state which upper and lower bounds are
known for them. So far, we have only described how to use the model for dynamic data structure problems,
but the model is applicable to static data structure problems as well, as we explain in Section 2. As most
upper bounds for static or dynamic problems in the data structure literature can be transfered to give a
cell probe upper bound, we have to restrain ourselves, so we focus mostly on problems that were explicitly
studied in the cell probe model from a lower bound point of view. Also, even though amortized complexity
is an important issue in dynamic data structures, also in the cell probe model, we choose, in this survey, to
focus on worst case complexity. Similarly, we choose not to focus on the interesting issue of tradeoffs between
the time complexities of the various operations. Thus, as we also defined it above, the time complexity of a
solution is the depth of its deepest decision assignment tree.

During the first part of the survey, we give forward pointers to the second part (Section 3 and 4), where
we give generic examples of the known techniques for showing lower bounds in the cell probe model, aiming
at keeping the examples we use as clean and clear as possible. While certainly not covering all of the ground,
we hope that the examples are sufficiently representative so as to give a feeling for the area.

Finally, after these two main parts of the survey, having seen the limitations of current techniques, we
conclude in Section 5 with a list of challenges for future research in cell probe complexity.

1.5 Bibliographical remarks

The cell probe model originates in the 1968 book Perceptrons by Minsky and Papert [50]. In more modern
times it was taken up by Fredman [27] (for dynamic problems) and Yao [61] (for static problems). The late
1990’s have seen a revitalisation of the area with several FOCS and STOC papers dealing with the subject.
The Were-you-last? game is from Frandsen, Miltersen and Skyum [26] where a tighter analysis of the game
can be found, improving the constant factors somewhat.

2 Problems, problems, problems...

In this section we give a taxonomic overview of natural problems appropriately studied in the cell probe
model. The most important distinction we make is between static and dynamic data structure problems.

2.1 Static data structure problems

A static data structure problem is a problem of the following kind. A finite set D, called the set of data,
a finite set Q, called the set of queries and a finite set A, called the set of answers is given, along with a
function f : D×Q → A. The problem is to devise a scheme for encoding elements of D into data structures
in the memory of a random access machine. When an x ∈ D has been encoded, it should be possible at a
later point in time to come forward with any y ∈ Q and efficiently determine f(x, y) using only few memory
accesses to the data structure encoding x. The data structure is called static, because we do not require it
to be easily updateable if x changes. When dealing with static data structures, the size of the data structure
becomes a crucial parameter. Without a constraint of the size of the structure, we have, for any problem, a
valid solution with constant query time which is just a lookup table of the answer to every possible query.
Thus, for static data structures, the question of interest is the tradeoff between storage space s and query
time t.

Formally, a solution to a static data structure problem using space s and query time t in the cell probe
model with word size w is given by assigning to each element x of D a representation φ(x) ∈ W s with
W = {0, 1}w and associating with each query q ∈ Q, not a decision assignment tree, but just a decision tree
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over W s of depth t (i.e., a decision assignment tree, but without the we labels, or with we = re for every
edge e).

Most natural examples of static data structure problems are search problems such as

• Membership. Given the universe U = {1, . . . , m} and a subset S ⊆ U with |S| = n, we want to store
S as a data structure, so that Membership queries “Is x in S?” for x ∈ U can be answered efficiently.
With the notation above, we have that D is the set of all n-subsets of U , Q = U , A = {true, false},
and f(S, x) = 1 if and only if x ∈ S.

• Dictionary. Given the universe U = {1, . . . , m} and a subset S ⊆ U , we associate to each element
x ∈ S a piece of information vx ∈ U and want to store S and the associated information as a data
structure so that lookup queries “Is x in S, and if so, what is vx?” can be answered efficiently.

In general there will be a tradeoff between the word size w, the space of the data structure s and the query
time t. Complicating the picture further, in a given general solution to one of the above search problems
(i.e., a family of solutions, one for each possible combination of n and m) we will have bounds on space
and time of the form s = s(n, m) and t = t(n, m), i.e., the space and space bounds of the solution may be
functions of n as well as m.

While it makes a lot of sense to look at this general picture, it is customary to make it a bit simpler in
the following way.

First, it is customary to fix the word size to a reasonable value and only look at tradeoffs between s
and t. A standard value for w for search problems (advocated in, e.g., [61]) is w = log |U |, i.e., to have
each cell hold a single member of the universe. This is in line with upper bound results, where it, explicitly
or implicitly, is usually considered fair to assume unit cost operations on the members of the universe in
question, but where objections would certainly be raised if we tried to “cheat” by packing together a large
part of the data structure into a single machine word.

Second, to get an even simpler picture, we often insist on strongly transdichotomous bounds where the
complexity is a function of one parameter only, and works, no matter how m relates to n. Typically, but not
always, the parameter we choose is n. To be precise, for any value of n ≤ m, we should have a solution, and
the time complexity of this solution (i.e., the depth of its deepest tree) should be upper bounded by some
function of n only. The term “strongly transdichotomous” was invented by Fredman and Willard [32, 33].
We can motivate the strongly transdichotomous model as follows. We assume unit cost operations on the
elements of the universe. In return, our algorithms should have a complexity where the number of those
unit cost operations does not depend on the size of the universe. Also, many natural upper bounds, such as
those derived from comparison based algorithms, will have a time (and space) complexity which is a function
of n only. For instance, if we decide to solve the dictionary problem using balanced binary trees, we get a
solution in the cell probe model with word size w = O(log m) using s = O(n) memory cells and with each
operation using a decision assignment tree of depth t = O(log n).

For an excellent account of the transdichotomous model from an algorithmic point of view, see the survey
of Hagerup [35].

A strongly transdichotomous lower bound of Ω(f(n)) on the time for a search problem under some space
constraint means that there is no strongly transdichotomous upper bound of o(f(n)). Thus, we have the
lower bound if we can prove that there is a constant c and an infinite family of pairs (n1, m1), (n2, m2), . . . ,
with ni → ∞ so that for any cell probe solution to the search problem (obeying the constraint on s) with
parameters n = ni, m = mi, w = log mi, the time complexity of the solution is at least cf(ni). Being able to
choose the mi’s freely often helps proving the lower bound enormously, and sometimes, arguably, makes the
lower bound less interesting, when the value we choose is not a value that would occur in practice (typically,
being very large compared to ni). Still, even such a lower bound conveys useful information: It shows that
a certain clean kind of upper bound does not exist.

A seminal result of Fredman, Komlós and Szemerédi [29] gives the following optimal strongly transdi-
chotomous upper bound on the complexity of membership and dictionary: Each have a solution with word
size w = O(log m) using s = O(n) memory cells and with query time t = O(1). The solution is a simple two
level (universal) hashing scheme. In the strongly transdichotomous model, these bounds are optimal (upto
constant factors), as time t = o(1) is clearly impossible as t must be an integer, and the pigeon hole principle
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easily gives that we cannot achieve s = o(n) for m ≥ n2. If we don’t insist on strongly transdichotomous
bounds, the space can be improved somewhat for membership. Clearly, the best we can hope for is a space
use of log

(

m
n

)

bits, i.e., b = log
(

m
n

)

/w memory cells. Brodnik and Munro [15] and Pagh [52] show how to
achieve s = b + o(b) and t = O(1).

Word size w = O(log m) is not the only interesting value to study. Indeed, solutions to the membership
problem for word size w = 1 was the subject of the original work of Minsky and Papert and has recently
been studied again by Buhrman et al [16]. The membership problem in the cell probe model with word
size w = 1 has an interesting coding theoretic interpretation: We are looking for a representation φ(S) of
any n-subset S of {1, . . . , m} using few (hopefully close to log

(

m
n

)

) bits, so that membership queries can be
answered by looking at only a few bits of φ(S). Equivalently, we are trying to give an encoding φ(x) of any
m-bit string x so that the length of the encoding is close to the first order entropy of x and so that any bit of
x can be retrieved by looking only at a few bits of φ(x). Thus, we are trying to construct a locally decodable
source code, analogous to the locally decodable channel codes of [9].

Buhrman et al [16] show that the solution of Fredman, Komlós and Szemerédi is an optimal membership
solution, also for w = 1 in the following sense: Any solution with w = 1, s = O(n log m) must have
t = Ω(log m) unless n is very close to m. We present the simple proof in Section 3. On the other hand,
they show that if randomization is allowed in the query algorithm, it is possible to achieve t = 1 and
s = O(n log m) with an arbitrarily small constant error probability.

We get somewhat harder problems than membership and dictionary if we consider queries that take the
order structure of U into account, such as the following two problems:

• Predecessor. Given the universe U = {1, . . . , m} and a subset S ⊆ U with |S| = n, we want to store S
as a data structure, so that Predecessor queries “What is the largest value in S which is smaller than
x?” for x ∈ U can be answered efficiently.

• Rank. Given the universe U = {1, . . . , m} and a subset S ⊆ U with |S| = n, we want to store S as a
data structure, so that Rank queries “How many values in S are smaller than x?” for x ∈ U can be
answered efficiently.

First let us note that for w = O(log n) there is essentially no difference between the complexities of
predecessor and rank. If we have a solution to rank, we can combine it with a simple lookup table to get
a solution to predecessor using extra space O(n) and extra time O(1). On the other hand, if we have a
solution to predecessor, we can combine it with a Fredman-Komlós-Szemerédi dictionary structure to a get
a solution to rank, again using extra space O(n) and extra time O(1). Interestingly, the dynamic versions of
the two problems behave very differently as we shall later see.

A classical solution to predecessor/rank is balanced binary trees with w = O(log m), s = O(n), t =
O(log n). Van Emde Boas et al [57] gave a solution to predecessor/rank with w = O(log m) with a time
complexity of t = O(log log m). The space complexity is very high, but was later reduced to the strongly
transdichotomously optimal value s = O(n) by Willard [58]. Note that we here have a “mixed transdi-
chotomous” solution with s being a function of n and t being a function of m. Building on the work
of Van Emde Boas and Willard, Andersson obtained a pure transdichotomous solution with s = O(n)
and t = O(

√
log n). In a recent breakthrough paper, Beame and Fich [12] improved these bounds to the

bound s = O(n), t = O(min(log log m/ log log log m,
√

log n/ log log n)) and proved the new bound trans-
dichotomously optimal in the following sense: If s = nO(1) then any m-strongly transdichotomous bound
on t must have t = Ω(log log m/ log log log m) and any n-strongly transdichotomous bound on t must have
t = Ω(

√

log n/ log log n). The lower bounds improve a lower bound by Ajtai [5] and was obtained inde-
pendently by Xiao [59]. The lower bound proof technique is via a communication complexity lower bound
proved using Ajtai’s technique of probability amplification in product spaces. In Section 4, we present a
somewhat simpler proof, due to Miltersen et al [48], of a somewhat weaker lower bound using this technique.

Natural generalization of the search problems above to higher dimensions include problems usually studied
in computational geometry, such as range query and point location problems.

• Orthogonal range query. Let d be a parameter, typically constant. Given the universe U = {1, . . . , m}
and a subset S ⊆ Ud with |S| = n, we want to store S as a data structure, so that existential range
queries “Is there an element in [x1, y1]× [x2, y2]× . . .× [xd, yd]∩S?” or, more generally, counting range
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queries. “How many elements are there in [x1, y1] × [x2, y2] × . . . × [xd, yd] ∩ S?” can be answered
efficiently.

• Planar point location. Given the universe U = {1, . . . , m}, a set of points S ⊂ U 2 of size n and a plane
graph G with vertex set S. Store G so that point location queries “In which face of the graph is the
point (x, y) located?” with x, y ∈ U , can be answered efficiently.

By reductions (see e.g. [48]) the lower bound results shown for predecessor/rank hold for range query
problems as well, even existential ones, for any fixed (constant) dimension d ≥ 2 (the upper bounds hold
as well, if one is willing to pay a polynomial increase in space). Interestingly, no lower bound is known for
existential range queries in dimension d = 1. The lower bounds for predecessor/rank obviously also holds
for static planar point location.

To see bigger lower bounds, we have to move to high (non-constant) dimension. There, it makes sense
to simplify the problems by making the domain Boolean:

• Nearest neighbors in Hamming space. Given the universe U = {0, 1}logm and a subset S ⊆ U , store
S so that nearest neighbor queries “Which element of S is closest to x in Hamming distance?”, for
x ∈ U , can be answered efficiently.

• Partial match. Given the universe U = {0, 1}logm and a subset S ⊆ U , store S so that partial match
queries of the form “Is there an element of S matching x?” where x ∈ {0, 1,⊥}w and x matches y ∈ U
if the ⊥’s of x can be replaced with {0, 1}-values so as to obtain y.

It is beyond the scope of this survey to consider all the upper bound literature on these two problems,
well known to the database community. However, very few upper bounds are worst case bounds, and no
upper bounds are very good. The lack of good upper bounds for these problems is sometimes referred to
as the curse of dimensionality. Recent, very interesting progress towards removing this curse were made in
[42, 43]. There, very good worst case bounds are obtained for finding an approximate nearest neighbor if
randomization is allowed by the query algorithm.

Borodin, Ostrovsky and Rabani, show, using the greedy communication complexity technique, to be
explained in Section 4, the following lower bound: If s = nO(1) and w = O(log m) then any n-strongly
transdichotomous bound on t must have t = Ω(log n) for both the nearest neighbor problem and the partial
match problem. An even more impressive result was obtained recently by Barkol and Rabani [10]: For
the nearest neighbor problem, if s = nO(1), then any n-strongly transdichotomous bound on t must have
t = nΩ(1).

Chakrabarti et al [17] show a lower bound for approximating the nearest neighbor, using the amplification
version of the communication complexity technique. Interestingly, this lower bound matches the upper bound
shown for this problem in [42, 43], but unfortunately, the lower bound proof only holds for deterministic
query algorithms, while the upper bounds of [42, 43] are randomized.

While search problems are a natural breed of static data structure problems to consider, they are not
the only one. The thesis of Dodis [20] considers the interesting class of problems of storing a graph, so that
various questions about induced subgraphs can be answered and analyses this class of problems in the cell
probe model.

2.2 Dynamic problems

We now move to dynamic problems. Unlike static problems, we can now often prove lower bounds on the
time complexity only, rather than proving a lower bound on the time/space tradeoff. However, certain of
the lower bounds cited below are only valid (or are at least easier to prove) under some very mild constraint
on the space use s, typically a constraint of the form s ≤ 2O(w), where w is the word size of the model. We
will not bother stating such constraints. Note that if our aim is to transfer the cell probe lower bounds to
a random access machine model with the same word size, such constraints are “for free” as s = 2O(w) is the
maximum space a random access machine with word size w can address.
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2.2.1 Dynamic search problems

For each of the static search problems we mentioned above, there is a dynamic version where we want to
maintain a subset S of {1, . . . , m} under Insert(i), inserting i into S, Delete(i) deleting i from S and one
or more of the query operations Member(i),Lookup(i),Predecessor(i),Rank(i), . . . . The size of S is
now not fixed. If we wish to take the size of the set S into account when stating space and time bounds, we
take the parameter n to be an upper bound that the size of S must always satisfy. Alternatively, we could
require space and time to depend on the current size of S at any time. As shown by Overmars [51], there is
not much difference between these two conventions, and since the former is simpler, this is the one we adopt.
All the results reported in this section is for word size w = O(log m).

For dynamic membership and dictionary, we do have to impose a space constraint to get a non-trivial
problem, otherwise a lookup table gives a bound of t = O(1) per operation. Dietzfelbinger et al [19] give a
randomized solution with word size w = O(log m) using space s = O(n) and expected time O(1) per operation.
The best strongly transdichotomous deterministic solution with a worst case bound is by Andersson and
Thorup [4] achieving s = O(n), t = O(

√

log n/ log log n). A very interesting unpublished manuscript of
Sundar [54] states the following transdichotomous lower bound for the membership problem in the cell
probe model with word size w = O(log m): Any deterministic solution using space nO(1) must use time
Ω(log log n/ log log log n).

Moving to the dynamic predecessor and rank problems, we note that balanced binary trees give solutions
to dynamic predecessor and rank with word size w = O(log m), space s = O(n) and time t = O(log n).
Van Emde Boas et al give a solution to dynamic predecessor with the same word size and worst case time
O(log log m) per operation. The space use is bad. Unlike the static case, it does not seem easy to obtain a
good space use without some penalty in the time, if we insist on deterministic solutions and worst case time.
This is because the technique of Willard [58] to reduce the space we mentioned in the static case is based
on hashing. However, if we focus on time bounds depending on n, Andersson and Thorup [4] give a solution
with space s = O(n) and time O(

√

log n/ log log n) per operation.
Beame and Fich [12] show an m-strongly transdichotomous lower bound of Ω(log log m/ log log log m), al-

most matching Van Emde Boas’ upper bound, and an n-strongly transdichotomous lower bound of
Ω(

√

log n/ log log n) time per operation, without any space-constraint, matching the upper bound of An-
dersson and Thorup. In fact, we can reduce the static case with the space constraint to the dynamic case
without the space constraint. This is a general reduction first observed by Xiao [59] which will be explained
in Section 4.

Dynamic rank seems much harder than dynamic predecessor. Dietz [18] gives an upper bound of time
O(log m/ log log m) per operation, using space O(m). Fredman and Saks [31], show a matching lower bound:
Any m-strongly transdichotomous solution, no matter what space is used, must use time Ω(log m/ log log m)
(and thus Ω(log n/ log log n). Thus, n-strongly transdichotomously, there is a quadratic gap between the
complexities of dynamic predecessor and dynamic rank, while m-strongly transdichotomously, there is an
exponential gap! The lower bound is shown by a reduction from a lower bound for the dynamic prefix
problem for Z/2Z (defined below) which is proved using Fredman and Saks’ chronogram method, to be
described in Section 4.

Lower bounds for computational geometry search problem, such as dynamic range query and point
location problems where shown by Husfeldt, Rauhe and collaborators in [40, 39, 7], using very interesting
refinements and extensions of the chronogram method which are not covered in this survey. In particular,
a lower bound of Ω(log n/ log log n) for dynamic point location and the dynamic existential range query
problem are shown. It is also possible to transfer the lower bounds known for the static case using the
generic technique of Xiao, but this would only yield the lower bound Ω(

√

log n/ log log n).
The lower bounds for the query time of nearest neighbor in Hamming space and partial match queries

mentioned in the static case are valid as a lower bound on the worst case operation time in the dynamic
case, but now without a space constraint. This is again due to the general reduction of Xiao which will be
explained in Section 4.
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2.2.2 Dynamic graph problems

A dynamic graph problem is the problem of maintaining a directed or undirected graph with set of vertices
V = {1, . . . , n} under Insert(u, v), inserting an edge between u and v in the graph, Delete(u, v), deleting
the edge between u and v in the graph, and some query operation which answers questions about the
graph. A typical example is dynamic connectivity, where the graph is undirected, and the query operation is
Connected(u, v) which returns a Boolean indicating whether u and v are in the same connected component.

When we study dynamic graph problems in the cell probe model, we let w = O(log n). This corresponds
to assuming unit cost operations on pointers to structures of size polynomial in the graph and on indices of
vertices - the kind of operations we usually use and allow in dynamic graph algorithms.

The best worst case solution to the dynamic undirected connectivity problem has a worst case time per
operation of O(n1/3), due to Henzinger and King [37]. If we allow the time bound for the operations to
be amortized, there is an O(log2 n) solution due to Holm, de Lichtenberg, and Thorup [38], improved to
O(log n log log n) in [56].

Fredman and Henzinger [30] and Miltersen et al [49] show a lower bound of Ω(log n/ log log n) by a
reduction from a dynamic prefix problem (a class of problems described below).

An interesting special case of dynamic undirected connectivity is the plane case where V has some fixed
embedding in R2 and we must insert edges under the constraint that no two edges cross. For this case,
Eppstein et al [23] have a solution with a worst case time complexity of O(log n) per operation. The lower
bound of Ω(log n/ log log n) is still valid, even for the case where V forms a grid and all edges must be grid
edges, as noted by Eppstein [22].

An even more restricted case is the case where V forms a constant width grid, i.e., V ⊂ R2 is given by
V = {1, 2, . . . , k} × {1, 2, . . . , n/k} where k is a constant. For this case, Barrington et al [11] show, again
by reductions to and from a dynamic prefix problem, an upper bound of O(log log n) per operation and a
lower bound of Ω(log log n/ log log log n) per operation. Husfeldt and Rauhe [39] consider the case of a grid
of non-constant, but still restricted width and show a lower bound essentially saying that the query time
must grow linearly with width until width k ≈ log n/ log log n.

In directed dynamic graph reachability, the graph is directed and the query operation is Path(u, v) which
returns a Boolean indicating whether there is a path form u to v in the graph. The upper bounds known for
directed graph connectivity are much worse than the bounds known for undirected graph connectivity [44].
Interestingly, no better lower bounds are known for the directed case.

An interesting special case of directed dynamic graph reachability is the case of upward planar source-sink
graphs. There, the dynamic reachability can be solved in time O(log n) per operation [55]. Husfeldt, Rauhe
and Skyum [40, 39] show a lower bound of Ω(log n/ log log n) per operation, using the chronogram method.

Dynamic planarity testing is the problem of maintaining a plane graph with a fixed embedding of the
vertices under insertion and deletion of edges and operations which check whether a given edge can be added
to the graph without destroying the planar embedding. Husfeldt and Rauhe [39] show a lower bound of
Ω(log n/ log log n) per operation for this problem.

The marked ancestor problem is defined on a fixed rooted tree T . Each tree node has a switch that can
be either on or off. We maintain the tree under operations Switch(v) that changes the state of the switch
of node v and Find(v) which finds an ancestor of v with a switch that is on (if one exists). Tight upper
and lower bounds on the marked ancestor problem was found by [7], the lower bound using the chronogram
method.

Fredman et al [34] show lower bounds using the chronogram method for certain dynamic graph problems
encountered in the implementation of heuristics for the travelling salesman problem.

2.2.3 Union-Find

Union-Find is the problem of maintaining a partition of a finite set {1, . . . , n} under Union(i, j) which
merges the classes of i ∈ {1, . . . , n} and j ∈ {1, . . . , n} and Find(i) which returns a canonical representative
of the class of i.

Fredman and Saks [31] show a tight lower bound of Ω(log n/ log log n) when w = O(log n) on the worst
case complexity of Union-Find in the cell probe model, using the chronogram method.

9



The amortized complexity and the tradeoff between union and find for this problem are very well studied,
with impressively tight upper and lower bounds (on the inverse Ackerman level). We refer the reader to
Fredman and Saks [31], Ben-Amram and Galil [13], and Alstrup, Ben-Amram, and Rauhe [8] for more
information.

Note: The dynamic predecessor problem, described above, is sometimes referred to as Union-Split-Find,
though it bears little resemblance to the Union-Find problem.

2.2.4 Dynamic word and prefix problems

Dynamic word and prefix problems form a class of problems that have clean theoretical properties and thus
nice to study. Lower bounds shown for dynamic prefix problems have also proven themselves useful as they
reduce to lower bounds for natural dynamic search and graph problems as we mentioned above.

Let (M, ◦) be a fixed finite monoid (i.e., an associative structure with identity). The dynamic word
problem associated with M is the problem of maintaining x ∈ Mn under Change(i, a) which changes xi to
a ∈ M and Product which returns x1 ◦ x2 ◦ · · · ◦ xn. The dynamic prefix problem associated with M is the
problem of maintaining x ∈ Mn under operations Change(i, a) which changes xi to a ∈ M and Prefix(i)
which returns x1 ◦ x2 ◦ · · · ◦ xi.

We study dynamic word problems with w = 1 or w = O(log n). As M is fixed and finite, there is, for
every M , an easy upper bound of t = O(log n) for w = 1 and t = O(log n/ log log n) for w = O(log n).

The dynamic prefix problem with M = Z/2Z was studied first, by Fredman in his seminal paper “The
complexity of maintaining an array and computing its partial sums” [28]. He showed a lower bound of
t = Ω(log n/ log log n) for w = 1 for this problem, using the “which-side” technique we describe in Section
3. The same lower bound for this problem was shown to be valid even for w = log n by Fredman and Saks
using their chronogram method which we describe in Section 4.

A classification of the complexity of dynamic word and prefix problems based on the algebraic properties
of M was begun in [26] and continued in [46, 40, 39, 12]. Note that the Were-you-last? game, described in
the introduction, is a restricted version of the dynamic word problem for the monoid ({0, 1},∨), where ∨ is
Boolean OR.

2.2.5 Dynamic algebraic problems

A class of problems, traditionally not studied by the data structures community, but very suitable for analysis
in the cell probe model, is the class of dynamic algebraic problems, introduced in a paper by Reif and Tate
[53]. A dynamic algebraic problem is given by a sequence of n-ary polynomials (f1, f2, . . . , fm) over a finite
field F. We want to maintain a tuple x ∈ Fn under operations Change(i, a) which changes xi to a ∈ F and
operations Query(j) returning fj(x).

A natural example is dynamic matrix multiplication. This is the problem of maintaining two n×n matrices
A, B under operations which change single entries of the matrices and operations which query single entries
of their product (this falls into the above framework, as each entry in the product is a bilinear polynomial
of the entries in the two original matrices). A related example is dynamic polynomial multiplication. This is
the problem of maintaining (the coefficients) of two polynomials of degree n under operations which change
single coefficients of the two polynomials and operations which query single coefficients of their product (i.e.,
a polynomial of degree 2n).

Studying these problems in the cell probe model, we adopt the strongly transdichotomous approach: We
want a scheme of solutions for every finite field F and every value n. We use the cell probe model with
word size w = O(log |F|+ log n) (i.e., we assume unit cost operations on field elements and indices to input
coefficients) and want the depth of the resulting trees to be a universally valid bound described as a function
of n only.

With these assumptions, it is straightforward to give a solution with a time complexity of O(n) per
operation for dynamic matrix multiplication. Frandsen, Hansen, and Miltersen [24] show a matching lower
bound of Ω(n) per operation. Perhaps more surprisingly, Reif and Tate [53] give a non-trivial upper bound
for dynamic polynomial multiplication of O(

√
n log n) time per operation. Frandsen, Hansen, and Miltersen

show an almost matching lower bound of Ω(
√

n). The technique used for both lower bounds is the greedy
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communication complexity lower bound technique, described for the related example of dynamic polynomial
evaluation in Section 4.

Obviously, there is a more or less inexhaustible supply of other natural dynamic algebraic problems to
look at, and for most of them, not nearly as tight bounds are known. We refer the reader to Reif and Tate
[53], Miltersen [47] and Frandsen, Hansen, and Miltersen [24] for more examples. For this survey, we just
note that one additional example of a dynamic algebraic problem was already discussed under the heading
dynamic word and prefix problems above (provided the monoid in question is in fact a field).

2.2.6 Dynamic language membership problems

Many of the dynamic problems above can be put into the following framework: Given a language L ⊆ {0, 1}∗,
maintain a string x ∈ {0, 1}∗ with operations Change(i, a) which change xi to a ∈ {0, 1} and an operation
Member which returns a Boolean indicating whether x ∈ L.

Many naturally occurring problems can be phrased as dynamic language membership problems without
changing their complexity. For instance, it is an easy exercise to see that the dynamic graph connectivity
problem corresponds to the dynamic language membership problem for the language L = UGAP, i.e., the
language of adjacency matrices of graphs with vertex 1 and n in the same connected component.

The language membership problem for regular languages was considered in [26]. The language member-
ship problem for the Dyck languages was considered in [25, 39, 7].

Providing us with an inexhaustible source of more or less natural dynamic problems is not the most
importing reason for considering dynamic language membership problem. More importantly, they allow us to
ask the following question: How large lower bounds can we show for natural language membership problems?
If we take “natural” to mean polynomial time computable (this seems at least a necessary condition for
being natural; if we can’t solve the problem efficiently at all, we will not try to solve it dynamically), the
biggest lower bound we can show using current techniques for w = 1 is t = Ω(log n), and for w = log n, it
is Ω(log n/ log log n). We expect that some problems in P should have much bigger lower bounds, such as
t = Ω(n) or t = Ω(n/ log n) (which are the worst possible behaviors for w = 1 and w = log n, as we show in
Section 3).

Thus, we see an instance of a well known aspect of lower bound research in general: For combinatorial
models of computation which are sufficiently rich to capture real computation in an unrestricted way, there
is a limit to how large lower bounds can be shown using present techniques and methodologies and the limit
is usually rather low. For example, we don’t know how to show super-linear lower bounds on circuit size or
super-logarithmic lower bounds on circuit depth for problems in NP, though we expect some problems should
have exponential circuit size and linear circuit depth. In general, for each combinatorial model, there seems
to be a threshold, below which (sometimes quite sophisticated) combinatorial techniques suffice to show
interesting lower bounds, and above which no known techniques apply. For dynamic language membership
problems in the cell probe model, these thresholds are currently Ω(log n) for w = 1 and Ω(log n/ log log n)
for w = log n. It was observed in [49] that it is possible to define a notion of reduction and completeness of
dynamic language membership problems. These notions imply that we can prove lower bounds for problems
in P breaking the barriers above, if and only if we can prove such lower bounds for certain specific problems,
such as the dynamic circuit value problem.

The alert reader will have noticed that we have in fact already stated bounds of the form bigger than
Ω(log n) above, for instance, for dynamic nearest neighbors in Hamming space and for dynamic matrix
multiplication. This is not a contradiction, as the “n” is a different one: Such lower bounds are possible only
because these problems are parameterized by two parameters and we insist on strongly transdichotomous
bounds depending on one of them only.

We shall return to the issue of the limitations of current techniques in Section 5.

3 Lower bounds in the bit probe model

We now move to the second part of the survey, covering the known techniques for proving lower bounds in
the cell probe model. In the section, we focus on results specific for the case w = 1, while we in the next
section focus on techniques peculiar for bigger values of w. We already saw a lower bound for the case w = 1
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in the introduction. There, we used some basic extremal combinatorics. All of the lower bounds in this
section are in fact even more elementary, being basically simple counting arguments.

3.1 Lower bounds for non-explicit static problems

Before looking at lower bounds for specific problems, it is interesting to understand what the worst possible
behavior of a problem is. For static problems, we can get some information about this by looking at the
complexity of the Long Problem.

The Long Problem on domain D is the static data structure problem given by ε : D × 2D → {0, 1} with
ε(x, y) = 1 iff x ∈ y. In other words, we want to store x ∈ D, so that for every subset S of D, we can ask
whether x ∈ S. Thus, the Long Problem is like the membership problem, but with no restriction on the size
of the set and the role of data and query switched. The set of queries of every other static data structure
problem on D is a subset of the queries of the Long Problem. Thus, upper bounds obtained for the Long
Problem are valid for any other problem as well.

The cell probe complexity of the Long Problem for w = 1 was studied by Elias and Flower [21] and
Miltersen [45] and the following results were obtained.

Theorem 2 Let s ≥ n = dlog De. There is a solution to the Long Problem on domain D using s bits and
with time complexity t ≤ n− blog log(s− n)c+ 1.

Proof Let r = blog log(s− n)c. Our encoding of x ∈ D has two parts.

• The n− r first bits in the naive binary encoding of x

• For each predicate p : {0, 1}r → {0, 1}, the value of p on the final r bits in the encoding of x (i.e. the
long code of the final r bits).

The number of bits used in this structure is n− r + 22r ≤ s, as desired. In order to answer a query S ⊆ D,
we read the first n− r bits of the data structure, i.e. the first n− r bits of the input x ∈ D. Let these bits
form the string x1. Let p be the predicate over the last r bits in the input defined by

p(x2) ⇔ x1x2 ∈ S

We can identify the predicate p using our knowledge about x1 and S only, i.e. without reading further in the
structure. The answer to the query is the value of p(x2) which can be read directly in the structure. Thus
we read at most n− r + 1 bits, as desired. 2

The upper bound is only a slight improvement on the naive upper bound dlog |D|e. However, the next
theorem tells us that the bound is optimal up to a small, additive constant.

Theorem 3 In any solution to the Long Problem on domain D using s bits to represent x ∈ D, some query
must probe at least log |D| − log log s− o(1) bits

Proof Suppose any query can be answered by decision tree of depth t over s bits. The number of such trees

is at most s2t−122t ≤ (2s)2
t

= 2(log s+1)2t

= 22t+log log s+o(1)

There has to be a different tree for each different

query. The number of queries is 2|D|. Thus 22t+log log s+o(1) ≥ 2|D| and t ≥ log |D| − log log s− o(1). 2

The Long Problem is not a typical static data structure problem, as the length of a query vastly exceeds
the length of the data.

Therefore, we consider now situations where |Q| � |D|. Of course, if |Q| gets as small as s, a lookup
table and one probe suffices. It turns out that if a single query is added, so that |Q| = s + 1, the complexity
may jump from constant to linear and if |Q| = (1+ ε)s, we may get the complexity of the Long Problem, up
to an additive constant.

Theorem 4 For any D, s, a function f : D× {1, . . . , s + 1} → {0, 1} exists so that any solution to f using
s bits must have

t ≥ log |D| − log s− log log s− o(1)

12



Also, for any ε > 0, there is a function g : D × {1, . . . d(1 + ε)se} → {0, 1} so that any solution to g using s
bits must have

t ≥ log |D| − log log s− log
1 + ε

ε
− o(1).

Proof A protocol for a problem f : D × Q → {0, 1} is given by the encoding for each x ∈ D and the

decision tree for each y ∈ Q. Thus, there are at most 2|D|s22t+log log s+δ(s)|Q| protocols using s bits and t
probes, where δ is o(1). If |Q| = s + 1 there are thus less than 2|D||Q| functions having time complexity at
most log |D|− log log s− δ(s)− log(s+2). If |Q| ≥ (1+ ε)s, there are at most 2|D||Q|−Ω(|D|) functions having

time complexity at most log |D| − log log s− δ(s)− log 1+ε
ε − log |Q|

|Q|−1 . 2

Note that in the case |Q| = s+1, there is an additive gap of log s between the lower bound and the complexity
of the Long Problem. We do not know if the upper bound can be improved for very small |Q| or if better
lower bounds are available. We consider this an interesting open problem.

3.2 Lower bounds for static membership

We now show the largest, as a function of |Q|, lower bound on the query time known for any explicit
problem, under the assumption that s = O(log |D|), i.e., that linear space is used by the data structure,
namely t ≥ Ω(log |Q|). Note that the lower bound shown for the Long Problem (which is also explicit) is
only Ω(log log |Q|) - the Long Problem has the largest complexity possible only as a function of |D|.

Somewhat surprisingly, the lower bound, from Buhrman et al [16], is for the most basic data structure
problem, membership.

So consider any scheme for storing sets S of size n as data structures φ(S) ∈ {0, 1}s so that membership
queries can be answered using t probes.

Given x and S let TS,x = {(l1, b1), ..., (lt, bt)} where li is the i’th cell probed in φ(S) and bi is the content
of the cell, on query “Is x ∈ S?”. Let TS =

⋃

x∈S TS,x. Clearly |TS | ≤ nt. We observe that TS has to be

different for different S. So,
(

m
n

)

≤ 2nt
(

s
nt

)

, yielding the desired bound.
Somewhat surprisingly, we don’t know if there is any problem f : D × Q → A with f polynomial time

computable, where s = O(log |D|) implies t = ω(log |Q|) when w = 1. Apart from the simple counting
argument in this section, all other known lower bounds on the cell probe complexity of static data structure
problems are by communication complexity (a technique we describe in the next section), and cannot yield
such bounds. Communication complexity cannot even yield t = Ω(log |Q|), but only t = Ω(log |Q|/ log s).

3.3 Lower bounds for non-explicit dynamic language membership problems

Clearly, the dynamic language membership problem for any language has a solution with time complexity n
by the data structure consisting of x itself as a bit vector. We can actually do slightly better than this.

Theorem 5 Any dynamic language membership problem has a solution with time complexity at most n −
blog log nc+ 2.

Proof Let r = blog log(n− 2 log log n)c. We consider a data structure for maintaining x ∈ {0, 1}n consisting
of two parts.

• The first n− r bits of x.

• For each predicate p : {0, 1}r → {0, 1}, the value of p on the final r bits of x.

In order to change one of the first n − r bits of x, we need only touch 1 bit in the structure. In order to
change one of the final r bits in x we read all the last r bits (they are present in the second part of the data
structure), and recompute the value of every predicate on them. We thus have to touch r+22r ≤ n− log log n
bits. In order to check if x ∈ L, we read the first n − r bits of x, let these be the string x1. Let p be the
predicate defined by p(x2) ⇔ x1x2 ∈ L. The value of p on the final r bits of x tells us if x ∈ L. This value
can be read directly in the data structure. Thus, membership testing requires n− r + 1 probes. 2

For most functions the upper bound can not be improved much, as the following theorem shows.
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Lemma 6 There are at most (8n2t)4n2t

different functions f : {0, 1}n → {0, 1} with time complexity at
most t, viewed as dynamic language membership problems.

Proof Assume that the complexity of the dynamic language membership problem is less than t, i.e., that
we have a system of n + 1 decision assignment trees of depth t implementing it. Since we can determine f
from the trees, we only have to give an upper bound on the number of such systems. The total number of
nodes in the trees is at most (n + 1)(2t+1 − 1) ≤ 4n2t. A node can be specified by an address. Each edge is

specified by its write value. Thus there are at most (2 · 4n2t)4n2t

systems. 2

Theorem 7 For almost all functions f : {0, 1}n → {0, 1}, the dynamic language membership problem of the
corresponding language has time complexity more than n− 2 logn− 3.

Proof By Lemma 6, the number of bit probe algorithms running in time at most n− 2 logn− 3 is at most
22n−1

. There are, however, 22n

functions of n variables, so the probability that a random function has bit

probe complexity at most n− 2 log n− 3 is at most 22n−1

22n = 2−2n−1

. 2

3.4 Fredman’s which-side technique

We now switch to lower bounds for explicit problem. We describe the technique used by Fredman [28] to
prove an Ω(log n/ log log n) lower bound on dynamic prefix over Z/2Z. The technique has other applications
as well [26].

Lemma 8 Let x1, x2, . . . , xn ∈ {0, 1}b be vectors with Hamming weight ‖ xi ‖1 ≤ w for all i. Suppose a
Boolean decision tree of depth t discriminates them, i.e. on input xi outputs i. Then n ≤ ∑w

i=0(
t
i).

Proof Assume without loss of generality that the decision tree is optimal, so that it does not ask about the
value of the same index twice along some path and so that any path is traversed by some xi. We can make
an injective map h from the set X = {x1, x2, . . . , xn} into the set {y ∈ {0, 1}t| ‖ y ‖1 ≤ w} in the following
way: Find the leaf in the decision tree containing xi and let h(xi) be the sequence of binary answers leading
to this leaf, padded with zeros if necessary. 2

We now describe an artificial dynamic data structure problem, which-side, which we will first show a
lower bound for and then use as a base for a reduction to show the desired lower bound on dynamic prefix
over Z/2Z.

The problem which-side is the problem of “maintaining” a value x ∈ {1, . . . , n} under two kinds of opera-
tions, Set(i) which puts x = i and Ask(j) which returns a Boolean indicating whether j < x. Furthermore,
the use of the two operations is highly restricted: The first operation performed must be a Set, and all
further operations must be Asks.

Lemma 9 Any solution to which-side with word size w = 1 has time complexity t = Ω( log n
log log n ).

Proof Consider an implementation with worst case time complexity t using s memory cells. Let xi ∈ {0, 1}s

be the configuration of the memory image after performing Set(i) in the initial state. Since the initial state
of the structure is the zero-vector, we have that the Hamming weight of xi is at most t. Given the memory
configuration after performing Set(i), we can determine i by making a binary search using the Ask(j)-
operations, so there is a decision tree discriminating among the xi’s of depth at most O(tlog n). By Lemma
8, t = Ω( log n

log log n ). 2

We now show how the lower bound for which-side implies the desired lower bound for dynamic prefix over
Z/2Z, by reducing the former to the latter. Given an implementation of dynamic prefix over Z/2Z of com-
plexity t, i.e., an implementation of a data structure maintaining x ∈ {0, 1}n with operations Change(i, a),

setting xi to a and Prefix(j) returning
∑j

i=1 xi mod 2. We construct an implementation of which-side as
follows. We implement Set(i) by performing Change(i, 1). We implement Ask(j) by performing Prefix(j)
and checking whether the result is 1 or 0. Thus, there is a implementation of which-side of complexity at
most t, and by Lemma 9, we have that t = Ω(log n/ log log n) as desired.
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3.5 Lower bound for dynamic language membership problems by counting sub-

functions

We shall finally present a method, due to [49] which gives lower bounds of magnitude log n − o(log n) for
explicitly defined dynamic language membership problem. These are the highest lower bounds currently
known for explicit such problems in the cell probe model with word size w = 1.

The idea of the proof is very similar to Neciporuk’s lower bound on formula size: If a function has many
subfunctions on a small set of variables, it must have high complexity.

Let f be a Boolean function on the set of variables X = {x1, x2, . . . , xn}. A subfunction of f on Y ⊆ X
is a function obtained from f by setting the variables of X − Y to constants.

Lemma 10 Let f : {0, 1}n → {0, 1} be a function so that f supports r different subfunctions on a set of
variables Y of size m. View f as the characteristic function of a finite language L. Then any implementation
of the dynamic language membership problem for L in the cell probe model with word size w = 1 has complexity
at least log log r − log log log r − log m− 3

Proof If r ≤ 223

, there is nothing to prove, so we will assume r > 223

. We can get an implementation for
each of the subfunctions on Y by performing a sequence of operations from the initial state changing the value
of the variables in X − Y to the appropriate values and letting the resulting state be the initial state of the
data structure. As in the introduction, we can then modify the solution obtained so that the initial state is
all-zero, without changing the complexity of the solution. By Lemma 6 there are at most (8m2t)4m2t

different
functions g on m variables whose corresponding dynamic language membership problem has complexity at
most t, so if t is the complexity of the dynamic language membership problem corresponding to f , we must
have (8m2t)4m2t ≥ r. When r ≥ 4 this implies t ≥ log log r − log log log r − log m− 3 2

Now let the element distinctness language be the Boolean language whose instances are strings of length
2n logn of the form x1x2 . . . xn with xi ∈ {0, 1}2 log n and all the xi being different. By Lemma 10, any
solution to the dynamic language membership problem for element distinctness in the cell probe model with
word size w = 1 must have complexity at least log n−O(log log n).

4 Lower bounds in the cell probe model

We now concentrate on proving lower bounds in the cell probe model with the parameter w greater than
1. Obviously, for a given problem, the lower bound we can prove will decrease with w. Thus, we shall try
to get lower bounds as close to any lower bound l we may have for the problem with w = 1 (in particular,
beating the trivial lower bound l/w). As a particular example, we will later show that the lower bound we
obtained for dynamic prefix over Z/2Z also holds for w = O(log n).

The combinatorics used is somewhat more sophisticated that the simple counting arguments of the
previous section. The known techniques fall into 2 categories: Lower bounds obtained using two party
communication complexity and lower bounds obtained using the chronogram method. An (apparently) third
important technique, used in the aforementioned unpublished manuscript by Sundar, will not be covered in
this survey. Understanding this technique better seems a promising topic for further research.

4.1 Communication complexity method

The communication complexity method originates in a paper by Ajtai [5], though the communication com-
plexity interpretation was not made explicit until [46].

In this subsection, we describe the technique in a generic way, and in the next two subsections, we give
two examples. Let us first describe the proof technique for static data structure problems.

Suppose we want to show a lower bound for a static data structure problem, given by f : D × Q → A.
In particular, suppose we want to show that there is not a solution with word size w, number of cells s, and
query time t.

We consider the following two party communication game between two players, Alice and Bob. Alice is
given y ∈ Q. Bob is given x ∈ D. The object of the game is to let Alice determine the value of f(x, y)
through communication with Bob. The communication is structured in the following way: Alice chooses
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her messages from {1, . . . , s}, Bob chooses his messages from {0, . . . , 2w − 1} and the communication is
strictly alternating, with Alice sending the first message. The complexity is the worst case number of rounds
required in an optimal protocol before Alice is able to give the correct answer.

We now have the following lemma:

Lemma 11 If there is a cell probe solution with space bound s and time complexity t for the static data
structure problem, then the complexity of the communication game is at most t.

Proof We construct a communication protocol using the cell probe algorithm.
Suppose Alice is given y and Bob is given x. Bob computes the data structure φ(x) ∈ W s, where

W = {0, 1}w but does not send anything yet.
Then Alice simulates the decision tree corresponding to query y by sending Bob requests for the cells she

wants to read in φ(x). Bob sends the content of the cell in question back. This is repeated until a leaf in
the decision tree is reached and Alice knows the answer, i.e. for at most t rounds. 2

Thus, if we can show that the complexity of the communication game is more than t, we have the desired
tradeoff lower bound on the cell probe complexity of f . Fortunately, two party communication complexity
is a well studied area with lots of lower bound techniques to draw from. In the subsections, we describe
two different communication complexity lower bound techniques applicable for different problems, the greedy
technique and the technique of probability amplification in product spaces.

First, however, we describe how to use the communication complexity technique to give a lower bound
for a dynamic problem, without a constraint on the memory space. Actually, we will show it with the mild
constraint s ≤ 2O(w) which can, in most cases, be removed (see [41]). The technique was first applied by
Xiao [59].

Given a dynamic problem D, we simply define the following static data structure problem, for some
parameter d: f : D ×Q → A, where Q is the set of query operations of the dynamic problem, A is the set
of possible answers to query operations of the dynamic problem, and D is the set of states of the dynamic
problem reachable from the initial state by performing at most d operations.

Now we get the following lemma.

Lemma 12 If there is a cell probe solution with word size w, space bound 2O(w) and time bound t to the
dynamic problem D then the static problem f has a solution with word size w, space bound O(dt) and query
time O(t).

Proof The solution to the static problem is as follows. We encode a state x ∈ D as a Fredman-Komlós-
Szemerédi dictionary on universe 2O(w) containing the set of memory cells that were changed when moving
from the initial state to state x, and, as associated information, the contents of those cells in state x.

The encoding clearly has the right size, as the Fredman-Komlós-Szemerédi dictionary uses linear space.
With this encoding, we can make a decision tree emulating the behavior of any decision assignment tree of a
query operation of the solution to the dynamic problem as follows: When the tree of the dynamic solution
wants to read a cell in the data structure, the tree of the static solution will look up the cell in the dictionary.
If it is there it gets its content. Otherwise, it knows that the content is as in the initial state of the dynamic
solution, i.e., 0. As the Fredman-Komlós-Szemerédi dictionary has constant lookup time, the time bound is
as desired.

We swept one small point under the rug: The tree of the dynamic solution may make changes to the data
structure and later read the values it changed itself. The static tree can’t do that, so whenever the dynamic
tree makes a change, the static tree must remember the change made and if it reads the same cell again,
remember the new value, overriding the procedure above. This is easily done with essentially no overhead.
2

Thus, we can get a lower bound on the operation time of a dynamic problem with (essentially) no space
constraint from a time-space tradeoff lower bound for a static problem.

4.1.1 Example 1: A greedy communication complexity lower bound

In this section we show a lower bound from [47] for the dynamic algebraic problem of dynamic polynomial
evaluation: Given a finite field F, let f be given by f(a0, . . . , an, x) = a0 + a1x + a2x

2 + · · · anxn. The
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problem is to maintain (y0, . . . , yn+1) ∈ Fn+2 under Change(i, b) setting yi = b and Evaluate returning
f(y0, . . . , yn+1). We study the problem in the cell probe model with word size w = O(log n + log |F|) and
want a strongly transdichotomous bound on the operation time, i.e. an upper bound t(n) valid for all fields F.
Clearly t = O(n) is possible. We show that this is optimal, i.e., t = Ω(n) for any strongly transdichotomous
solution.

By Lemma 12, we can go by the following static problem: Store (a0, . . . , an−1) ∈ Fn with |F| > n as
a data structure using s = O(n2) memory cells, each containing an element of F, so that queries “What is
∑

i aix
i?” for all x ∈ F can be answered efficiently. We show that any strongly transdichotomous solution

to this problem must have query time Ω(n). The stated lower bound for dynamic polynomial evaluation
follows by Lemma 12.

By Lemma 11, we can show a lower bound for the static problem by considering the communication
problem where Alice gets a field element x and Bob a polynomial of degree at most n and Alice must
determine the value of the polynomial applied to the field element. We wish to show a lower bound for this
communication problem. Most (all?) lower bounds on two party communication complexity work by fixing
the messages of the two players one by one, starting at the beginning of the protocol. After having fixed
all the messages, we arrive at a contradiction by arguing that Alice can’t give the right answer based on
what she has seen. The various techniques differ in the way messages are fixed. In the family of “greedy”
techniques described here, they are fixed in a very simple way. In the current example, we fix the message
which are communicated for most of the possible inputs of a player.

To be precise, consider a general communication problem h : A × B → C, where Alice is given a ∈ A,
Bob is given b ∈ B and the objective of the game is to let Alice find h(a, b). Alice chooses her messages from
{1, . . . , s} and Bob chooses his from {1, . . . , k}.

Lemma 13 If a communication problem h : A × B → C has a t round protocol, then there is A′ ⊆ A and
B′ ⊆ B so that |A′| ≥ |A|/st and |B′| ≥ |B|/kt and so that

∀ x ∈ A′ ∀ y, z ∈ B′ : h(x, y) = h(x, z).

Proof By induction in t. The lemma clearly holds for t = 0, since if Alice can announce the answer without
communicating with Bob, the function can only depend on her input. Now assume that it holds for t, and we
will show it for t + 1. Let a communication problem h with a t + 1 protocol P be given. For α ∈ {1, . . . , s},
let Aα be those x ∈ A for which Alice sends α as a first message when given x as input. Fix α, so that
|Aα| ≥ |A|/s. For β ∈ {1, . . . , k}, let Bβ be those y ∈ B for which Bob send β as the first message if α
was the first message received. Fix β, so that |Bβ| ≥ |B|/k. The communication problem h, restricted to
Aα × Bβ has a t round protocol P ′, doing the following: Simulate P from the second round on, pretending
that in the first round, Alice sent α to Bob and Bob sent β to Alice. By the induction hypothesis, we can
find A′ and B′ of the appropriate size. 2

We are now ready to give the lower bound for the communication game. Assume the communication
game has a t round protocol, where Alice’s messages are taken from {1, 2, . . . , s} and Bob’s from F. Find
A′ ⊆ F and a subset B′ of the polynomials over F with degree at most n with the properties stated in
Lemma 13, i.e., |A′| ≥ |F|/st, |B′| ≥ |F|n+1/|F|t = |F|n+1−t and ∀ x ∈ A′ ∀ f, g ∈ B′ : f(x) = g(x).

Since two different polynomials of degree at most n over a field can agree on at most n points, we have

that |A′| ≤ n ∨ |B′| ≤ 1, so |F|/st ≤ n ∨ |F|n+1−t ≤ 1 and we have t ≥ min(n + 1, log |F|−log n
log s ).

Thus, by considering a sufficiently large field F and using Lemma 11 and Lemma 12, we have the stated
strongly transdichotomous lower bound for dynamic polynomial evaluation, t = Ω(n).

A slightly more sophisticated variant of the greedy technique, especially suitable for problems where the
answer is Boolean, is the “richness” technique of [48]. Here we do not try to maximize the size of the set
of inputs of each player, i.e. |A′| or |B′|, but, essentially, the number of 1-entries in the (Boolean) matrix
f|A′×B′ . This technique was used to show (through reductions from Boolean problems) the lower bounds on
nearest neighbor, partial match and dynamic matrix multiplication and convolution, mentioned in the first
part of the survey.
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4.1.2 Example 2: Probability amplification in product spaces

The amplification technique is a more sophisticated technique for showing lower bounds for communication
complexity. It originates in the paper of Ajtai [5]. It is not only relevant for proving cell probe complexity
lower bound: It was also used by Karchmer and Wigderson to prove lower bounds on the circuit depth of
connectivity.

The amplification technique is technically complicated to use, especially if optimal results are desired,
and essentially outside the scope of this survey to describe in details. In this section we describe a variant
of the technique where the amplification technique is put into an “off-the-shelf”, rather intuitive, lemma
about communication games, the round elimination lemma, of [48]. We will use it to prove a lower bound
for the static predecessor problem implying that if the space s is nO(1), any n-strongly transdichotomous
bound on the query time must be Ω((log n)1/3) (remember that the optimal lower bound of Beame and Fich
is Ω(

√

log n/ log log n)).
In fact, we consider the following problem. Consider the problem of storing a {red,blue}-coloured subset

S of {0, . . . , m − 1} of size at most n in a static data structure so that for any x, we can efficiently find
the colour of max{y ∈ S|y ≤ x}. Combining any solution to static predecessor with a Fredman-Komlós-
Szemerédi dictionary, we get a solution to this problem with roughly the same resource bounds.

Thus we consider the communication game col[b, n] between two players, Alice and Bob defined as follows:
Alice gets x ∈ {0, . . . , 2b − 1}. Bob gets gets S ⊆ {0, . . . , 2b − 1}, where |S| ≤ n. Each element of S has an
associated colour, either red or blue. They must decide the colour of max{y ∈ S|y ≤ x}

We shall consider communication protocols solving this game. An [r, a, w]P -protocol is an r-round com-
munication protocol between the two players, where player P sends the first message, each of Alice’s messages
contains a bits, and each of Bob’s messages contains w bits. The solution to the static data structure problem
can be converted into an [o((log n)1/3), O(log n), w]A-protocol for the communication game. We shall show
that such a protocol does not exist and thus arrive at a contradiction.

The round elimination lemma needs the following machinery:
f : X × Y → {0, 1} can be used to define the following communication problem: Alice gets x ∈ X and

Bob gets gets y ∈ Y and they must decide the value of f(x, y). Then, the problem f (r) is defined as follows:
Alice gets r elements of X , x1, . . . , xr. Bob gets y ∈ Y , an integer i ∈ {1, . . . , r} and copies of x1, . . . , xi−1

and they must compute f(xi, y). The problem (r)f is symmetric, with the roles of Bob and Alice reversed.

Lemma 14 (Round Elimination Lemma) There is a universal constant c so that the following holds.
For any f and parameters a, w, if there is a [t, a, w]A-protocol for f (ca) then there is a [t−1, ca, cw]B-protocol
for f .

Obviously, a symmetric version of this lemma applies to the problem (cw)f . A proof can be found in [48].
The basic idea is that Alice’s first message can not be very useful, since it might contain only information
about xj ’s different from xi.

Lemma 15 A [t, a, w]A-protocol for col[b, n] can be converted into a [t, a, w]A-protocol for col
[

b
ca , n

](ca)

Proof For the problem col
[

b
ca , n

](ca)
, Alice gets input x1, . . . , xca, each containing b

ca bits, and Bob gets
S, i, x1, . . . , xi−1. They can use the following protocol to solve the problem:

Alice computes x′ = x1 ◦ x2 ◦ . . . ◦ xca (◦ indicates concatenation). Bob computes S ′ = {x1 ◦ x2 ◦ . . . ◦
xi−1 ◦ y ◦ 0b− b

ca i|y ∈ S}, with x1 ◦ x2 ◦ . . . ◦ xi−1 ◦ y ◦ 0b− b
ca i inheriting the color of y.

Then they execute the protocol for col[b, n] using x′ and S′ as inputs. The colour of the predecessor of
x′ in S′ is the same as the colour of the predecessor of xi in S. 2

Lemma 16 A [t, a, w]B-protocol for col[b, n] can be converted into a [t, a, w]B-protocol for (cw)col
[

b− log(cw), n
cw

]

.

Proof For the problem (cw)col
[

b− log(cw), n
cw

]

, Alice gets x and i as input, and Bob gets S0, . . . , Scw−1.
They can use the following protocol.

Alice computes x′ = i ◦ x. Bob computes S′ =
⋃cw−1

j=0 {j ◦ y|y ∈ Sj}. j ◦ y inherits its colour from y.
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They execute the protocol for col[b, n] using x′ and S′ as inputs. The colour of the predecessor of x′ in
S′ is the same as the colour of the predecessor of x in Si. 2

We can use Lemma 15 and Lemma 16 to create the following chain of conversions:

Given a [t, a, w]A-protocol for col[b, n], we convert in by Lemma 15 into a [t, a, w]A-protocol for col
[

b
ca , n

](ca)
.

Then, using the Round Elimination Lemma, we get a [t−1, ca, cw]B-protocol for col
[

b
ca , n

]

. From that, using

Lemma 16, we get a [t−1, ca, cw]B-protocol for (c2w)col
[

b
ca − log(c2w), n

c2w

]

. Finally, using the Round Elim-
ination Lemma a second time, with the roles of Alice and Bob switched, we get a [t− 2, c2a, c2w]A-protocol
for col

[

b
ca − log(c2w), n

c2w

]

. Now let C be a constant so that C ≥ 2c2, and restrict the attention to settings

of the parameters where log(c2w) ≤ b
2ca . Then, the last protocol obtained is a [t− 2, Ca, Cw]A-protocol for

col
[

b
Ca , n

Cw

]

.
By T = t/2 repeated applications of this chain, we can convert a [t, a, w]A-protocol for col[b, N ] into a

[

0, CT a, CT w
]

-protocol for col[bc−T (T+1)/2a−T ), nc−T (T+1)/2w−T ] and hence for col[bc−T 2

a−T ), nc−T 2

w−T ].

Now, let n = 2(log w)3/2

, T =
√

log w
10
√

log c
, and w = cb. Then T = Θ(log1/3 n), and we can convert a

[T, O(log n), w]A-protocol for col[w, n] into a protocol for col
[

w99/100−o(1), n9/10−o(1)
]

where no communica-
tion takes place, an impossibility. Thus, the [T, O(log n), w]A protocol does not exist, and we are done.

4.2 Chronogram method

In this section, we give a presentation of the basic chronogram lower bound technique, due to Fredman and
Saks [31]. The technique has been refined considerably beyond what we show here, most notably in the work
of Rauhe and collaborators. We refer the reader to [31, 13, 40, 39, 7, 8] for details.

Recall that the dynamic rank problem is the problem of maintaining a subset S of U = {1, . . . , m} under
Insert, Delete, and Rank, where Rank(x) returns the number of elements of S smaller than or equal to
x.

We shall show the following theorem of [31]: In any implementation of the dynamic rank in the cell probe
model with word size w = log m, the worst-case complexity per operation is Ω(log m/ log log m), and hence
Ω(log n/ log log n), where n is the size of the maintained set.

We actually show the lower bound for the dynamic prefix problem over Z/2Z, thus generalizing the result
of Section 3.4. The result for dynamic rank follows by an easy reduction.

Recall that the dynamic prefix problem over Z/2Z is to maintain a bit vector x ∈ {0, 1}m under the

operations Change(i, a) setting xi := a and Prefix(j), returning (
∑j

i=1 xi) mod 2 Without loss of gen-
erality, assume m = 2b, where b is a power of 2, and w = b. Define k =

√
m indices i1, ..., ik as follows:

i1 = m
2 , i2 = m

4 , i3 = 3m
4 , i4 = m

8 , i5 = 3m
8 , i6 = 5m

8 , i7 = 7m
8 , etc. Then, u, v ≤ r, u 6= v ⇒ |iu − iv| ≥ m

2r
and |m− iu| ≥ m

2r .
We will consider the sequence of operations Change(ik, ak), Change(ik−1, ak−1), . . . , Change(i1, a1),

Prefix(y). We have already fixed the values of i1, . . . , ik, but we will vary the values of a1, . . . , ak and y.
Our strategy will be to show that a random choice of these values makes the sequence of operations hard to
serve.

We divide the Change operations in the sequence into epochs. Epoch 1 is the last l1 = log3 m Change

operations. Epoch 1 and 2 are the last l2 = log6 m Change operations. In general, epochs 1 to i are the
last li = log3i m Change operations. The number of epochs is r, with log3r m =

√
m, i.e., r = log m

6 log log m .
Whenever we change the content of a cell, we conceptually stamp the cell with the index of the current

epoch. We will show that a typical query reads cells with many different stamps.
Given a sequence of updates a ∈ {0, 1}k, let DS(a) be the data structure after the updates have been

performed, and let DS(i)(a) be the data structure where all registers with stamp i are restored to their state
when epoch i was about to begin. Furthermore, let q(a) ∈ {0, 1}m, be the results of running Prefix(1),
Prefix(2), . . . , Prefix(m) on DS(a). Similarly, let q(i)(a) be the result of running the same operations on
DS(i)(a).

We now show that if the complexity of Change is small, the complexity of Prefix must be high.
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Worst case complexity of Prefix

≥ max
a∈{0,1}k,y∈{0,1}m

time of Prefix(y) on DS(a)

≥ 1

2km

∑

a∈{0,1}k

∑

y∈{0,1}m

time of Prefix(y) on DS(a)

≥ 1

2km

∑

a

∑

y

r
∑

i=1

{

1 if Prefix(y) reads some register stamped i in DS(a)
0 otherwise

We now switch the order of summations, obtaining a whole new outlook on the situation. In the following,
dist(x,y) denotes the Hamming distance between Boolean vectors x and y.

≥ 1

2km

∑

i

∑

a

#{y | Prefix(y) reads some register stamped i in DS(a)}

≥ 1

2km

∑

i

∑

a

#{y | q(a)y 6= q(i)(a)y}

=
1

2km

∑

i

∑

a

dist(q(a), q(i)(a))

≥ 1

2km

∑

i

∑

a1∈{0,1}k−li

∑

a2∈{0,1}li

dist(q(a1 ◦ a2), q
(i)(a1 ◦ a2))

≥ 1

2km

∑

i

∑

a1

m

20
#{a2|dist(q(a1 ◦ a2), q

(i)(a1 ◦ a2)) ≥
m

20
}

≥ 1

20 · 2k

∑

i

∑

a1

(2li −#{a2|dist(q(a1 ◦ a2), q
(i)(a1 ◦ a2)) <

m

20
})

≥ 1

20 · 2k

∑

i

∑

a1

(2li −#B ·max # elements of A in Hamming ball of radius m
20 )

where A = {q(a1 ◦ a2)|a2 ∈ {0, 1}li} and B = {q(i)(a1 ◦ a2)|a2 ∈ {0, 1}li}.
How many elements of A can be packed inside Hamming ball of radius m

20? By the triangle inequality,
at most as many as can be packed inside Hamming ball of radius m

10 with some element of A as center c.
An element of A is a correct answer vector to a sequence of change operations. Only the last li of

these operations differ for different elements. Let j and k be consecutive members of {i1, . . . , ili}. For any
v ∈ A, vj , vj+1, . . . , vk−1 has one of two possible appearances, namely cj , cj+1, . . . , ck−1 or (1 − cj), (1 −
cj+1), . . . , (1− ck−1). In the first case, the contribution to the Hamming distance from c is 0, in the second
case, the contribution is at least m

2li
. Therefore, for at most li

5 (j, k)-pairs, the sequence vj , vj+1, . . . , vk−1

has the second appearance. So, we have that the maximum possible elements of A inside a Hamming ball
of radius m

20 is at most
∑

j≤li/5

(

li
j

)

, which can be bounded from above by 20.95li

Let s be the total number of cells referenced in the 2m decision assignment trees corresponding to
Change operations. If the complexity t of Change is less than log m, we have s ≤ 2m2wt and #B =

#{q(i)(a1 ◦ a2)|a2 ∈ {0, 1}li} ≤ {DS(i)(a1 ◦ a2)|a2} ≤
∑t·li−1

j=0

(

s
j

)

2wj ≤ ∑t·li−1

j=0

(

2m·2wt

j

)

2wj ≤ 20.01 li

Thus we can continue the chain of inequalities, leading to the desired lower bound:
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Worst case complexity of Prefix

≥ 1

20 · 2k

∑

i

∑

a1

(2li −#B ·max # elements of A in Hamming ball of radius m
20 )

≥ 1

20 · 2k

∑

i

∑

a1

(2li − 20.01li · 20.95li)

≥ 1

20 · 2k

∑

i

(2k−li)(
2li

2
)

=
r

40

=
log m

240 log log m

5 Challenges

5.1 Big challenges

An interesting aspect of lower bound research is that for all models of computation which are sufficiently
rich to capture real computation in a good way, there is a limit to how large lower bounds can be shown
using present techniques and methodologies and the limit is usually rather low. Obviously, we want to break
the barriers. For cell probe complexity, some main barriers are given by the following challenges.

Open problem 1 Show a lower bound of the form exceeding ω(log n) for the cell probe complexity, with
word size w = 1, for a dynamic language membership problem with the language being polynomial time
decidable.

Open problem 2 Show a lower bound of the form ω(log n/ log log n) for the cell probe complexity, with
word size w = O(log n), for a dynamic language membership problem with the language being polynomial
time decidable.

Open problem 3 Show a tradeoff lower bound result in the bit probe model for a polynomial time com-
putable static problem f : D×Q → {0, 1}, which implies that if only O(log |D|) bits is used for the structure,
more than ω(log |Q|) bit probes must be done by some query.

Some evidence that the third challenge is indeed a serious one was given in [48]: If we strengthen the
challenge a bit by replacing O(log |D|) with (log |D|)O(1) (we could have stated it that way, but O(log |D|)
seems challenging enough), then solving the challenge immediately implies that there is a problem in P which
cannot be solved by read-O(1)-times, polynomial size branching programs. Until recently, proving this was a
well known open problem. However, recently Ajtai [6], in a breakthrough paper, proved that there is indeed
such a problem in P so the evidence is not quite as discouraging anymore (and also reminding us that the
lower bound barriers of complexity theory are sometimes broken1!)

5.2 Smaller challenges

The following problem is raised by the work of Dodis [20] and Buhrman et al [16]. To make proving a lower
bound easier, we might want to restrict ourselves to nonadaptive cell probe schemes. These are schemes,
where the sequence of cells probed only depends on the query, not on the contents of the cells probed. It
is easy to see that adaptiveness helps a lot for problems such as static membership when w = O(log m).
However, if we move to the case w = 1, we seem to have no examples of problems where adaptiveness
provably helps asymptotically for static problems. Thus:

1And often in papers of Ajtai!
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Open Problem 4 Is there a static problem f : D × Q → A which can be solved adaptively in the cell
probe model with w = 1 using space s and time t but cannot be solved nonadaptively using space O(s) and
time O(t)?

Husfeldt and Rauhe [39] consider cell probe complexity with nondeterministic query operations. Inter-
estingly, the counting argument of Section 2 establishing the existence of hard functions does not seem to
go through when the query operation is allowed to be nondeterministic.

Open Problem 5 What is the complexity of the hardest static problem f : D × Q → {0, 1} in the cell
probe model with w = 1 and nondeterministic query operations?

Open Problem 6 Show a strongly transdichotomous lower bound of Ω(log n) for the dynamic prefix prob-
lem over Z/mZ with word size w = log n + log m.

Good progress towards solving this problem was taken by Alstrup et al [7]. But the problem remains
unsolved, not only in the cell probe model, but even in algebraic models of computation [36].

And finally, we want of course to explore the current techniques to their fullest, hopefully proving lots of
interesting tight bounds for naturally occurring data structure problems.
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