An Open Problem about CFG's and decidability and An NP-hardness result An Exposition by Bill Gasarch

1 Introduction

Def 1.1 If w is a string then $n_a(w)$ is the number of a's in w.

2 Counting Descriptions and CFG's

Def 2.1 A counting Description is a boolean combination of linear equations and inequalities involving $n_s igma(w)$. For example

$$(n_a(w) \le 2n_b(w) + 3) \land \neg (n_c(w) = n_b(w)).$$

If E is a counting description then

$$L(E) = \{ w : E(w) \text{ is true } . \}$$

We believe the complexity of the following problems (even if they are decidable) is open:

- 1. Given a counting description E, is L(E) regular?
- 2. Given a counting description E, is L(E) context free?

We can vary these problems in the following ways (and combinations of these ways).

- 1. Do not allow negation.
- 2. Do not allow intersection.
- 3. Do not allow inequalities.
- 4. Do not allow additive constants.
- 5. Do not allow additive constants.
- 6. Do not allow multiplicative constants.
- 7. Allow other types of equations, for example $n_a(w) = n_b(w)^2$. (If allow any polys then undecidably by Hilbert's Tenth problem.)

3 An NP-Hardness Result

The following is due to Richard Beigel.

Theorem 3.1 There is a polytime reduction that will, given a CNF formula ϕ produce a description E such that the following happens.

- If ϕ is satisfiable then L(E) is not context free.
- If ϕ is not satisfiable then $L(E) = \emptyset$.

Hence all of the problems above are NP-hard.

Proof:

Given a CNF formula $\phi(x_1, \ldots, x_n)$ we let $\Sigma = \{a, b, c, x_1, x_2, \ldots, x_n\}$. Our counting description E is the AND of the following.

- 1. $n_a(w) = n_b(w) \wedge n_a(w) = n_c(w) \wedge n_b(w) = n_c(w).$
- 2. For each $i \ 0 \le n_{x_i}(w) \le 1$.
- 3. For each clause C do the following. For every positive literal x in the clause we have $n_x(w)$. For each negative literal $\neg x$ we have $1 n_x(w)$. We have the condition that the sum of these is ≥ 1 .

Let $L = \{w : n_a(w) = n_b(w) = n_c(w)\}$. If ϕ is satisfiable then $L(E) \cup a^*b^*c^* = L$ and hence L(E) is NOT context

free.

If ϕ is NOT satisfiable then $L(E) = \emptyset$.