When Does a Number Equal the Sum of the Squares or Cubes of its Digits?
An Exposition and a Call for a More elegant Proof

by William Gasarch

1 Introduction
We will look at theorems of the following form:

Theorem 1.1 Let L < U and k be in N. For every L < x < U there are XXX numbers that are
the sum of the kth powers of their digits.

The theorems we prove are easy and known. We will give several proofs of some of them with
an eye towards the question: What is an elegant proof? For the last theorem I have a proof that
is not elegant. If you know a more elegant one then please let me know.

For each proof we note how many times we had to actually CHECK a number. This is a crude
measure of elegance— the fewer checks the more elegant the proof (compared to other proofs of
the same theorem). We try not to game the system by having rather elaborate proofs that don’t
check that much.

2 When is a 2-Digit Number the Sum of the Squares of its Digits?

We will prove the following theorem several different ways.

Theorem 2.1 If11 < x <99 then x is not the sum of the squares of its digits.

2.1 Proof by Enumeration

One can prove this theorem by listing all numbers between 11 and 99 and seeing that none of them
work. One could write a program to produce this proof. We omit this proof.
Number of Checks: : 89.

PROS: You get the answer easily. If you wrote a program then you can adjust it to find the
answers. to many more problems of this type (e.g., How many 3-digits numbers are the sum of the
cubes of their digits) or variants of this problem (e.g., How many 2-digit numbers are within 1 of
the sum of their digits? Which ones are they?)

CONS: You get no insights.

2.2 Proof by Looking at each 10-number interval

Proof:
Case 1: x = 10a where 1 < a <9 (so z ends in a 0).

a’? = 10a

a = 10.



So this cannot happen. Note we did no checks.
Case 2: 11 <z < 19. Since 11,12,13 > 12+ 32 > 12+ 22 > 12 + 1!, none of 11,12,13 work. Since
15,16,17,18,19 < 12 +52 < 12462 < 12+ 7*> < 12 + 8% < 12 + 92, none of 15,16,17,18,19 work.
The only number left is 14 which does not work since 14 # 12 4 42. Note we did one check.

Case 3: Look at 21 < z < 29. 21,22,23,24 > 22 + 42, 26,27,28,29 < 22 4+ 6°. 25 does not work
since 25 # 22 + 52. Note that we did one check.

Case 4: 31 < z < 39. 31,32,33,34 > 32 +42. 36,37,38,39 < 3% + 62. 35 # 32 + 52. Note that we
did zero checks.

Case 5: 41 < x < 49. 41,42,43,44 > 42 + 4. 46,47,48,49 < 42 + 62. 45 # 4> + 5%. Note that we
did one check.

Case 6: 51 < z < 59. 51,52,53,54,55 > 5% 4+ 52. 56,57,58,59 < 5% 4+ 92. Note that we did zero
checks.

Case 7: 61 < x < 69. 61,62,63,64 > 62+ 42. 66,67,68,69 < 62 + 62. 65 # 62 + 52. Note that we
did one check.

Case 8: 71 < x < 79. 71,72,73,74 > 7% +42. 76,77,78,78 < 7% + 62. 75 # 7> + 52. Note that we
did one check.

Case 9: 81 < x < 89. 81,82,83,84 > 82 +42. 86,87,88,89 < 8 + 62. 85 # 82 + 52. Note that we
did one check.

Case 9: 91 < z < 99. 91,92 > 92422 95,96,97,98,99 < 92+ 52. 93 # 92432, 94 £ 92 + 42, Note
that we did two checks.

Number of Checks: 8

PRO: Only ten cases. The techniques used may be helpful for other problems.
CON: Only ten cases? If you do other problems with way the number of cases may get rather
large.

2.3 Proof Using Mod 2, Mod 4, and Mod 10

Proof:
Assume, by way of contradiction, that there exists 1 < a <9 and 0 < b < 9 such that

10a 4+ b = a® + b? henceforth the main equation.
Take this mod 2 using 22 =z (mod 2) and 10 =0 (mod 2) to obtain

a=0 (mod 2).



If we take the main equation mod 4, using a? = (mod 4), we get

b(b—1)=0 (mod 4).
Hence b € {0,1,4,5,8,9}.

We now take the main equation mod 10.

b=da’>+b*> (mod 10).

a=4/—bb—1) (mod 10).

We now run through b € {0,1,4,5,8,9} and note for which ones a = /—b(b—1) (mod 10)
exists and is a nonzero even number. Note that the squares mod 10 are 0,1,4,5,6,9 so the only
nonzero even ones are 4, 6.

b| —b(b—1) (mod 10) | a=+/—b(b—1) (mod 10) comment

0 0 0 NO GOOD: Need 1 <1<9
1 0 0 NO GOOD: Need 1 <1<9
4 8 NONE NO GOOD: No Square Root
5 0 0 NO GOOD: Need 1 <1<9
6 0 0 NO GOOD: Need 1 <1<9
8 4 2,8 OH, Will need to check

9 8 NONE NO GOOD: No Square Root

So the only candidates for (a,b) are (2,4), (8,4).

One can check that these do not satisfy the main equation.
Number of Checks: 2
PRO: The technique may extends to other problems.
CAVEAT: Is this proof really more elegant then the intervals proof?

3 When is a d-Digit Number the Sum of the Squares of its Digits?

Theorem 3.1 If x > 2 then = is not the sum of the squares of its digits.

Proof:

Case 1: 2 <z < 9. Since & < 22 the theorem is true for 2 < z < 9.
Case 2: 10 <z <£99. By Theorem 2.1 our theorem is true for these x.
Case 3: 1<a<9,0<b<9,0<c<9. Assume

x=100a + 10b + ¢ = a® + b*> + 2.

The largest = can be is 92 + 9% + 92 < 300. Hence a € {1,2}.

The largest x can be is 22492492 =176 < 200. Hence a =1 and b < 7.
The largest = can be is 12 4 72 4 92 = 141. Hence and b < 4.

The largest = can be is 12 4 42 + 92 = 98 < 100.



Hence there is no such x.
Case 4: = > 1000. Let x = b,,by—1---bg where 1 < b,, <9, for0<i:<m—1,0<b; <9, and
m > 3. Since by, > 1 we have x > 10™. Since z is the sum of the squares of its digits, x < 81(m+1)
Summing up

10T <2 < 81(m+1).

We leave it to the reader to show that if m > 3 then this is impossible.
Number of Checks: 2 for Case 2, but 0 for the rest. So just 2.

4 When is a 2-digit Number the Sum of the Cubes of its Digits
Theorem 4.1 If 11 < x <99 then = is not the sum of the cubes of its digits.

Proof:
Assume, by way of contradiction, that there exists 1 < a <9, 0 < b < 9 such that

10a + b = a® + b> henceforth the main equation.

Hence 10a + 9 > a? so a® — 10a — 9 < 0. We leave it to the reader to show that this implies
a < 3.

Take the main equation mod 2, using a® =a (mod 2), > =b (mod 2), 10=0 (mod 2) to
obtain

a=0 (mod 2).

Since 1 <a <3 and a =0 (mod 2), we have a = 2. Plugging a = 2 into the main equation

we get,
b(b—1)(b+1) =12

Alas, 12 cannot be written as the product of three consecutive numbers. Contradiction.
Number of Checks: 0.
|

5 When is a 3-digit Number the Sum of the Cubes of its Digits

Theorem 5.1 There is exactly one number 100 < x < 999 that is the sum of the cubes of its digits.
That number is 153.

Proof:
Assume that there exists 1 <a <9,0<b<9, 0<¢<9such that

100a 4 10b 4+ ¢ = a® + b + ¢ henceforth the main equation.

We will obtain conditions on a, b, ¢ that force a = 1,0 =5,c = 3.



Claim 1: a =b (mod 2).
Proof of Claim 1
Take the main equation mod 2 to get a +b+c=c¢ (mod 2). Hence a =b (mod 2).
End of Proof of Claim 1
Claim 2:

1. be <7
2. If b <4 then ¢ > 5.
3. If ¢ > 7 then b < 4.

4. Assume 3 < aq <8. If b <6 then ¢ > 5.

Proof of Claim 2
Note that b3 + ¢3 — 10b — ¢ = 100a — a3.
We will need the following table.

100a — a?
99

192

273

336

375

384

357

288

171
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By the table if 1 < a <9 then 99 < b? + ¢ — 10b — ¢ < 384.
By the table if 3 < a < 8 then 273 < b3 + ¢ — 10b — ¢ < 384.
1) If b > 8 or ¢ > 8 then clearly b + ¢3 — 10b — ¢ > 385. Hence b,c < 7.
2) If b < 4 then b3 — 10b < 24 hence 99 < ¢3 — ¢ + 24. Therefore ¢ — ¢ > 75. Hence ¢ > 5.
3) If c>7and b >5 then b3+ 3 —10b — ¢ > 342 + 75 > 384. Hence if ¢ > 7 then b < 4.
4) (3<a <8 Ifb <6 then b3 — 10b < 156 hence 273 < ¢3 — ¢ + 156. Therefore ¢3 — ¢ > 117.
Hence ¢ > 5.
End of Proof of Claim 2
Claim 3:

1. Ifa=0b (mod 4) then ¢ ¢ {2,6}.
2. Ifa#b (mod 4) and a is odd then c € {2,6}.

Proof of Claim 3:
1) We take the main equation mod 4 using that a®> =* (mod 4).

264 c =20+ (mod 4).



A —c=20—2b>=2b(1 —b)(1+b) (mod 4).

Since one of b,1 — b, 1 + b is even we have

A —c=0 (mod4).
This is not satisfied by any ¢ € {2,6}.
1) We take the main equation mod 4 using that a® + 5% =0 (mod 4).

20+c=c® (mod 4).

20=c>—c¢ (mod 4).

Since a is odd, b is odd. The set of ¢ that satisfy this is {2, 6}.
End of Proof of Claim 3
Claim 4: If a =0 (mod 2) then there is no solution to the main equation.
Proof of Claim 4:
Ifa=0 (mod 2) then, by Claim 1, b=0 (mod 2).
The main equation mod 8, using that a®> =5 =100=0 (mod 8) and 10 =2 (mod 8), is

2b=c®—¢ (mod 8).

We now present a table of ¢ — ¢ (mod 8) as 0 < ¢ < 7, and the possible values of b.

clled—c (mod8)| b
0 0 0,4
1 0 0,4
2 6 3
3 0 0,4
4 4 2
) 0

6 2 1
7 0 0,4

For 0 < ¢ < 6 we need, by Claim 2, b > 6. Hence none of these values for ¢ work. The only
case left is c = T7.
If ¢ =7 then

100a + 10b + 7 = a® + b3 + 343.

100a + 10b = a® + b + 336.

e Since 100a + 10b > 336 we have a > 3. Since a is even a > 4.



e For this item all mods are mod 10. If we take the equation

100a + 10b = a® + b3 + 336

mod 10 we get

a4+ b =4.
all a® (mod10)|b%>=4—a® (mod 10) | b
4 4 0 0
6 6 8 2
8 2 2 8

The a = 8 case has ¢ = 7 and b = 8 which cannot happen by Claim 3. Hence the only
candidates to check are (4,0,7), (6,0,7). None of them work.

Note: This claim took 2 checks.
End of Proof of Claim 4

We can now enumerate all of the possibilities left. By Claim 4 we need only look at a = 1
(mod 2). By Claims 1 and 2 we can assume b € {1,3,5,7} and ¢ < 7.

1. a =1: By Claim 2 if b < 4 then ¢ > 5. Since 63,73 > 200 we have ¢ < 5. Since 53 + 5% > 200
we have that (a, b, c) # (1,5,5). Hence the possible (a, b, c) are
(1,1,5),(1,3,5),(1,5,0),(1,5,1),(1,5,2), (1,5,3), (1,5, 4).

By Claim 3 (1,3,5) and (1,5,2) is eliminated.

Hence the only ones left to check are

(17 17 5)’ (17 57 0)7 (17 57 1)7 (17 57 3)7 (1? 57 4)'
Only (1,5,3) works.
Note: This took 5 checks.

2. a = 3. By Claim 2 if b < 5 then ¢ > 6. Since a® + 33 + 63 < 299 (a,b,¢) ¢ {(3,1,6),(3,3,6)}.
Since a® + 63 + 63 > 400 (a, b, c) # (3,6,6). Since a® + 4 + 73 > 499

(a,b,c) ¢{(3,5,7),(3,7,4),(3,7,5),(3,7,6),(3,7,7) }.

Hence the possible (a, b, c) are

{(3,1,7),(3,3,7),(3,5,6),(3,7,0),(3,7,1),(3,7,2),(3,7,3) }.

By Claim 3 (3,1,7) and (3,7,2) are eliminated.

Hence the only ones left to check are



{(3,3,7),(3,5,6),(3,7,0),(3,7,1),(3,7,3) }.

None of these work.
This took 5 checks.

3. a =>5. By Claim 2if b < 5 then ¢ > 6. Since a3+53+6° < 499 (a, b, ¢c) ¢ {(5,1,6), (5,3,6), (5,5,6)}.
Since a® + 33 + 73 > 499

(a,b,c) ¢ {(5,7,3),(5,7,4),(5,7,5),(5,7,7),(5,7,6), (5,7,7),(5,3,7), (5,5, 7) }.
The only cases left to check is (a,b,¢) = {(5,1,7),(5,7,1)}. We can eliminate (5,7,1) by
Claim 3. Hence the only case to check is (5,1,7). This case does not work.
Note: This took 1 check.
4. a =17. By Claim 2 if b < 5 then ¢ > 6. Since a®+ 13+ 73 < 699, (a,b,¢c) ¢ {(7,1,6),(7,1,7)}.

Since a® + 5% + 63 < 699, (a,b,c) ¢ {(7,3,6),(7,5,6)}. Since a® + 5% + 73 > 801, (a,b,c) ¢
{(7,5,7),(7,7,6),(7,7,7)}. The only cases left to check are (a,b,c) € {(7,3,7),(7,7,7)}.

By Claim 3 (7,3,7) and (7,7,7) are eliminated.
Note: This took 0 checks.
5. a =9. By Claim 2 if b < 4 then ¢ > 5. Since ad + 73 > 1000 we have b < 5 and ¢ < 6. Since

a® + 53 + 3% < 899 we have (a,b,¢) ¢ {(9,5,0),(9,5,1),(9,5,2),(9,5,3)}. The only cases left
to check are (a,b,c) € {(9,1,5),(9,1,6),(9,3,5),(9,3,6),(9,5,4),(9,5,5),(9,5,6) }.

By Claim 3 (9,1,6), (9,3,5), (9,5,6) are eliminated.
Hence the only cases left to check are

(a,b,c) € {(9,1,5),(9,3,6),(9,5,4),(9,5,5)}.

None of these work.

Note: this took 4 checks.

Note: The total number of checks is 24.
|

Question: Is there a proof of Theorem 5.1 with less checks?



