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Abstract

In this paper, we investigate Duplicator-Spoiler Games, a method of comparing the properties

of structures. These games are especially significant because they have deep connections to

logical expressibility. Traditionally, Duplicator-Spoiler Games were played with a preset, finite

number of turns. We do not examine such situations but instead consider games of arbitrary

lengths, which we represent with ordinal notation. In our games, the game length is delayed to

allow more freedom to distinguish structures, giving previously dead-end games new interest.

We determine the number of turns required to win various ordinal Duplicator-Spoiler Games,

including those based upon scattered orderings and operations. We then use several techniques

to classify large groups of structures and find general game length bounds. These techniques

include the inductive construction of large structures, a comparison of games to directed graph

isomorphism, an adaption of cantor ordinal and an interpretation of turns as elements of free

basis. Additionally, we investigate a relationship between our new ordinal game and logical

expressibility, relating our research to the original motivation for the study of Duplicator-Spoiler

Games.
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1 Introduction

In 1961, Andrzej Ehrenfeucht [3] invented Duplicator-Spoiler Games1 to formalize the connection

between Roland Fräıssé’s back-and-forth method [1, 2, 4] and logical expressibility. These games

compare the properties of structures, which we will define with base sets and relations. In this

paper, we discuss an ordinal variant of Duplicator-Spoiler Games in which the length of games is

not predetermined.

Definition 1.1. Let the m-turn Duplicator-Spoiler Game played with base sets S1, S2 and relations

R1 over S1, R2 over S2 of arity z be denoted G(S1,R1;S2,R2). It is defined as follows.

1. There are two players: the spoiler and the duplicator.

2. There are m turns. During turn i (1 ≤ i ≤ m) the spoiler selects an element from one of

the sets and the duplicator responds with an element from the other set. The element selected

from S1 is called ai and the element selected from S2 is called bi.

3. If (∀ 1 ≤ j1, j2, . . . , jz ≤ i) [R1(aj1 , aj2 , . . . , ajz) = R2(bj1 , bj2 , . . . , bjz)], then the duplicator

wins. Otherwise, the spoiler wins.

Unless otherwise specified, we will assume the spoiler and the duplicator play optimally. In other

words, if one player can implement a strategy that wins every time then the player is assumed to

implement said strategy. Furthermore, a game is said to “take” exactly m turns iff the spoiler wins

in m turns and the duplicator wins in any number less than m turns.

Definition 1.2. For any sentence φ, a set S models φ, denoted S |= φ, iff φ is true when interpreted

in S.

The following theorem [3, 5, 6, 7] connects Duplicator-Spoiler Games to logic and is the original

motivation for their study.

Theorem 1.3. Let S1 and S2 be sets. Let R1 be a relation on S1 and R2 be a relation on S2. The

following are equivalent.

1Duplicator-Spoiler games are also referred to as Ehrenfeucht-Fräıssé games.
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• The duplicator wins the m-turn game G(S1,R1;S2,R2).

• For all first-order m-quantifier-depth sentences φ in the language of standard logical symbols

and R1 and R2

[S1 |= φ ⇐⇒ S2 |= φ].

We will now explore linear orderings and their associated Duplicator-Spoiler Games.2 Recall

that linear orderings are transitive, antireflective and total.

We will use L to denote a linear ordering. We say L = (S,<) if its base set is S. We use L∗

to denote the reverse of the ordering L. For example, since ω denotes the orderings of the natural

numbers, ω∗ denotes the ordering of the negative integers. Furthermore, we will use Fm to denote

the finite linear ordering of m elements.

Definition 1.4. Let L1 = (S1, <1),L2 = (S2, <2). The linear ordering L1+L2 is formed as follows:

We can assume S1 ∩ S2 = ∅ by changing the elements’ labels. Let the base set for L1 + L2 be

S1 ∪ S2. Let the total order be as follows.

1. (∀x, y ∈ S1)[x < y ⇐⇒ x <1 y].

2. (∀x, y ∈ S2)[x < y ⇐⇒ x <2 y].

3. (∀x ∈ S1)(∀y ∈ S2)[x < y].

Definition 1.5. Let L1 = (S1, <1),L2 = (S2, <2). The linear ordering L1∗L2 is formed as follows.

We form the base set of L1 ∗ L2 by replacing every element in S2 with a copy of S1. The base

set now contains several copies of S1, one for every element in S2. We can assume the intersection

of all such copies is ∅ by replacing the elements’ labels.

Let the total order be as follows: all elements within a copy of S1 retain their natural ordering.

For all x, y that are members of the original S2 and for all a, b that are members of copies of S1

which replaced x and y respectively, a < b iff x < y.

Definition 1.6. Let L = (S,<). The linear ordering Lk is formed by iterating multiplication k

times on F1.

2In Section 4 we investigate Duplicator-Spoiler Games played with operations.
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Definition 1.7. Consider the game G(S1,R1;S2,R2). If R1 and R2 are both transitive, antire-

flective and total then the game is called a Linear Ordering Game. It is then denoted G(L1;L2).

In Linear Ordering Games, we imagine lines being drawn from elements of one ordering to

another, each line representing a pair of inequalities from a pair of elements. If two lines cross, or

the duplicator runs out of elements to select, then the inequalities are not consistent from ordering

to ordering and the spoiler wins. Because of this, a line, or turn, can be said to reduce a game into

two new ones. We define said reduction.

Definition 1.8. Consider the Linear Ordering Game G(L1 + x + L3;L2 + y + L4). If a1 = x,

the spoiler’s first selection, and b1 = y, the duplicator’s first selection, then after the first turn the

game is said to have been reduced to two new games: G(L1;L2) and G(L3;L4). With optimal play

the spoiler will continue only on the reduced game which can be won with the fewest turns.

Note that the reduction of games is only a tool to imagine linear orderings visually. It is not

needed in the games’ formal definition.

Below are known examples of Linear Ordering Games and their results. In some cases we include

a first-order sentence that is true in one ordering and false in the other. Note that the number of

turns needed for the spoiler to win will equal the quantifier depth of such sentences (Theorem 1.3).

Theorem 1.9. For all m, n (n < m), the spoiler wins the Linear Ordering Game on finite orderings

of size m and n, G(Fm;Fn), in exactly blog2(n+ 1)c+ 1 turns.

Example 1.10. The spoiler wins the game G(Z;Q) in exactly three turns.

Note that Q models the following three-quantifier sentence, but Z does not.

(∀x)(∀y)(∃z)[x < y =⇒ x < z < y].

There is no sentence that can distinguish Z from Q with only two quantifiers.

Theorem 1.11. Let L1 and L2 be dense orderings with no endpoints. The duplicator wins the

game G(L1;L2) no matter the number of turns.

Notice this includes orderings of different cardinalities (such as Q and R).
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2 Ordinal Numbers of Turns

Traditionally, Duplicator-Spoiler Games were played with finite, predetermined numbers of turns.

We define games in which the declaration of the number of turns is delayed. This delay gives the

spoiler the right to reserve an arbitrarily large number of turns. We denote the delays with ordinal

notation.

Definition 2.1. For any ordinal λ, a game that has λ turns remaining will, after one turn, have

γ turns remaining for any ordinal γ chosen by the spoiler such that γ < λ.

Notice that this definition only becomes significant once a limit ordinal is reached. At this point,

the spoiler plays a move, the duplicator responds and the spoiler then decrements the number of

turns to any of the ordinals less than the given limit ordinal.

Example 2.2. A game with ω turns remaining has m turns remaining after one turn for any finite

m chosen by the spoiler after the first turn is complete.

Example 2.3. A game with ω+1 turns remaining has ω turns remaining after one turn is complete.

Example 2.4. A game with ω ∗ 2 turns remaining has ω + m turns remaining after one turn for

any finite m chosen by the spoiler after the first turn is complete.

Example 2.5. A game with ω2 turns remaining has ω ∗ k +m turns remaining after one turn for

any finite k and m chosen by the spoiler after the first turn is complete.

Note that although ordinals are levels of infinity, and our Duplicator-Spoiler Games will last

ordinal numbers of turns, they will still terminate after a finite number of turns. This is because

ordinals are by definition well-ordered so any ordinal decremented a finite number of times will

eventually arrive at 0.

This definition holds for even uncountable ordinal numbers of turns.

Example 2.6. A game with ω1 turns remaining has λ turns remaining after one turn is complete

for any countable λ chosen by the spoiler after the first turn is complete.
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3 Linear Ordering Games Played on the Ordinals

We now venture into the unknown realm of ordinal Duplicator-Spoiler Games. We will leave with

a general form for orderings whose games can take any ordinal number of turns. Consider the

game G(ω;ω+Z). For all m, the duplicator wins the m-turn game. Correspondingly, no first-order

sentence can distinguish the two orderings. However, this does not mean no finite sentence can

distinguish the orderings. Note that ω + Z models the following non-first-order sentence, but ω

does not. The variable A is quantified over subsets of the ordering.

(∃A)(∃a ∈ A)(∀y ∈ A)(¬∃x ∈ A)[x < y].

Hence, the property of being well-ordered is definable with second-order logic. From now on, we

will be exploring games which similarly cannot be won with a present number of turns.

3.1 G(Zk + Zk;Zk)

Theorem 3.1. The spoiler wins the game G(ω + Z;ω) in exactly ω turns.

Proof. Proofs of game-length involve two parts: showing that the spoiler wins in the given number

of turns and showing that the duplicator wins with any fewer number of turns.

The spoiler wins with ω turns through the following strategy. The spoiler selects an element

a1 in the integers, the duplicator responds with an element b1 in the naturals. The game is now

reduced to G(ω∗+ω;Fb1) and G(ω;ω). The first option, G(ω∗+ω;Fb1) will take blog2(m+ 1)c+ 1

turns (Theorem 1.9). The spoiler appropriately decrements ω to blog2(m+ 1)c+ 1 and wins.

We now provide the proof that the duplicator wins with some finite number of turns. The

spoiler selects an element a1 in Z because any selection in ω would not further reduce the sets. The

duplicator selects an element b1 such that b1 is the 2mth elements in the naturals. The spoiler now

needs blog2(2
m + 1)c+ 1 turns, but has only m turns (m < m+ 1 ≤ blog2(2

m + 1)c+ 1).

The spoiler wins the ω-turn game and the duplicator wins the m-turn game for some finite m

so the spoiler wins the game G(ω + Z;ω) in exactly ω turns.
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Theorem 3.2. The spoiler wins the game G(Z + Z;Z) in exactly ω + 1 turns.

Proof. After one turn the game will either be reduced to G(ω+Z;ω) or to G(Z+ω∗;ω∗). The first

takes exactly ω turns (Theorem 3.1). The second is composed of the reverse orderings of the first

and will thus take the same number of turns. This spoiler needs ω turns to win this game after one

turn is complete. It is thus an ω + 1-turn game.

Theorem 3.3. The spoiler wins the (k=2)-game G(Z2 + Z2;Z2) in exactly ω ∗ 2 + 1 turns.

Proof. Consider the game G(Z2 +Z2;Z2). The spoiler attempts to reduce the game to G(Z+Z;Z)

and retain ω + 1 turns. In doing so, the spoiler treats each integer copy in Z as its own element.

We will now prove that the spoiler wins the (ω ∗ 2 + 1)-turn game.

Move 1: The spoiler selects an element a1 in the lesser Z2. The duplicator selects an element b1.

Move 2: The spoiler selects an element a2 in the greater Z2. The duplicator must select an element

b2 such that b2 is m1 integer copies greater than b1. The game is now reduced to G(ω + Z ∗

ω+Z∗ω∗+ω∗;ω+Z∗m1 +ω∗), which is game-length-equivalent to G(Z∗ω+Z∗ω∗;Z∗m1).

The spoiler decrements the first ω to blog2(m1 + 1)c+ 1.

Move 3: The spoiler now implements the strategy seen in Theorem 3.2, using blog2(m1 + 1)c + 1

turns to bisect integer sets and reduce the problem to G(ω+ω∗;Fm2). After this, the spoiler

decrements the second ω to blog2(m2 + 1)c + 1, the minimum number of turns required to

win (Theorem 1.9).

The proof that the duplicator wins the (ω ∗ 2)-turn game is similar to that in Theorem 3.2.

Theorem 3.4. The spoiler wins the game G(Zk + Zk;Zk) in exactly ω ∗ k + 1 turns.

Proof. Let us first prove that the spoiler wins the game G(Zk + Zk;Zk) with ω ∗ k + 1 turns.

In similar fashion to Theorem 3.3 the spoiler treats each Zk−1 as its own element, making the

game look like G(Z + Z;Z). This takes ω + 1 turns and reduces the game to G(ω + Z ∗ ω + . . . +

Zk−1 ∗ ω + Zk−1 ∗ ω∗ + . . .+ Z ∗ ω∗ + ω∗;ω + Z ∗ ω + . . .+ Zk−2 ∗ ω + Zk−1 ∗ (m− 1) + Zk−2 ∗ ω∗ +

. . . + Z ∗ ω∗ + ω∗) which is turn-equivalent to G(Zk−1 + Zk−1;Zk−1). Done inductively, the game
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will take ω1 + 1 + ω2 + 1 + . . . + ωk + 1 turns. In our game, as in standard ordinal notation, this

means ω ∗ k + 1.

Again, the proof that the duplicator wins the (ω ∗ k)-turn game is similar.

3.2 Upper Bounds on Simple Structures

All of the pairs of linear orderings in this section have resulted in the spoiler winning in strictly less

than ω2 turns. This is because we have only examined games with orderings below the complexity

of Zω. Given this set of orderings it is impossible to form a game that requires ω2 turns.

Definition 3.5. Let the class of orderings polyωa be defined as such. ∅ and F1 are members of

polyω0. ω and ω∗ are members of polyω1. If the orderings L1 and L2 are members of polyωa and

polyωb then L1 +L2 is a member of polyωmax (a,b), and L1 ∗ω and L1 ∗ω∗ are members of polyωa+1.

Notice that orderings such as ω∗, ω2 and Z can be formed easily from such constructions.

Theorem 3.6. Let L1 and L2 be members of polyωa and polyωb (a > b). The game G(L1;L2) is

either won by the spoiler in fewer than ω ∗ (b+ 1) turns or is won by the duplicator with any game

length.

Proof. Following the treatment of Theorem 3.4, the spoiler wins games that include orderings with

only multiplication and up to one finite addition, such as L1 + L2 and L3 in (ω ∗ b+ 1)-maximum

time. If there are more than two large exponentiated structures then the spoiler uses the bisection

method. The game is then reduced to the previously mentioned games in strictly finite time. Thus,

the game takes ω∗b+1+finite time, which is itself ω∗b+finite time, which is less than ω∗(b+1).

3.3 G(Zλ + Zλ;Zλ)

Given the bounds on simple structures above it would seem plausible that there do not exist Linear

Ordering Games which require ω2 turns. However, we have not yet considered the ordering Zω.

This ordering is complicated. What do we mean by Zω? The most natural definition is limx→∞ Zx.

However, this is not a full definition. We construct the ordering inductively.
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Definition 3.7. Zω = limx→∞ Zx = . . . (Z3)(ω∗) + (Z2)(ω∗) + (Z)(ω∗) + F1 + (Z)(ω) + (Z2)(ω) +

(Z3)(ω) + . . . Notice that the middle (Z)(ω∗) + (Z)(ω) “absorbs” to form Z2 and the next group to

Z3 and so on. Thus, as we get farther from the center, the x of Zx goes to ∞.

Now, with this definition, we may tackle ω2 games.

Theorem 3.8. The game G(Zω + Zω;Zω) takes ω2 + 1 turns.

Proof. Because it takes two turns to reduce this game to the complexity of Zk for any finite k the

game requires a 2-turn delay before decrementing to the form ω ∗ k +m for any finite k and m. If

the spoiler could do any better then the spoiler would declare k and m before reducing the game to

the equivalent of Zk. The duplicator then chooses to reduce the game to Zk+1 and wins (Theorem

3.4).

The next step is to extend this definition in order to find games which can require any ordinal

number of turns. We begin by generalizing the previous definition of Zω to any ordinal [5].

Definition 3.9. Zβ for any ordinal β is defined as such:

1. Z0 = F1.

2. For any ordinal γ, Zγ ∗ Z = Zγ+1.

3. For any limit ordinal λ, Zλ = (
∑

(Zγ ∗ ω|γ < λ))∗ +
∑

(Zγ ∗ ω|γ < λ).

Notation 3.10. Let xλ =
∑

(Zγ ∗ ω|γ < λ) and let Dλ denote any linear ordering that is not

divisible by Zλ (¬∃L)(Dλ = L ∗ Zλ).

Theorem 3.11. For any ordinal λ ≥ 1, the game G(Zλ + Zλ;Zλ) takes ω ∗ λ+ 1 turns.

Proof. We prove this inductively in a similar fashion to Definition 3.9.

1. The spoiler wins the base case of λ = 1, G(Z + Z;Z), in exactly ω ∗ 1 + 1 = ω + 1 turns

(Theorem 3.2).
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2. We will now prove that if the spoiler wins the game G(Zγ +Zγ ;Zγ) in exactly ω ∗ γ+ 1 turns

then the spoiler wins the game G(Zγ+1 +Zγ+1;Zγ+1) in exactly ω ∗ (γ+ 1) + 1 = ω ∗γ+ω+ 1

turns.

(a) We first show that the spoiler wins with ω ∗ γ + ω + 1 turns.

After two turns, the spoiler can reduce the game to G(xγ+1 + x∗γ+1;Dγ + Zγ ∗m+Dγ).

Now the spoiler decrements ω ∗ γ + ω + 1 to ω ∗ γ + blog2(m + 1)c. The spoiler now

employs a bisection approach (Theorem 1.9) and after blog2(m+ 1)c− 1 turns the game

is reduced to the equivalent (discounting extra complexity in the larger structure and

irrelevant tails and in the form of Dβ for β < γ) of G(Zγ +Zγ ;Zγ) and there are ω ∗γ+1

turns remaining.

(b) We now prove that the duplicator wins if the game has only ω ∗ γ turns.

After one turn the game is reduce to G(xγ+1+Zγ+1;xγ+1) and the number of turns must

be decremented to some ordinal β such that β = ω ∗γ+m < ω ∗γ+ω. Now the spoiler’s

only strategy is to select an element in Zγ+1, and the duplicator responds in xγ+1 such

that the game is reduced to G(xγ+1 + x∗γ+1;Dγ + Zγ ∗ k +Dγ) for k ≥ 2m. Because the

duplicator chose k to be slightly larger than 2m−1 the spoiler will only have ω ∗ γ turns

once the game is reduced to the equivalent of G(Zγ + Zγ ;Zγ). However, we know that

the game needs exactly ω ∗ γ + 1 turns and thus ω ∗ γ is not enough.

3. We will finally prove that for all limit ordinals λ, if for all γ < λ the spoiler wins the game

G(Zγ + Zγ ;Zγ) in exactly ω ∗ γ + 1 turns then the spoiler also wins the game G(Zλ + Zλ;Zλ)

in exactly ω ∗ λ+ 1 turns.

(a) We first show that the spoiler wins with ω ∗ λ+ 1 turns.

The spoiler selects two elements in the two exponentiated integers in the first set. The

game is then reduced to G(xγ + x∗γ ;Dβ + Zγ ∗m + Dβ) for finite m and β, γ < λ. The

spoiler now decrements the the number of turns to be at least ω ∗ γ+ blog2(m+ 1)c and

according to the inductive assumption has enough turns to win.
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(b) Now let us suppose the spoiler has only ω ∗ λ turns. We will show that in this case the

duplicator wins.

After one turn the game is reduced to G(xλ+Zλ;xλ), but there are only γ∗ω (γ < λ) turns

remaining. With this many turns the spoiler could win the game G(Zβ+Zβ;Zβ) (β < γ),

but not the game G(Zγ +Zγ ;Zγ). However, we know that the game G(xλ+Zλ;xλ) takes

more turns than the game G(Zγ +Zγ ;Zγ) because γ < λ. Therefore the spoiler does not

have enough turns for either game and the duplicator wins.

The following theorem is a direct consequence of Theorems 1.9 and 3.11.

Theorem 3.12. Let n ∈ N . The game G(xλ + Zλ ∗ 2n + Zλ;xλ + Zλ ∗ 2n) takes exactly ω ∗ λ+ n

turns (n ≥ 0).

Notice that, as we may select any natural number n, Theorem 3.12 becomes no less general if

we restrict λ to a limit ordinal. Any ordinal α can be written in the form λ + n for some limit

ordinal λ and finite number n. Also, any limit ordinal λ can be written in terms of another ordinal

β such that ω ∗ β = λ. We now have a general form for finding the a game which can any ordinal

number of turns.

Suppose we want a game to require exactly α turns for some ordinal α ≥ 1. We find β and n

such that ω ∗ β + n = α. Recall that xβ =
∑

(Zγ ∗ ω|γ < β) . We play the game G(xβ + Zβ ∗ 2n +

Zβ;xβ+Zβ∗2n). This can also be written in the form G{xβ+(x∗β+xβ)∗(2n+1);xβ+(x∗β+xβ)∗(2n)}.

4 Operation Games

We define Operation Games to be games played with the relations that perform the functions of

operations. A game played with the operation R is a game played with a relation R such that for

all arguments and results, (R(arguments) = results) = R(arguments, results).

With this definition, Theorem 1.3 holds for games played with operations. The logical sentence

of Theorem 1.3, φ, is equivalent to a sentence in the language of standard logical symbols and the

operations of the game.
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In this section we will explore games with operations that require ordinal numbers of turns. In

addition to finding specific games, we will find general bounds on large groups of operations.

4.1 G(R,+;Q,+)

Let us consider the Operation Game played over the reals and the rationals with binary addition,

denoted G(R,+;Q,+). We will show that the duplicator wins this game with any predetermined

number of turns, then show that the duplicator still wins with ω turns and lastly show that the

spoiler wins with ω + 1 turns.

We now wish to prove that, for all m, the duplicator wins the m-turn game. Notice this proof is

equivalent to proving that no first-order sentence with standard logical symbols and the operation

of addition can distinguish the reals and the rationals. Although this idea in logic is known, we

need this proof to extend our idea to show that the duplicator also wins in ω turns, which is not

covered with the known idea in logic. We find that this proof falls from a more complicated one

involving higher arity.

We define the more complicated Duplicator-Spoiler Game.

Definition 4.1. Let r ∈ N . The m-turn r-game G(R,+;Q,+) is similar to the m-turn Duplicator-

Spoiler Game G(R,+;Q,+) with the exception of the final winning condition. The duplicator wins

if and only if the following conditions are met.

For all A, B such that A and B are multisets of {1,2,. . . ,m} and |A|,|B|≤ r,

∑
i∈A

ai =
∑
j∈B

aj ⇐⇒
∑
i∈A

bi =
∑
j∈B

bj .

The game we are truly concerned with is the case of r = 2. However, it is easier to show that

the duplicator always wins the m-turn r-game rather than just the m-turn two-game.

The proof is inductive, consisting of two parts.

1. For all r, the duplicator wins the zero-turn r-game.

2. Assume that for all r, the duplicator wins the m-turn r-game. From this we show that for all
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r, the duplicator wins the (m+ 1)-turn r-game.

Lemma 4.2. For all r, the duplicator wins the zero-turn, r-game.

Proof. All of the multisets A and B must be the empty set so all iff conditions are satisfied.

Theorem 4.3. If the (r · r2mr
)-game G(R,+;Q,+) with m turns is won by the duplicator then the

r-game G(R,+;Q,+) with m+ 1 turns is also won by the duplicator.

Proof. For the first m turns the duplicator follows the strategy of the m-turn r · r2mr
-game. At

this point, since the arity of this game is no higher, all multisets are still consistent. The spoiler

now selects am+1 in R. The game is now divided into two cases. Either am+1 is linearly consistent

with at least one of the other elements in R (Case 1) or independent (Case 2).

Case 1: There exist multisets of {1, 2, . . . ,m} A1, A2, . . . , Ai, B1, B2, . . . , Bi and natural numbers

n1, n2, . . . , ni such that |A1| , |A2| , . . . , |Ai| , |B1| , |B2| , . . . , |Bi| , n1, n2, . . . , ni ≤ r and

ni ∗ am+1 +
∑
x∈Ai

ax =
∑
y∈Bi

ay.

The spoiler will pick bm+1 such that the same can be said for the second set. We will find

am+1 in terms of its relationship with the other elements and then duplicate that relationship

in bm+1.

2mr bounds the different number of multisets of Ai and Bi so i ≤ 2mr. Let N = n1 ·n2 · . . . ·ni.

n ≤ r and there are at most an i number of n’s so N ≤ ri ≤ r2
mr

. We multiply each side by

N
ni

and are left with

Nam+1 +
N

ni

∑
x∈Ai

ax =
N

ni

∑
y∈Bi

ay.

Let A
′
i = Ai ∗ Nni

. Each element in A
′
i can be rewritten as N

ni
times each element in Ai. Due

to this,

N

ni

∑
x∈Ai

ax =
∑
x∈Ai

N

ni
ax =

∑
x∈A′

i

ax.
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If the same is done to Bi then
∣∣∣A′

i

∣∣∣ , ∣∣∣B′
i

∣∣∣ ≤ rNni
≤ rN . We are then left with

Nam+1 +
∑
x∈A′

i

ax =
∑
y∈B′

i

ay.

Nam+1 =
∑
y∈B′

i

ay −
∑
x∈A′

i

ax.

Nam+1 is equal to the difference of the summations for all i. This means that

∑
y1∈B

′
1

ay1 −
∑
x1∈A

′
1

ax1 =
∑
y2∈B

′
2

ay2 −
∑
x2∈A

′
2

ax2 = . . . =
∑
yi∈B

′
i

ayi −
∑
xi∈A

′
i

axi .

The game is r · r2mr
-equivalent and

∣∣∣A′
i

∣∣∣ , ∣∣∣B′
i

∣∣∣ ≤ rN (note that rN ≤ r · r2mr
), so the same

must be true of

∑
y1∈B

′
1

by1 −
∑
x1∈A

′
1

bx1 =
∑
y2∈B

′
2

by2 −
∑
x2∈A

′
2

bx2 = . . . =
∑
yi∈B

′
i

byi −
∑
xi∈A

′
i

bxi .

The duplicator then selects bm+1 such that the previous properties hold. This means that

the following property must also hold also.

Nbm+1 =
∑
y∈B′

i

by −
∑
x∈A′

i

bx

so

bm+1 =

∑
y∈B′

i
by −

∑
x∈A′

i
bx

N
.

With this selection the game is r-equivalent.

If the spoiler had selected bm+1 ∈ Q the same properties would hold and the duplicator would

select

am+1 =

∑
y∈B′

i
ay −

∑
x∈A′

i
ax

N
.

Case 2: The conditions in Case 1 are not met so the spoiler’s selction is linearly independent of
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the other elements. If the spoiler selected am+1, then the duplicator selects bm+1 such that

bm+1 > r ∗ r2mr ∗ bc such that bc is the largest selected element selected in Q. We follow the

same treatment for elements in R.

In this proof we only assumed that the sets were closed under addition and divisible by the

natural numbers. It will therefore work for several other games and is not limited to G(R,+;Q,+).

We will use this proof again in the next section.

Theorem 4.4. The duplicator wins the ω-turn game (R,+;Q,+).

Proof. By changing the base case to involve a game where one move has already been played, we

show that the duplicator wins the game with ω turns. Notice that this approach does not work for

a game where two moves have already been played because the spoiler only needs an arbitrarily

large arity to employ the method seen in Theorem 4.5.

If the spoiler selects zero then the duplicator selects zero. If the spoiler selects a non-zero

element then the duplicator selects a non-zero element. After each case, all multisets are for our

purposes identical and the duplicator still wins.

Theorem 4.5. The spoiler wins the game G(R,+;Q,+) with ω + 1 turns.

Proof. In this proof, we will show that any two rational numbers have a common multiple, but the

same cannot be said for the reals.

Move 1: The spoiler selects a non-zero element a1. The duplicator selects a non-zero rational

number b1 = p1
q1

.

Move 2: The spoiler selects another non-zero element a2 such that lcm(a1, a2) does not exists. The

duplicator selects another non-zero rational number b2 = p2
q2

. The spoiler now decrements the

the number of turns to max(|p1q2| + 1, |p2q1| + 1). Technically, the spoiler could reduce the

number of turns to a number on the order of log2 (lcm(b1, b2) + 1), which would be smaller,

but either method works so we provide the simplest.

15



Move 3: The spoiler now selects b3 = p1p2. This is a common multiple p1
q1

and p2
q2

, but nothing is

an integral multiple of both a1 and a2. The duplicator cannot select an element that is a

multiple of each so the duplicator chooses only one.

Move 4: If the spoiler selected a3 to be a multiple of a1 then the spoiler begins selecting b4 =

b2 + b2 = 2 ∗ b2 then b5 = b4 + b2 = 3 ∗ b2 . . . until bp1q2+2 = p1q2b2 = b3. However,

ap1q2+2 = p1q2a2 6= a3. The same holds for a3 being a multiple of a2 instead of a1.

Thus, the game G(R,+;Q,+) takes exactly ω+1 turns. Notice that through considering games

of higher arity we have also shown that the same game with higher arity addition requires ω + 1

turns.

4.2 G(Qn,+;Qm,+) and the Free Basis Approach

The game G(R,+;Q,+) was a specific case of a much broader theme. The spoiler’s winning strategy

was to pick two numbers that did not have a common multiple in the real numbers. The spoiler

could also have looked for a common divisor, instead of a common multiple. In both cases, these

numbers were related, or had something in common, with respect to addition. They were linearly

dependent elements. The spoiler’s strategy worked because the free basis of the rationals over the

scalar field of the rationals was of size one. However, the size of the free basis of the reals over

the scalar field of the rationals is infinite. Thus, after two independent selections in the reals, the

duplicator was forced to select two dependent elements in the rationals. It could take the spoiler

an arbitrarily large number of turns to show that two numbers are dependent. However, once

the two numbers are known, the game will take a set number of turns. Thus, the spoiler delays

decrementing the number of turns to a finite ordinal for two turns and the game requires ω + 1

turns.

Games in this section demonstrate the theme of using linear independence and a difference in

the size of the free basis different structures. We will let addition in multiple dimensions denote

vector addition.
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Theorem 4.6. The game G(Q×Q,+;Q,+) is an (ω + 1)-turn game.

Proof. It takes three turns to find the first linearly dependent element, ignoring the identity element.

It therefore takes three turns to declare the length of the game. The third element in Q is therefore

a combination of the first two, unlike in Q2.

Theorem 4.7. The game G(Qn,+;Qm,+) (n > m) is an (ω +m)-turn game.

Proof. As in Theorem 4.6, the spoiler selects m+ 1 elements in Qn and forces the spoiler to select

an element in Qm that is linearly dependent upon at least one of the other elements selected. At

this point, the spoiler decrements the number of turns to a finite number and shows that the linear

independence of the relative subsets is different.

Conversely, the spoiler may not win in any fewer turns due to Theorem 4.3. The spoiler cannot

win the higher arity game in m turns and therefore needs ω +m turns to win.

As in the game G(R,+;G,+), Theorem 4.7 will also hold for addition of higher arity. These

two games are in fact closely related. Since the real numbers with respect to linear independence

are equivalent to Q∞, the real numbers can be substituted for the rational numbers:

Theorem 4.8. The game G(R,+;Qm,+) (finite m) is an (ω +m)-turn game.

In general, Theorem 4.3 and an analysis of the free basis of the sets imply the following theorem:

Theorem 4.9. Suppose S1 and S2 form vector spaces over the operation of addition and a scalar

field the rational numbers. Further suppose the size of their free bases are B1 and B2 respectively

and B1 6= B2. The game G(S1,+;S2,+) will take ω + min(B1, B2) turns.

4.3 Bounds on Unary Operation Games From Directed Subgraph Isomorphism

In this section we will discuss unary operation games and find general bounds.

Theorem 4.10. All Unary Operation Games are either won by the spoiler in fewer than ω∗2 turns

or are won by the duplicator with any ordinal game length.
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Proof. All games played on unary operations will henceforth be represented with graphs. If the

iterative operation of an element can result in the element itself then instead of showing a loop

in our graph, we will label the element with the number of iterations of the operations needed to

return to the element. Otherwise, we will show a directed edge from one element to the result of its

operation. This means that if an element is labeled with a number it cannot be directed towards

another element.

With this labeling, each set accompanied by an operation forms a set of trees, also known as

a forest. We will only consider individual connected components, which are all in form of trees,

though some are not rooted. When we play the Duplicator-Spoiler Game on these trees, we will be

allowed to select elements and make sentences about the relative subgraph isomorphism of the trees.

If the elements selected in both sets form isomorphic graphs, the the duplicator wins. Otherwise,

the spoiler wins. As a result, we can then inch up and down trees to show isomorphism.

The spoiler’s strategy will be one of labeling. First, a set of trees which have no isomorphic

duplication will be labeled with a finite number of individual turns, else the graphs are isomorphic.

The graphs cannot be isomorphic else the duplicator wins. Once this is done, it can only take a

finite number of moves to show that these graphs are in fact not isomorphic. Thus, the game is

limited by ω+finite turns. This is because the spoiler may not know the number of turns required

to show the graphs are not isomorphic until the individual elements have been labeled.

Interpreting unary operations as graphs we find the following.

Definition 4.11. Let U+a denote the unary operation of adding a to another number. U +a (x) =

x+ a.

Theorem 4.12. Let a ∈ N . The game G(Z, U+a;Z, U+1) will take ω + a turns.

In Theorem 4.12, unary operations represent forests that have components that are simply

straight lines. Their trees have no branches. The spoiler labels each component and shows that

one forest has more components than the other.

Notice that, in each of these cases, the fewest number of elements needed to span one of the

sets plus one is the number of turns needed to declare the remaining finite number of turns..
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We are yet to find bounds on Binary Operation Games or games with even higher arity. Such

a bound would involve interpreting the games as hypergraphs, instead of standard graphs. Should

these bounds exist, they are either similar or form forming a pattern dependent on arity.

5 The Ordinal Game’s Meaning in Formal Logic

Now that several ordinal games have been investigated we turn to the ordinal-turn game’s meaning

in formal logic. The question arises: how many quantifiers, or sets of quantifiers, do we need to

distinguish orderings from ordinal-turn games?

One might assume ordinal games have an exact connection to higher-order logic, but our early

examples prove otherwise. The duplicator wins the game G(R, <;Q, <) (Theorem 1.11), but the

Least Upper Bound Axiom allows us to create the following second-order sentence that is modeled

by the reals but not the rationals.

(∀A)(∃b)(∀a ∈ A)[(a < b) =⇒ (6 ∃c)(a < c < b)].

In fact, there are already game-variants that are connected to higher-order and weak higher-

order logic. They involve selecting sets of elements and finite sets of elements, respectively. In our

game, ω is more powerful than simply selecting a finite set of elements because the spoiler gets

feedback from the duplicator as the elements are selected.

Therefore a new system of logic is needed to quantify the unique characteristics of ordinal num-

bers of turns. However, our game is nonetheless connected to finite numbers of logical quantifiers

and will thus resemble weak higher-order logic. The system could involve quantification over nat-

ural numbers that will determine the number of quantifiers used. We call this omega notation.

For example, let us consider the game G(Z + Z, <;Z, <). The following sentence is an example

of the type of logic needed. This sentence is true of Z, but not of Z + Z. It also contains two

first-order quantifiers before quantifying over a natural number which determines the size of the

omega notation. This corresponds to a two-turn delay in the spoiler’s decrementation (ω+1 turns).

(∀x)(∀y)(∃i)(∃a1, a2 . . . ai)[(x < ai < y) =⇒ (ai = a1) ∨ (ai = a2) ∨ . . . ∨ (ai = ai−1)]
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Similarly, this can be expanded for higher ordinals. Two natural numbers can denote ω ∗ 2, a

natural number of natural numbers ω2 and so on.

6 Conclusion and Open Problems

We have introduced ordinal-turn games and investigated their properties, have found a general

form for orderings whose games can take any number of ordinal turns and have investigated several

operation games with ordinal numbers of turns. We have found bounds on certain types of Binary

Operations Games using elements of free bases and bounds on Unary Operations Games using

directed subgraph isomorphism. Lastly, we investigated a possible connection between ordinal

numbers of turns and logical expressibility.

The meaning of ordering games can be further investigated. What is the deeper meaning of

having large ordinal numbers of turns such as uncountable ordinals? Is it merely a large recursive

structure or does reaching ε0, ω1 or ω2 carry special significance?

Since games with scattered ordering that can require any ordinal number of turns have been

found , we next want to know, can the spoiler win any game played on scattered orderings given

some ordinal number of turns?

As bounds have been found for unary operations it seems natural to assume Operation Games

of higher arity will also have bounds. They may also be ω ∗ 2, or they may follow a pattern based

upon the arity. One approach for finding bounds is to adjust the graphs of unary operations to

hypergraphs to account for higher arity.

Although we can see a relationship between our ordinal game variant and formal logic, a full

system is yet to be developed. As of now it seems that this system will include quantifying over

natural numbers that determine the number of quantifiers, as well as standard logical symbols.

One natural number seems to represent ω turns, two natural number ω ∗ 2 turns and so on.

Once this system is developed, a proof of its connection to the ordinal games is needed. Such

a proof might involve an adaptation of Ehrenfeucht’s original proof of the first-order connection to

predetermined numbers of turns [3]. Proving this connection is an important next step.
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