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NOTES 

The Egg-Drop Numbers 
MICHAEL BOARDMAN 

Pacific University 
Forest Grove, OR 97116 
boardman@pacificu.edu 

Each month, the mathematics students at Pacific University are given a challenge prob- 
lem in what we call the "Pizza Problem of the Month." One of the most rewarding 
problems came from Which Way Did the Bicycle Go? [3, p. 53]: 

An egg-drop experiment We wish to know which windows in a thirty-six-story 
building are safe to drop eggs from, and which are high enough to cause the 
eggs to break on landing.... Suppose two eggs are available. What is the least 
number of egg-droppings that is guaranteed to work in all cases? 

To make this problem mathematical, the authors make some simplifying assump- 
tions including 

* Eggs that survive can be used again and are not weakened. Eggs that break are 
history. 

* Eggs that break at a particular floor would break from higher floors as well. 
* Eggs that survive from a particular floor would survive from lower floors as well. 

This problem piqued my interest. Unaware of the solution in the appendix, I found 
my own solution and stayed up late working out a nice presentation. The next morning, 
I shared this with a colleague who responded "Interesting. I wonder if this works with 
more eggs?" This Note answers the question. In working on it, I found that the egg- 
drop problem is a fruitful setting in which to introduce students to recurrence relations, 
generating functions, and other counting methods. 

Two eggs, thirty-six floors To find a solution to the original problem, imagine that 
we have one egg rather than two. In this case, we must start at the first floor and work 
our way up one floor at a time until we have discovered where eggs begin breaking. 
When we have two eggs, we can use a more efficient strategy until the first egg breaks. 
Then, we must resort to the original one-egg strategy. 

Table 1 illustrates our solution, which begins with a drop from the eighth floor. If 
this egg breaks, we move back down to the first floor and work our way up until the 
second egg breaks, unless it survives the drop from the seventh floor, in which case 
there is no need to drop it from the eighth. If the first egg does not break, we can move 
up to the fifteenth floor and repeat the process. In any case, we will have made no 
more than 8 drops. It is easy to see that this solution is optimal; if we started with a 
drop from the seventh floor, we would not be able to reach the thirty-sixth in 8 drops, 
whereas if we started on the ninth floor, we might need 9 drops to learn that the egg 
would break on the eighth. 
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TABLE 1: Where to drop the eggs 

First Egg Second Egg if First Egg Breaks 

8 1- 2 3- 4 - 5 6 7 
15 9 -- 10 -- 11 - 12 - 13 - 14 
21 16 - 17 -- 18 - 19 - 20 
26 22 - 23 - 24 + 25 
30 27 - 28 - 29 
33 31 32 
35 34 
36 

More eggs, more drops Our natural inclination is to generalize this algorithm for 
taller buildings. As we do so, we note a tricky feature of the original problem: It asked 
us to determine that 8 drops would be optimal, given 2 eggs and thirty-six floors, but it 
is actually simpler to determine that thirty-six floors can be reached, given 2 eggs and 
8 drops. 

FIGURE 1 shows which floors we can reach for various numbers of drops of 2 eggs 
and leads us to state the problem in a different way: 

A generalized egg-drop problem Given k eggs, how manyfloors can we reach 
if we have at most n drops? 

8- 

7- 

6- 

5- 

drops 4- 
3- 
2- 
1- 

12 4 7 11 16 22 29 36 

floors 

Figure 1 Solutions to two-egg problem 

We label the answer to this question (k) (read "n drop k") and refer to the collection 
of all such numbers as the egg-drop numbers. Our goal is to characterize and compute 
these numbers, directly if possible. 

The heart of the solution to our original problem lies in the recurrence behavior. 
When the first egg broke, we had only one egg left and needed to resort to the one-egg 
solution. We can use this idea to construct a recurrence relation for (n). For when we 
begin with k eggs and n available drops, after the first drop, we either still have k eggs 
(the egg survived) or we have k - 1 eggs (the egg broke). In either case, we have n - 1 
drops available. This reasoning, as illustrated in FIGURE 2, provides our recurrence 
relation: 

(k) ( n 
1)+1 foralln > 1,k> 1, 

k n-k +? k - I 
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||N - 
IY n-I drops, k eggs 

first drop 

n-I drops, k-i eggs 

Figure 2 Motivating the recurrence relation 

with 

=0 forallk>0, ()=0 foralln>0. 
k (0 

The boundary conditions in the recurrence relation come from the fact that we cannot 
do anything without drops or eggs. 

We now can recursively calculate the egg-drop numbers. Table 2 gives some of their 
values. You may recognize some of these numbers. For instance, the k = 2 column is 
made up of the triangular numbers (as can be seen from the solution to the two-egg 
problem). We would like be able to directly calculate egg-drop numbers. We illustrate 
two approaches to this problem. 

TABLE 2: Some egg-drop numbers (k) 

\k 
n 0 1 2 3 4 5 6 7 8 

0 00 0 0 0 0 0 0 0 
1 0 1 1 1 1 1 1 1 
2 0 2 3 3 3 3 3 3 3 
3 0 3 6 7 7 7 7 7 7 
4 0 4 10 14 15 15 15 15 15 
5 0 5 15 25 30 31 31 31 31 
6 0 6 21 41 56 62 63 63 63 
7 0 7 28 63 98 119 126 127 127 
8 0 8 36 92 162 218 246 254 255 

Generating Functions Given an infinite sequence {ak }k0, the ordinarypower series 
generating function (ogf) of the sequence is the symbolic power series 

00 

g(x) = akxk = ao + alx + a2x2 + + akxk + " 

k=O 

ogfs are used extensively in combinatorics to find or solve recurrence relations and 
to discover relations between sequences. They are especially useful because we can 

manipulate them symbolically, in the ring of formal power series. Thus, we do not 
need to concern ourselves with issues of convergence. Wilf [2] gives a comprehensive 
study of the use of ogfs. 

Because the egg-drop numbers are doubly-indexed, with n and k, we can construct 
a one-parameter sequence of generating functions, {gn }. For each n > 1, 

b, 
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gn=X O x( 0+ + + x2 + ... n(x) = ( Xk ) ( 1") 2 " 

Note that the constant term ( ) drops off as it is 0. 
We begin by showing that our generating functions satisfy a recurrence relation 

related to the recurrence relation that defines the egg-drop numbers. We offer two 
proofs of this lemma to illustrate various ways to work with ogfs. 

LEMMA 1. For each n > 1, gn (x) = (1 + X)gn-I(x) + gl(x) 

Proof 

)n k n-1 xk 
((n ) n- gn(X) 

- 
gn-l(X) 

-- 
k Ik :k 

xk 
k=l k= k=l 

~00 
/ I -- 

xk+ 00x 

k=l ((k 1/ ) k=l k 1 k=l 

= X *gn-1(x) + gl(x) 

Alternate Proof. This more general method, discussed by Wilf [2] takes us from 
the recurrence relation for (k) to a recurrence relation for the sequence of generating 
functions. We multiply each term of the recurrence relation by xk and sum over all k 
for which this recurrence is valid. In our case, for fixed n > 1, 

(n) n-1) (n- \ 
(k k 

-+( 
k )+1, fork > 1. 

Thus, 

0/\ ?n 1 /n 1\ ?? 

E n x k n 1 Xk + - n k l ) k + X k 
k= k k=l k) ? k=l 

And hence 

gn(x) = gn-l(X) + Xgn-(X) + gl(X) = (1 + x)gn- (x) + g1(x) 

We can use this recurrence relation to find a closed form for each generating func- 
tion. The proof of the following lemma, left to the reader, is a good exercise in induc- 
tion. 

LEMMA 2. For each n > 1, 

(1 + x) - 1 
gn(X) = - 

1 - x 

Now that we know the generating functions, gn(x), we obtain our main result. 

THEOREM. 
(n) nj= 

Proof. On the one hand, 

)1)+X 2 + ) +n +n gn () )x+ 2+ . "+ n1 
+1 

+? 
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On the other hand, 

1 
gn(x) = ((1 +x)" - 1) 

1-x 

(1x+ x2x3+ ) (()x +( 2)x2+ +... ( )x ) It 2i nit 

'(1) x -+ + I ) + (2 + + (n)]x 
n n nInt 1 

+ [() () +- - ()]xn+l 

[(I) 
- 
(2 ) ??? ()]xn+2 '" 

Thus, gn is also the generating function of = 
k n=(1). But two sequences with the 

same generating function are equal. 1 

Direct counting approach Given the simplicity of the formula for the egg-drop 
numbers, one might suspect that there is a direct counting technique we could use. 
Indeed, there is. Consider a specific sequence of at most n drops with k eggs. Each of 
the drops has two possible outcomes: either the egg breaks or the egg does not break. 
Let 0 represent a drop without a break and 1 a drop with a break. Our sequence of 

drops thus yields a binary word of length at most n and having between zero and k Is. 
With this representation of drops, each word corresponds to a unique floor. For 

example, in the case of 8 drops and 2 eggs, the word 01001 corresponds to floor 11. 
In the general case, we make words of length m < n have length n by adding n - m 

trailing zeros. Note that we only need do this for words that have exactly k Is, since 
the efficiency of our procedure ensures that words with fewer than k broken eggs are 

guaranteed to use all n drops. Also note that the trailing zeros are merely placeholders 
and do not represent drops. 

Thus, there is a one-to-one correspondence between the floors in our building and 
the number of binary words of length n with at least one and no more than k Is. The 
latter is easily shown to be k=1 ( ) while the former is ( ). 

Conclusion Our main theorem is both exciting and disheartening. For we have found 
a beautiful characterization of the egg-drop numbers. But, it is well known that there 
is no closed form (that is, direct formula) for the partial sum of binomial coefficients 
[1]. Alas, we cannot calculate the egg-drop numbers without a tedious recursive cal- 
culation. Nevertheless, students may find the egg-drop problem a fun way to learn the 

power of generating functions and other basic combinatorial tools. 

Acknowledgment. Sincere thank you to the referees for their suggestions for improvement. 
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