
Envy-Free Discrete Protocols
Exposition by William Gasarch

1 Introduction

Whenever we say something like Alice has a piece worth α we mean it’s
worth α TO HER. The term biggest piece means most valuable to the person
looking at it. This is not necessarily related to geometric size. We assume
the entire cake is worth 1 to everyone.

Def 1.1 An n-person protocol for division is envy-free if each person thinks
they received the biggest (or tied) piece.

In this document we show

1. There is an envy-free protocol for 3 people that uses at most 5 cuts.

2. For every ε there is a protocol for 4 people that will (1) leave ≤ ε (in
everyones view) unallocated, and (2) is envy-free on all that is allocated.

3. There is an envy-free protocol for 4 people. (This protocol easily gen-
eralizes to n people.)

Our exposition is based on the paper that first proved there is a discrete
envy-free protocol for n ≥ 4, namely An Envy-free cake division protocol by
Brams and Taylor [1].

Convention 1.2 Protocols are presented by giving the instructions for what
each player must do and, in parenthesis, advice for what the player should do
in his or her best interest. This means that, if there are n people, and (say)
Alice doesn’t follow the advice then Alice might get < 1/n.

2 A 3-Person Discrete Envy-Free Protocol

The following definition will be the KEY to both this protocol and the 4-
person envy-free protocol which we present later.
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Def 2.1 Assume Alice, Bob, and Carol want to cut a cake (what else is
new?). Assume that part of the cake has been allocated: Alice gets piece P1,
Bob gets piece P2, Carol gets piece P3, and there is some Trim T left over.
Alice has an advantage over Bob if, no matter how much of T Bob gets, Alice
will not envy him. For example, if Alice has 2/5, Bob has 2/5, Carol has
1/10 and the Trim is 1/10 then Alice would not care if Carol got ALL of the
trim. Note that Alice would mind if Bob got more trim then Alice gets.

The following Theorem is due to Conway and Selfridge from about 1960.
They never published it; however, it appears in [1].

Theorem 2.2 There is a discrete protocol for 3 people to achieve an envy-
free division.

Proof:
We call the protocol ENVYFREE3. It is in 2 phases.

PHASE ONE of ENVYFREE3

1. Alice cuts the cake into 3 pieces. (All equal.)

2. Bob trims a piece or not. Put the trimming aside. (Trim to create a
tie for the top 2 pieces.)

3. There are now 3 pieces and possibly some Trimming. Call the pieces
P1, P2, P3 and the trimming T .

4. Carol takes one of P1, P2, P3. (The biggest piece.)

5. Bob takes one of the pieces that are left. However, if the trimmed piece
is left he must take it. (The biggest piece available.)

6. Alice takes the remaining piece.

END OF PHASE ONE of ENVYFREE3
We leave it to the reader to prove that if a player does not follow the

advice then he or she might get less than 1/3 of P1 ∪P2 ∪P3. Henceforth we
assume that all players follow the advice.
Claim 1: The Phase One protocol results in an envy-free division of P1 ∪
P2 ∪ P3. (Note that we still need to deal with T ).
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Proof of Claim 1:
If Bob did not trim a piece then he thinks that 2 pieces are tied for first.

If Bob did trim a piece then, since he trimmed it, he thinks that 2 pieces
(now) are tied for first.

Carol will get first pick of P1, P2, P3, so she cannot feel envy. Bob will
get second pick but he thinks that 2 of the pieces were tied, so he cannot
feel envy. If there was a trimmed piece then either Carol or Bob got that
trimmed piece. Hence Alice will get one of the untrimmed pieces. Since
Alice originally cut the pieces equally, and she gets an untrimmed piece, she
cannot feel envy.
End of Proof of Claim 1

If Bob does not trim a piece then Phase one gives us the Envy-Free
Division and we are done.

If Bob trimmed a piece then we do Phase 2 where we split the trimming.
We assume that Bob got the trimmed piece (the situation where Carol got
the trimmed piece is similar).

There is a KEY DIFFERENCE between the situation we have now and
what we had in Phase one. Note that Alice thinks that Bob has a piece with
some stuff missing. If Bob gets some or even all of T then Alice cannot envy
him. Using our definition: Alice has an advantage over Bob.

PHASE TWO OF ENVYFREE3:

1. Carol cuts T into 3 pieces (equally).

2. Bob picks a piece. (Biggest piece)

3. Alice picks a piece. (Biggest piece left)

4. Carol picks a piece. (Whatever is left)

END OF PHASE TWO OF ENVYFREE3:
We leave it to the reader to prove that if a player does not follow the

advice then he or she might get less than 1/3 of T . Henceforth we assume
that all players follow the advice.
Claim 2: The Phase Two protocol results in an envy-free division of T .
Proof of Claim 2:

Bob cannot feel envy since he got the first choice of pieces.
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Alice is the interesting case. Alice cannot feel envy towards Bob since
WHATEVER Bob gets, Alice just thinks Bob is making up for having a
trimmed piece in the first place. So Alice cannot be envious of Bob. Alice
cannot be envious of Carol since Alice got to pick before Carol.

Carol cannot be envious of anyone since she cut T into 3 equal pieces.
End of Proof of Claim 2

Since both Phase one and Phase 2 are envy-free, the entire procedure is
envy-free.

Note that the above algorithm took at most 5 cuts. I believe it is an open
question as to whether there is a discrete envy-free protocol for 3 people that
uses 4 cuts. We know there cannot be a discrete envy-free protocol for 4
people with 3 cuts since there is no proportional protocol with 3 cuts.

Is there a discrete envy-free algorithm for 4 players? 5? n? YES. We will
present the 4-person envy-free protocol later in this document. This protocol
contains all of the ideas for general n.

3 An all-but-ε Envy-Free Protocol for 4 Peo-

ple

The protocol in this section will later be used in the 4 person Envy-Free
Protocol. I do not know who first came up with it; however, it appears1

in [1].

Def 3.1 An all-but-ε envy-free protocol divides the cake, except a piece that
everyone agrees is ≤ ε, in an envy-free way. The piece of size ≤ ε is not
allocated.

Theorem 3.2 For every ε > 0 there is an all-but-ε envy-free protocol for 4
people.

1The protocol is actually used inside a rather large protocol so it is not isolated out.
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Proof: We will use FIRST-PERSON-HAPPY (below) as a part of our fi-
nal protocol. FIRST-PERSON HAPPY will explicitly take as input A, B, C,D
meaning Alice, Bob, Carol, Donna, and also P meaning a pie (or a piece of a
pie). This is so we can later run it with different people and different pieces
later.

FIRST-PERSON-HAPPY(A,B,C,D;P)

1. Alice cuts P into 5 pieces (all equal). YES, its 5 not 4.

2. Bob trims at most 2 of the pieces (to create a 3-way tie for the biggest).
The trimming is put aside.

3. Carol trims at most one piece (to create 2-way tie for biggest piece).
The trimming is put aside.

4. Donna takes a piece.

5. Carol takes a piece. If the piece she trimmed is available she must take
it.

6. Bob takes a piece. If a piece he trimmed is available he must take it.

7. Alice takes a piece.

END OF FIRST-PERSON-HAPPY
This is not a division of the entire cake. There is Trim left over. It is

possible that (say) Bob thinks the trim is worth 9/10 of the cake!
We leave it to the reader to show that if someone does not follow the

advice they could end up with less than 1/4 of what is divided. Henceforth
we assume that everyone follows the advice.
Claim 1:

1. Alice gets 1/5. Hence Alice thinks that there is 4/5 left.

2. Let X be the part of the cake that was shared by all (so this is the cake
minus the trim set side). The division of X is envy-free.
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Proof:
We look at all the players.

Alice: Alice initially splits the cake into 5 equal pieces. At most 3 pieces
were trimmed, hence there are at least 2 untrimmed pieces. Since Bob and
Carol must take pieces they trimmed if they are available, Alice will get one
of the untrimmed pieces. Hence Alice gets 1/5 and thinks everyone else got
≤ 1/5. Therefore Alice cannot envy anyone.

Bob: Bob created a 3-way tie for first, say the equal pieces are P1, P2, P3.
If he gets any of those he will not envy anyone. We consider 2 cases.

• Carol trims a piece, say P3. So now Bob thinks that P1 and P2 are tied
for first and that P3 is smaller. Since Carol must pick P3 if it available,
one of Donna or Carol chooses P3. The other one may choose one of
P1 or P2 (or not); however, Bob will be able to get one of P1 or P2.

• Carol does not trim P1 or P2 (she might trim some piece or NO piece).
After Donna and Carol choose, at least one of P1, P2, P3 is available.
So Bob will get one of P1, P2, P3.

Carol: Carol created a 2-way tie and she goes second, so she’ll be able to
get one of the top pieces.

Donna: She goes first. She’s happy as a clam!
End of Proof of Claim 1

Note that Alice has 1/5 of P but the others could have really small parts
of P . It is possible that Bob thinks he has 1/100 and everyone else has
≤ 1/100.

In protocol ALL-HAPPY they all take turns being Alice.

ALL-HAPPY(A,B,C,D;P)

1. Run FIRST-PERSON-HAPPY(A, B, C,D; P ). Let T1 be the trimming
that was set aside.

2. Run FIRST-PERSON-HAPPY(B, C, D,A; T1). Let T2 be the trim-
ming that was set aside.
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3. Run FIRST-PERSON-HAPPY(C, D,A, B; T2). Let T3 be the trim-
ming that was set aside.

4. Run FIRST-PERSON-HAPPY(D, A,B,C; T3). Set aside the trim-
mings which we call T .

END OF ALL-HAPPY
Claim 2: If ALL-HAPPY is run then

1. Everyone thinks T has value ≤ 4
5
.

2. Let X be the part of the cake that was shared by all (so X = P − T ).
X is divided in an envy-free way.

Proof of Claim 2:
We consider each player in turn. We use the obvious fact that everyone

thinks
T ≤ T3 ≤ T2 ≤ T1 ≤ P.

Alice: She thinks T ≤ T1 ≤ 4P
5

.

Bob: He thinks T ≤ T2 ≤ 4T1

5
≤ 4P

5
.

Carol: She thinks T ≤ T3 ≤ 4T2

5
≤ 4P

5
.

Donna: She thinks T ≤ 4T3

5
≤ 4P

5
.

The protocol is Envy-Free on the non-trim parts since FIRST-PERSON-
HAPPY is Envy-free on the non-trim parts.
End of Proof of Claim 2

We now present the final protocol. It essentially keeps running ALL-
HAPPY until T gets to be of size ≤ ε.
ALMOST-ENVY-FREE4(A, B, C,D; P ; ε)

1) Let m be such that (4
5
)m < ε.

2) Run ALL-HAPPY(A, B, C,D; P ). Let T1 be the trimming that was
set aside. Note that everyone thinks T1 ≤ 4

5
.

3) Run ALL-HAPPY(A, B, C,D, T1). Let T2 be the trimming that was
set aside. Note that everyone thinks T2 ≤ (4

5
)2.
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4) Run ALL-HAPPY(A, B, C,D, T2). Let T3 be the trimming that was

set aside. Note that everyone thinks T3 ≤ (4
5
)3.

...

m+1) Run ALL-HAPPY(A, B, C,D, Tm−1). Let Tm be the trimming that was
set aside. Note that everyone thinks Tm ≤ (4

5
)m < ε. Let T = Tm be

the trimming of that was set aside. Note that everyone thinks T < ε.

END OF ALMOST-ENVY-FREE4

4 A 4-Person Discrete Envy-Free Protocol:

First Attempt

We will attempt a 4-person Discrete Envy-Free Protocol just to see what
subprotocols we will need. We will revisit this sketch of a protocol a few
times before giving the final full protocol.

Theorem 4.1 There is a discrete protocol for 4 people that achieves an envy-
free division.

Attempt at Protocol
The players are Alice, Bob, Carol, Donna.

1. Alice cuts the cake into 4 pieces P, Q, R, S. (All equal.)

2. Bob, Carol, and Donna each write down on a separate piece of paper
E (if they think the pieces are all equal) or N (if they think they are
not all equal). We assume that Alice thinks they are equal.

3. If Alice, Bob, Carol, Donna all write E then we give P to Alice, Q to
Bob, R to Carol, and R to Donna, and we are done. Note that any
distribution would have worked.

4. If not then what do we know? We know that at least one person thinks
the cake was split unevenly. Say Bob thinks P > Q. Alice thinks
P = Q. Can we use this?

If 2 players disagree then we can use that. In the next 2 sections we give
protocols for just 2 people. These will be used in our final protocol and hence
do not allocate any of the cake.
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4.1 Making Alice and Bob REALLY Disagree

Lemma 4.2 Assume that Alice and Bob are both looking at pieces P, Q and
Alice things P = Q while Bob thinks P > Q. There is a protocol that produces
P ′, Q′ such that

• Alice thinks P ′ < Q′.

• Bob thinks P ′ > Q′.

• P ∪Q = P ′ ∪Q′.

Proof:
MAKE-UNEQUAL

1. Bob cuts the cake into a number m of pieces where Bob picks m. (m
is picked so large that if Bob cuts the piece into m pieces and Alice
takes any piece, Bob still thinks he has more. Bob cuts the cake into
m equal pieces.)

2. Alice takes one of the pieces. (Alice takes the largest piece.)

END OF MAKE-UNEQUAL

Exercise 1 Let p be how much Bob values P . Let q be how much Bob
values Q. Determine a good value of m as a function of p, q.

4.2 Making Alice and Bob Have an Advantage Over
Each Other

Lemma 4.3 Assume that Alice and Bob are both looking at pieces P, Q and
Alice thinks P = Q while Bob thinks P > Q. There is a protocol that produces
(likely very small) pieces p1, p2, p3, q1, q2, q3 such that

• Alice thinks q1 = q2 = q3 > p1, p2, p3.

• Bob thinks p1 = p2 = p3 > q1, q2, q3.
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Proof:
In the protocol SIX FUNKY PIECES we often let P (or Q, Pi, Qi stand

for either the piece, what Bob thinks it is worth, and what Alice thinks it is
worth. Which one is intended will be clear from context.
SIX FUNKY PIECES

1. Alice and Bob run the protocol from Lemma 4.2 to obtain P ′, Q′ with
P ′ < Q′ and P ′ > Q′. For notation we rename them and assume Alice
thinks P < Q and Bob thinks P > Q.

2. Bob names a number m ≥ 10 (m should be big enough so that no
matter how P is cut into m pieces, if Bob discards the SIX smallest
pieces, then he still thinks he has more than Alice.

3. Alice cuts P into m pieces P1, . . . , Pm and Q into m pieces Q1, . . . , Qm.
(Cuts them both equally. Note that Alice will think

P1 = · · · = Pm < Q1 = · · · = Qm.

)

4. Bob sorts the pieces:

(a) Bob thinks that Pm ≤ Pm−1 ≤ · · · ≤ P3 ≤ P2 ≤ P1.

(b) Bob thinks that Qm ≤ Qm−1 ≤ · · · ≤ Q3 ≤ Q2 ≤ Q1.

5. If Bob thinks P3 > Qm−2 then

(a) Bob trims P1, P2 (down to P3 value). Let the trimmed versions be
P ′

1, P ′
2. Let p1 = P ′

1, p2 = P ′
2, p3 = P3.

(b) Let q1 = Qm−2, q2 = Qm−1, q3 = Qm.

Why this works:

• Bob thinks p1 = p2 = p3 and, since he thinks P3 > Qm−2 he thinks

p1 = p2 = p3 = P3 > {Qm−2 ≥ Qm−1 ≥ Qm} = {q1 ≤ q2 ≤ q3}.

• Alice thinks

Qm = q1 = q2 = q3 > P1 ≥ P ′
1 = p1 = p2 = p3.
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6. If Bob thinks P3 ≤ Qm−2 then what do we do? INTUITION: Since
Bob thinks

(1) P3 ≤ Qm−2,

(2) the union of all of the Pi’s is more than the union of all of the Qi’s,

(3) P3 is the third largest Pi,

Bob must think P1 is really big!.

(a) Bob cuts P1 into 3 (equal) pieces. Call them p1, p2, p3.

(b) Let q1 = Qm, q2 = Qm−1, q2 = Qm−2.

We show later why this works.

END OF SIX FUNKY PIECES
The only case we didn’t prove works was the last one. For Alice this is

easy. She thinks

q1 = q2 = q3 > P1 ≥ p1, p2, p3.

What about Bob? This is more complicated.

• Pm ≤ Pm−1 ≤ · · · ≤ P3 ≤ P2 ≤ P1.

• Qm ≤ Qm−1 ≤ · · · ≤ Q3 ≤ Q2 ≤ Q1.

• P3 ≤ Qm−2

• Hence P3 ≤ Qm−2 ≤ Qm−3 ≤ · · · ≤ Q1.

Assume, by way of contradiction, that Bob thinks p1 is smaller than one
of q1, q2, q3. Since Bob thinks q1 ≤ q2 ≤ q3 we can assume Bob thinks

p1 ≤ q3
P1

3
≤ Qm−2

P1 ≤ 3Qm−2

Hence Bob thinks

P1 ≤ Q1 ∪Q2 ∪Q3.
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and

P1 ≤ Q4 ∪Q5 ∪Q6.

Since P2 ≤ P1 Bob thinks

P2 ≤ Q4 ∪Q5 ∪Q6.

Since P3 ≤ Qm−2 and all P4, P5, . . . are even smaller, they are all smaller
than Qm−2 and hence smaller than Q7, Q8, . . .. Putting all of this together
we get the following

P1 ≤ Q1 ∪Q2 ∪Q3

P2 ≤ Q4 ∪Q5 ∪Q6

P3 ≤ Q7

P4 ≤ Q8
...

...
...

Pm−6 ≤ Qm−2

Hence

P1 ∪ · · · ∪ Pm−6 ≤ Q1 ∪ · · · ∪Qm−2

P − (Pm−5 ∪ Pm−4 ∪ Pm−3 ∪ Pm−2 ∪ Pm−1 ∪ Pm) ≤ Q− (Qm−1 ∪Qm) ≤ Q

Hence if Bob discards the 6 smallest pieces from P then Bob has ≤ what
Alice has. This contradicts the definition of m. Hence Bob thinks

p1 = p2 = p3 > q1, q2, q3.

Note 4.4 The source I am working from [1] seems to need m such that even
if SEVEN (not SIX) pieces are missing Bob is still happy. Also, they seem
to think that (in our terms) q1 = q2 = q3 > p1, p2, p3, but p1 = p2 = p3 ≥
q1, q2, q3. Either I simplified the proof or I am missing some very subtle point.
Extra Credit if you can find the point I am missing (warning- there might
not be one).
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Exercise 2 Let p be how much Bob values P . Let q be how much Bob
values Q. Determine a good value of m as a function of p, q.

4.3 Making Alice and Bob Have an Advantage Over
Each Other

We can now use this Theorem 3.2 and Lemma 4.3 to obtain a protocol where
Alice and Bob have an advantage over each other!

Theorem 4.5 Alice, Bob, Carol, and Donna are looking at 3 pieces P, Q, R
(any of these could themselves be composed of many pieces). Alice thinks
P = Q. Bob thinks P > Q. There is a protocol such that at the end:

• all but some trim T of the cake has been divided

• on the part that was divided the division is Envy Free

• Alice has an advantage over Bob

• Bob has an advantage over Alice.

Proof:
Protocol ADV is in 2 phases.

ADV PHASE ONE

1. Alice and Bob perform Protocol SIX FUNKY PIECES from Lemma 4.3
on P and Q to obtain (small) pieces p1, p2, p3, q1, q2, q3 such that

• Alice thinks q1 = q2 = q3 > p1, p2, p3.

• Bob thinks p1 = p2 = p3 > q1, q2, q3.

(They follow the advice from Lemma 4.3.)

2. Carol trims at most 1 of the 6 pieces (creating a tie for first). Call this
trim T and put it aside.

3. Donna takes one of the 6 pieces.

4. Carol takes one of the 6 pieces. If the one she trimmed is available she
must take it.
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5. Bob takes one of the untrimmed pi pieces. Note that there must be
one of them, untrimmed, left since if Carol trimmed a piece then either
Donna or Carol took it.

6. Alice takes one of the untrimmed qi pieces. Note that there must be
one of them, untrimmed, left since if Carol trimmed a piece then either
Donna or Carol took it, AND, Bob took a pi piece.

END OF ADV PHASE ONE
We leave it as an exercise that if any player does not follow the advice

they may end up with < 1/4 of what was divided. We also leave it as an
exercise that, of what was so far divided up (which might just be crumbs!)
the division is envy-free.

Note that Alice has a qi piece which she think is BIGGER than the puny
pi piece that Bob got.

Note that Bob has a pi piece which she think is BIGGER than the puny
qi piece that Bob got.

We summarize and be more concrete:

• Alice has q1 which is TINY but bigger than p1 in her eyes. Lets say
Alice thinks q1 − p1 < ε′ where ε′ is rational.

• Bob has p1 which is TINY but bigger than q1 in his eyes. Lets say Bob
thinks p1 − q1 < ε′′ where ε′′ is rational.

• Let ε = min{ε′, ε′′}.

• If Alice got ε more cake, Bob wouldn’t mind.

• If Bob got ε more cake, Alice wouldn’t mind.

ADV PHASE TWO

1. Alice writes down a rational number ε′ (Alice thinks q1 − p1 < ε′.)

2. Bob writes down a rational number ε′′ (Bob thinks p1 − q1 < ε′′.)

3. Let ε = min{ε′, ε′′}.

4. Let P be the rest of the cake— the trim together with whatever did
not go into the 6 pieces. P may be most of the cake.
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5. Run Protocol ALL-HAPPY from Theorem 3.2 on P with parameter ε.
Recall that at the end of this protocol P will be divided in an envy-free
manner except for a piece T that everyone thinks is ≤ ε.

END OF ADV PHASE TWO
Since the trim is ≤ ε to both Alice and Bob, and they both don’t care if

the other gets ε, they each have an advantage over each other.

4.4 The Final Envy Free Protocol for 4 People

We can now present the final protocol. The KEY is that we keep a list of
pairs-of-people who don’t care what the other one gets from the trim. The
list, called LIST, is initially empty. We call the original pie PIE. We have
PIE and LIST as parameters of the input since we will call the protocol on
itself.

The actual protocol will be to call the following protocol on (CAKE, ∅).
ENVYFREE4(PIE,LIST)

1. Alice cuts PIE into TWELVE pieces (equal).

2. Bob, Carol, and Donna writes down on a piece of paper E (if they think
the pieces are all equal) or N (if they think they are not all equal). Let
EQUAL be the set of people who think that the pieces are equal. Let
NOTEQUAL be the set of people who think that the pieces are not
equal.

(a) If there is a pair (of people) that is not on the LIST that dis-
agree (one thinks EQUAL one things NOT EQUAL) then run
Protocol ADV from Theorem 4.5 so that they each now have an
advantage over each other. Put the pair on the LIST. Then call
ENV Y FREE4(T, LIST ). (We will see later that the recursion
will bottom out.)

(b) In this case every pair who disagree are on the list. Note that
every person in NOTEQUAL has an advantage over everyone in
EQUAL. Hence the people in NOTEQUAL don’t care what the
people in EQUAL get. If EQUAL has one person, he or she gets
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all 12 pieces. If EQUAL has 2 people, they each get 6 pieces. If
EQUAL has 3 people, they each get 4 pieces. If EQUAL has 4
people, they each get 3 pieces.

Since there are 4 people there are at most 6 pairs. If the protocol is
called with LIST equal to the set of all pairs then it will not call itself, it
will terminate. Each time the protocol is called one more pair is put on the
list. Hence the protocol is called at most 6 times.
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