DETERMINING IF \(X = Y \)
1. Alice has x, Bob has y.
2. They want to see if $x = y$ communicating as few bits as possible.
3. We call this problem EQ.
OBVIOUS PROTOCOL

1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
2. Alice sends $a_1 \cdots a_n$ to Bob (n bits).
3. Bob compares $a_1 \cdots a_n$ to $b_1 \cdots b_n$.
 If equal send 1, else send 0. (1 bit.)

So \(\text{EQ} \) can be solved with \(n + 1 \) bits.
1. EQ **REQUIRES** $\sim n$ bits.
2. Can do EQ **with** $\sim \sqrt{n}$ bits, but no better.
3. Can do EQ **with** $\sim \log n$ bits, but no better.
EQ \textbf{REQUIRES} \(n + 1 \) bits.
So, for Alice and Bob to determine if two \(n \)-bit strings are equal \textbf{REQUIRES} \(n + 1 \) bits.
(Proven by Andrew Yao in 1979.)
What if we

1. Allow Alice and Bob to flip coins, and
2. allow a probability of error $\leq \frac{1}{n}$.
1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
2. Alice rand $S \subseteq \{1, \ldots, n\}$, $|S| = 10$.
3. For $i \in S$ Alice sends (i, a_i). 10 log n bits.
4. For each (i, a_i) that Bob checks “$a_i = b_i$?”.
5. If always YES, Bob sends 1, else sends 0.
1. Protocol is $\sim \log n$ bits. **GOOD!**
2. Prob of error $\to 1$ as $n \to \infty$. **BAD!**
3. Does well if input is unif chosen. **GOOD!**
4. Not really what we want. **BAD!**
5. KEY PROBLEM: Protocol too local.
LESS NAIVE IDEA

1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.

2. Alice computes $a_1 + \cdots + a_n$.
 Sends 1 if sum is ODD
 Sends 0 if sum is EVEN.

3. Bob computes $b_1 + \cdots + a_n$.
 If PARITY agrees then send 1 (EQUAL)
 else 0 (NOT EQUAL)
1. Only send ~ 1 bit. **GOOD.**
2. Bit sent uses ALL of $a_1 \cdots a_n$. **GOOD.**
3. Protocol will be wrong alot. **BAD.**
4. Speculation: Can we use $a_n + \cdots + a_1$ remainder when divided by 3? 4? 5?
$a = b \pmod{c}$ means

1. a/c and b/c have same remainder.
2. $b \in \{0, 1, \ldots, c - 1\}$.

EXAMPLES:

1. Any odd number is $\equiv 1 \pmod{2}$.
2. $100 \equiv 9 \pmod{7}$ since $100 = 7 \times 13 + 9$
1. Everyday Example: Clock Arithmetic
2. For all m you can do \div, $-$, \times in \mathbb{Z}_m.
3. For m prime you can also do \div in \mathbb{Z}_m.

$\mathbb{Z}_m = \{0, 1, \ldots, m-1\}$ and all of the operations are mod m.

Bill Gasarch- U.of MD-College Park gasarch@cs.umd.edu
1. If f is a polynomial over the reals of degree d then f has at most d roots.

2. If f is a polynomial over the complex numbers of degree d then f has at most d roots. (d if you count multiplicities.)

3. Let p be a prime. If f is a polynomial over \mathbb{Z}_p of degree d then f has at most d roots.
1. Alice has $a_0 a_1 \cdots a_{n-1}$. Bob has $b_0 b_1 \cdots b_{n-1}$. Alice sends Bob a prime p, $n^2 \leq p \leq 2n^2$.

2. Alice picks $z \in \{1, \ldots, p - 1\}$ RAND.
 Alice computes, mod p,
 $$y = a_0 + a_1 z + a_2 z^2 + \cdots + a_{n-1} z^{n-1}$$
 Alice sends (z, y) to Bob.

3. Bob computes, mod p,
 $$y' = b_0 + b_1 z + b_2 z^2 + \cdots + b_{n-1} z^{n-1}$$
 If $y = y'$ then send 1, else send 0.
1. Protocol exchanges $\sim \log n$ bits.
2. Prob of error is $\leq \frac{1}{n}$.
 WHY: If there is an error then z
 is a root of the poly $a(x) - b(x)$
 There are only n such roots so the probability
 of this is very low.
3. This result is due to Melhorn and Schmidt, 1982.
COMMUNICATION COMPLEXITY
by
Kushilevitz and Nisan.