DETERMINING IF $X=Y$

Bill Gasarch- U.of MD-College Park gasarch@cs.umd.edu

OUR PROBLEM- EQ

1. Alice has x, Bob has y.
2. They want to see if $x=y$ communicating as few bits as possible.
3. We call this problem EQ.

OBVIOUS PROTOCOL

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice sends $a_{1} \cdots a_{n}$ to Bob (n bits).
3. Bob compares $a_{1} \cdots a_{n}$ to $b_{1} \cdots b_{n}$. If equal send 1 , else send 0 . (1 bit.)

So EQ can be solved with $n+1$ bits.

VOTE!

1. EQ REQUIRES $\sim n$ bits.
2. Can do EQ with $\sim \sqrt{n}$ bits, but no better.
3. Can do EQ with $\sim \log n$ bits, but no better.
4. Stewart/Colbert in 2016.

BAD NEWS

EQ REQUIRES $n+1$ bits.
So, for Alice and Bob to determine if two n-bit strings are equal REQUIRES $n+1$ bits.
(Proven by Andrew Yao in 1979.)

ALLOW ERROR

What if we

1. Allow Alice and Bob to flip coins, and
2. allow a probability of error $\leq \frac{1}{n}$.

NAIVE IDEA

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice rand $S \subseteq\{1, \ldots, n\},|S|=10$.
3. For $i \in S$ Alice sends $\left(i, a_{i}\right) .10 \log n$ bits.
4. For each $\left(i, a_{i}\right)$ that Bob checks " $a_{i}=b_{i}$?" .
5. If always YES, Bob sends 1 , else sends 0 .

GOOD AND BAD

1. Protocol is $\sim \log n$ bits. GOOD!
2. Prob of error $\rightarrow 1$ as $n \rightarrow \infty$. BAD!
3. Does well if input is unif chosen. GOOD!
4. Not really what we want. BAD!
5. KEY PROBLEM: Protocol too local.

LESS NAIVE IDEA

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice computes $a_{1}+\cdots+a_{n}$.

Sends 1 if sum is ODD Sends 0 if sum is EVEN.
3. Bob computes $b_{1}+\cdots+a_{n}$. If PARITY agrees then send 1 (EQUAL) else 0 (NOT EQUAL)

GOOD AND BAD

1. Only send ~ 1 bit. GOOD.
2. Bit sent uses ALL of $a_{1} \cdots a_{n}$. GOOD.
3. Protocol will be wrong alot. BAD.
4. Speculation: Can we use $a_{n}+\cdots+a_{1}$ remainder when divided by 3? 4? 5?

NEED MOD CONCEPT

$a=b(\bmod c)$ means

1. a / c and b / c have same remainder.
2. $b \in\{0,1, \ldots, c-1\}$.

EXAMPLES:

1. Any odd number is $\equiv 1(\bmod 2)$.
2. $100 \equiv 9(\bmod 7)$ since $100=7 \times 13+9$

NEED TO WORK MOD m

$Z_{m}=\{0,1, \ldots, m-1\}$ and all of the operations are $\bmod m$.

1. Everyday Example: Clock Arithmetic
2. For all m you can do,,$+- \times$ in Z_{m}.
3. For m prime you can also do \div in Z_{m}.

NEED A THEOREM

1. If f is a polynomial over the reals of degree d then f has at most d roots.
2. If f is a polynomial over the complex numbers of degree d then f has at most d roots. (d if you count multiplicities.)
3. Let p be a prime. If f is a polynomial over Z_{p} of degree d then f has at most d roots.

RANDOMIZED PROTOCOL

1. Alice has $a_{0} a_{1} \cdots a_{n-1}$. Bob has $b_{0} b_{1} \cdots b_{n-1}$. Alice sends Bob a prime $p, n^{2} \leq p \leq 2 n^{2}$.
2. Alice picks $z \in\{1, \ldots, p-1\}$ RAND.

Alice computes, $\bmod p$,
$y=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n-1} z^{n-1}$
Alice sends (z, y) to Bob.
3. Bob computes, mod p, $y^{\prime}=b_{0}+b_{1} z+b_{2} z^{2}+\cdots+b_{n-1} z^{n-1}$
If $y=y^{\prime}$ then send 1 , else send 0 .

1. Protocol exchanges $\sim \log n$ bits.
2. Prob of error is $\leq \frac{1}{n}$.

WHY: If there is an error then z
is a root of the poly $a(x)-b(x)$
There are only n such roots so the probability of this is very low.
3. This result is due to Melhorn and Schmidt, 1982.

FOR MORE INFORMATION

COMMUNICATION COMPLEXITY

by
Kushilevitz and Nisan.

