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A Combinatorial Problem in Geometry
by

P. Erdös and G. Szekeres

Manchester

INTRODUCTION.

Our present problem bas been suggested by Miss Esther Klein
in connection with the following proposition.
From 5 points of the plane of which no three lie on the same

straight line it is always possible to select 4 points determining
a convex quadrilateral.
We present E. Klein’s proof here because later on we are

going to make use qf it. If the least convex polygon which en-
closes the points is a quadrilateral or a pentagon the theorem
is trivial. Let therefore the enclosing polygon be a triangle A BC.
Then the two remaining points D and E are inside A BC. Two
of the given points (say A and C) must lie on the same side of
the connecting straight line DE. Then it is clear that AEDC

is a convex quadrilateral.
Miss Klein suggested the following more general problem. Can

we find for a given n a number N(n) such that f rom any set con-
taining at least N points it is possible to select ln points forming
a convex polygon?

There are two particular questions: (1) does the number N
corresponding to n exist? (2) If so, how is the least N(n) deter-
mined as a function of n? (We denote the least N by No (n ) . )
We give two proofs that the first question is to be answered

in the affirmative. Both of them will give definite values for
N(n) and the first one can be generalised to any number of
dimensions. Thus we obtain a certain preliminary answer to
the second question. But the answer is not final for we generally
get in this way a number N which is too large. Mr. E. Makai
proved that NO(5) = 9, and from our second demonstration, we
obtain N(5) = 21 (from the first a number of the order 21000°).
Thus it is to be seen, that our estimate lies pretty far from
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the true limit No( n). It is notable that N (3) == 3 == 2 + l,
No (4) == 5 == 22+1, .LlVo(5) == 9 == 23 + 1.
We might conjecture therefore that No(n) = 2 n-2 + 1, but the

limits given by our proofs are much larger.
It is desirable to extend the usual definition of convex polygon

to include the cases where three or more consecutive points lie
on a straight line.

FIRST PROOF.

The basis of the first proof is a combinatorial theorem of

Ramsey 1). In the introduction it was proved that from 5 points
it is always possible to select 4 forming a convex quadrangle.
Now it can be easily proved by induction that n points deter-
mine a convex polygon if and only if any 4 points of them form
a convex quadrilateral.

Denote the given points by the numbers 1, 2, 3, ..., N, then

any k-gon of the set of points is represented by a set of k of these
numbers, or as we shall say, by a k-combination. Let us now
suppose each n-gon to be concave, then from what we observed

above we can divide the 4-combinations into two classes (i. e.
into "convex" and "concave" quadrilaterals) such that every
5-combination shall contain at least one "convex" combination
and each n-combination at least one concave one. (We regard
one combination as contained in another, if each element of the
first is also an element of the second.)
From Ramsey’s theorem, it follows that this is impossible for

a sufficiently Îarge N.
Ramsey’s theorem can be stated as follows:
Let k, l, i be given positive integers, k &#x3E; 1; l &#x3E; i. Suppose that

there exist two classes, ce and f3, of i-combinations of m elements
such that each k-combination shall contain at least one combination

from class oc und each l-combination shall contain at least one

combination from class {J. Then for sufficiently great m  mi(k, l)
this is not possible. Ramsey enunciated his theorem in a slightly
different form.

In othei words: if the members of ce had been determined as

above at our discretion and m &#x3E; mi(k, l), then there must be
at least one l-combination with every combination of order i

belonging to class oc.

1) F. P. RAMSEY, Collected papers. On a problem of formal logic, 82-111.

Recently SKOLEM also proved Ramsey’s theorem [Fundamenta Math. 20 (1933),
254-261].
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We give here a new proof of Ramsey’s theorem, which differs
entirely from th e previous ones and gives for mi(k, l ) slightly
smaller limits.

a) If i = 1, the theorem holds for every k and l. For if we

select out of m some determined elements (combinations of order 1 )
as the class ce, so that every k-gon (this shorter denomination
will be given to the combination of order k) must contain at
least one of the oc elements, there are at most (k-l) elenlents
which do not belong to the class (X. Then there must be at least

(m-k+l) elements of ce. If (m-k+l) &#x3E; l, then there must be
an 1-gon of the ce elements and thus

which is evidently false for sufficiently great m.
Suppose then that i &#x3E; 1.

b) The theorem is trivial, if k or 1 equals i. If, for example,
k = i, then it is sufficient to choose m = l.

For k = 1 means that all i-gons aie a combinations and thus
in virtue of m = l there is one polygon (i. e. the 1-gon formed
of all the éléments), whose i-gons are all ce-combinations.

The argument for 1 = i runs similarly.
c) Suppose finally that k &#x3E; i ; and suppose that the theorem

holds for ( i -1) and every and l, further for i, k, l - 1 and
i, k - 1, l. We shall prove that it will hold for i, k, l also and in
virtue of (a) and (b) we may say that the theorem is proved
for all i, k, l.

Suppose then that we are able to carry out the division of
the i-polygons mentioned above. Further let k’ be so great that
if in every 1-gon of k’ elements there is at least one P combination,
then there is one (k-l)-gon all of whose i-gons are P combina-
tions. This choice of k’ is always possible in virtue of the induction-
hypothesis, we have only to choose k’ = mi(k-l, 1).

Similarly we choose l’ so great that if each k-gon of l’ elements
contains at least one oc combination, then there is one (l-1 )-
gon all of whose i-gons are oc combinations.

We then take m larger than k’ and l’; and let

be an arbitrary k’ -gon of the first (n-1 ) elements. By hypothesis
each 1-gon contains at least one fl combination, hence owing to
the choice of k’, A contains one (k -1 )-gon (a , a m , ..., a Mk-1)1 2 

a 
k-l

whose i-gons all belong to the class fl. Since in (a ml, ..., am , n)
30
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there is at least one ce combination, it is clear that this must be
one of the i-gons

In just the same way we may prove by replacing the roles
of k and 1 by k’ and l’and of x by fJ, that if

is an arbitrary l’-gon of the first (n-1) elements, then among
the i-gons

there must be a fl combination.
Thus we can divide the (i-l)-gons of the first (n -1) elements

into classes oc’ and fl’ so that each k’ -gon A shall contain at least
one oc’ combination B and each l’-gon A’ at least one fl’ com-
bination B’. But, by the induction-hypotheses this is impossible
for m &#x3E; mi-l(k’l’) + 1.
By following the induction, it is easy to obtain for mi(k, 1)

the following functional equation;

By this recurrence-formula and the initial values

obtained from (a) and (b) we can calculate every mi(k, l ).
We obtain e. g. easily

The function mentioned in the introduction has the form

Finally, for the special case i = 2, we give a graphotheoretic
formulation of Ramsey’s theorem and present a very simple
proof of it.

THEOREM : I1t an arbitrary graph let the maximum number of

independent points 2 ) be k; if the number of points is N &#x3E; m(k, 1)
then there exists in our graph a complete graph 3) of order l.

2 ) Two points are said to be independent if they are not connected; k points
are independent if every pair is independent.

3) A complete graph is one in which every pair of points is connected.
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PROOF. For 1 = 1, the theorem is trivial for any k, since the
maximum number of independent points is k and if the number
of points is (k+1 ), there must be an edge (complete graph of
order 1).
Now suppose the theorem proved for (l-l) with any k. Then

N-k in

depen dent
.

at least - edges start from one of the independent points.k

Hence if

i. e.,

then, out of the end points of these edges we may select, in

virtue of our induction hypothesis, a complete graph whose
order is at least (l-l). As the points of this graph are connected
with the same point, they form together a complete graph of
order l.

SECOND PROOF.

The foundation of the second proof of our main theorem is
formed partly by geometrical and partly by combinatorial

considerations. We start from some similar problems and we
shall see, that the numerical limits are more accurate then in
the previous proof; they are in some respects exact.

Let us consider the first quarter of the plane, whose points
are determined by coordinates (x, y). We choose n points with
monotonously increasing abscissae 4).

THEOREM : It is always possible to choose at least vin points
with increasing abscissae and either monotonously increasing or
,jnonotonously decreasing ordinates. If two ordinates are equal,
the case may equally be regarded as increasing or decreasing.

Let us denote by f(n, n ) the minimum number of the points
out of which we can select n monotonously increasing or decreas-
ing ordinates.
We assert that

Let us select n monotonously increasing or decreasing points out
of the f(n, n). Let us replace the last point by one of the (2n-l)
new points. Then we shall have once more f(n, n) points, out

4) The same problem was considered independently by Richard Rado.
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of which we can select as before n monotonous points. Now we
replace the last point by one of the new ones and so on. Thus
we obtain 2n points each an endpoint of a monotonous set. Suppose
that among them (n+l) are end points of monotonously increas-
ing sets. Then if y l &#x3E; Yk for 1 &#x3E; k we add Pl to the monotonously
increasing set of Pk and thus, with it, we shall have an increasing
set of (n+l) points. If Yk &#x3E; Yt for every Jc  1, then the (n+1 )
decreasing end-points themselves give the monotonous set of

(n+1) members. If between the 2n points there are at least
(n+l) end-points of monotonous decreasing sets, the proof will
run in just the same way.
But it may happen that, out of the 2n points, just n are the

end-points of increasing sets, and n the end-points of decreasing
sets. Then by the same reasoning, the end-points of the decreasing
sets necessarily increase. But after the last end-point P there is
no point, for its ordinate would be greater or smaller than that
of P. If it is greater, then together with the n end-points it forms
a monotonously increasing (n + 1 ) set and if it is smaller, with the
n points belonging to P, it forms a decreasing set of (n+l)
members. But by the same reasoning the last of the n increasing
end-points Q ought to be also an extreme one and that is evidently
impossible. Thus we may deduce by induction

Similarly let f(i, k) denote the minimum number of points
out of which it is impossible to select either i monotonously in-
creasing or k monotonously decreasing points. We have then

The proof is similar to the previous one.
It is not difficult to see, that this Iimit is exact i. e. we can

give (i-l) (k-1) points such that it is impossible to select
out of them the desired number of monotonously increasing or
decreasing ordinates.
We solve now a similar problem:
P1, P2’ ... are given points on a straight line. Let f 1 ( i, k)

denote the minimum number of points such that proceeding
from left to right we shall be able to select either i points so
that the distances of two neighbouring points monotonously
increase or k points so that the same distances monotonously
decrease. We assert that
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Let the point C bisect the distance A B (A and B being the first
and the last points). If the total number of points is fI (i - l, k ) +
+ f1(i, k-1) - 1, then either the number of points in the first
half is at least f,(i-1, k), or else there are in the second half

at least f, (i, k - 1 ) points. If in the first half there are fi (i - 1, k)
points then either there are among them k points whose distances,
from left to right, monotonously decrease and then the equation
for f 1 ( i, k) is fulfilled, or there must be (i-1) points with in-
creasing distances. By adding the point B, we have i points with
monotonely increasing distances. If in the second interval there
are fl(i, k-1) points, the proof runs in the same way. (The
case, in which two distances are the same, may be classed into
either the increasing or the decreasing sets.)

It is possible to prove that this limit is exact. If the limits

fl(i-l, k) and fl(i, k-l) are exact (i. e. if it is possible to

give [fl(i-l, k) -lJ points so that there are no (i -1 ) in-

creasing nor k decreasing distances) then the limit fl(i, k) is

exact too. For if we choose e. g. [f, (i - 1, k) - 1 ] points in the
0 ... 1 interval, and [f1(i, k-l) - 1] points in the 2 ... 3

interval, then we have [,fl (i, k) - 1 ] points out of which it is

equally impossible to select i points with monotonously increasing
and k points with decreasing distances.
We now tackle the problem of the convex n-gon. If there are

n given points, there is always a straight line which is neither
parallel nor perpendicular to any join of two points. Let this
straight line be e. Now we regard the configuration A1A2A3A4 ...
as convex, if the gradients of the lines A1A2, A2A3, ... decrease
monotonously, and as concave if they increase monotonously. Let
f2(i, k) denote the minimum number of the points such that from
them we may pick out either i sided convex or k-sided concave
configurations. We assert that

We consider the first f2(i-l, k) points. If out of them there
can be taken a concave configuration of k points then the equation
for f2(i, k) is fulfilled. If not, then there is a convex configuration
of (i-1) points. The last point of this convex configuration we
replace by another point. Then we have once more either k
concave points and then the assertion holds, or (i-1) convex
ones. We go on replacing the last point, until we have made
use of all points. Thus we obtain f2(i, k-1) points, each of
which is an end-point of a convex configuration of (i-1)
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elements. Among them, there are either i convex points and then
our assertion is proved, or (k - 1) concave ones. Let the first

of them be Al, the second A2’ Ai is the end-point of a convex
configuration of (i-1) points. Let the neighbour of A, in this
configuration be B. If the gradient of BA, is greater than that of
A1A2, then A2 together with the (i-l) points form a convex
configuration; if the gradient is smaller, then L’ together with
A1A2... . form a concave k-configuration. This proves our

assertion.

The deduction of the recurrence formula may start from the
statement: f2(3, n) ==f2(n, 3) == n (by definition). Thus we

easily obtain

As before we may easily prove that the limit given by (11)
is exact, i. e. it is possible to give 2k-4) points such, that they1-2
contain neither convex nor concave points.

Since by connection of the first and last points, every set of k
convex or concave points determines a convex k-gon it is evident

2k --4) + i] points always contain a convex k-gon.that 
k-2 + 1 points al ways contain a convex -gon.

And as in every convex (2k -1) polygon there is always
either a convex or a concave configuration of k points, it is evident

that it is possible to give ( 2k-4 k 2) points, so that out of them

no convex (2k -1) polygon can be selected. Thus the limit is

also estimated from below.

Professor D. Kônig’s lemma 5) of infinity also gives a proof
of the theorem that if k is a definite number and n sufficiently
great, the n points always contain a convex k-gon. But we thus
obtain a pure existence-proof, which allows no estimation of
the number n. The proof depends on the statement that if M
is an infinite set of points we may select out of it another convex
infinite set of points.

(Received December 7th@ 1934.)

5) D. KôxiG, Ùber eine Schlußweise aus dem Endlichen ins Unendliche

[Acta Szeged 3 (1927), 121-130].


