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with p=v=1, we then have
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On equating coefficients of odd powers of ¢ on both -sides of this
equation, we obtain Mitra’s integral equation,

D§m+1(x) = xjo J ('vy)D’m—H( )d?/ (’I’)’L: 0: l’ 2: )

If. however, we equate coefficients of even powers of ¢, we obtain
the new non-homogeneous integral equation,

D2 (2)— (7'@(@;“)) a:jo Jo(zy) D3 (y)dy (m=0, 1,2, ...).

This integral equation may, of course, be written in the alternative form

D8, (%) = D3,,(0)— mj Jy@y) D)y (m=0,1,2, ..).
0
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ON SOME SEQUENCES OF INTEGERS
Pavn Erpos and PauL TuraANn®*.

Consider a sequence of integers ¢; <a, < ... <N containing no three
terms for which «,—e,=a,—a, t.e. a sequence containing no three
consecutive members of an arithmetic progression. Such sequences we
call 4 sequences belonging to .V, or simply 4 sequences. We consider
those with the maximum number of elements, and denote by r =1#(N)

* Received 6 June, 1936; read 18 June, 1936.
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the number of elements of such maximum sequences. In this paper we
estimate »(N).

Taeorem I. 7(2N)<N 1 N >=8.

Remark. It is interesting to observe that, as we shall see, the theorem
is true for N =4, 5, 6, but not for N =17.

Proof. TFirst we observe that, if @, <@, <<...<a, represents an 4
sequence belonging to N, then

N+l—a, <N+1l—a, ;<..<N+1l—aqa, (1)
is also an A4 sequence.
The same holds for
an—k<a,—k<.. <a,—k, (2)
for any integer k < a,.
Hence, evidently,
rim—+n) Sr(m)+r(n). (3)

We prove Theorem I by induction. Consider first the case N =4. If
we have 7(8) = 5, then, in consequence of (1) and (2), we may suppose that
1 and two other integers less than or equal to 4 occur in the maximum
sequence. Hence the sequence contains either 1,2, 4 or 1, 3,4. Butitis
evident that neither of these sequences leads to 7(8) = 5. Hence 7(8) <4,
and, since 1, 2, 4, 5 is an 4 sequence, 7(8) = 4.

Consider now 7(10). If r(10) = 6, then, in consequence of 7(8) = 4 and
(2), 1, 2, 9, 10 occurs in the sequence. But then 3, 5, 6, and 8 cannot
occur. Thus the only possibility is 1, 2, 4, 7, 9, 10; this is impossible
because it contains 1, 4, 7. Hence 7(10) < 5, and, since 1, 2, 4, 9, 10 is
an 4 sequence, r(10) = 5*.

Now we consider 7(12). Ifr(12) =17, by the above argument 1, 2, 11, 12
occurs in our sequence. In consequence of 7(8) =4 and (2), 4 and 9
must occur, too. Hence the sequence contains 1, 2, 4, 9, 11, 12; but
it cannot contain any other integers. Thus #(12)=6. Since 1, 2, 4, 5,
10, 11, 13, 14 is an A sequence, 7(14) =8 and r(13)="7. In consequence
of (3), we have r(16) < 8, r(18) <9, 7(20) < 10, »(22) < 11.

From these results we now easily deduce the general theorem.

* r(9)=5and r(11) =6, since 1, 2, 4, 8,9 and 1, 2, 4, 8, 9, 11 are A sequences.
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Suppose that the theorem holds for 2N —8. Then, by (3),
r(2N) <r(2N—8)+r(8) < N—844 = N+1,

v.e. the theorem is proved, for we have established it for the special
cases 16, 18, 20, 22.
For sufficiently large N, we have a better estimate by

THEOREM II. For ¢ >0 and N > Ny(e),
r(N) < (§4+) N

First we prove thatr(17)=8. Sincer(14)=8,itisevident that»(17) > 8.
In the case r(17) = 9, the numbers 1 and 17 must occur, since 7(14) = 8.
But then 9 cannot occur, and so, by (2), #(17) <7(8)+7(8)=8. Thus
r(34) <<16. Further, 7(35) <16. For, if (35) > 17, then, by 7(34) < 16,
the integers 1 and 35 must occur; but then 18 cannot oécur, since the
sequence would contain 1, 18, 35. Hence, as previously, 7(35) < 16.
Similarly »(71) <32, ..., r(2¥42-3—1) < 2%1. Hence the result.
By a similar but very much longer argument we find that

7(18) = r(19) = 7(20) = 8.

On the other hand, 7(21)=9, since 1, 3, 4, 8, 9, 16, 18, 19, 21 isan 4
sequence ; further,
' 7(22) =7(23) = 9.

Hence, as previously, we find that, for sufficiently large N > N (e),
7(N) < (§4€) N.
At present this is the best result for (). It is probable that
(V) =o(N).

It may be noted that, from 7(20) = 8, r(41) << 16. On the other hand,
r(41) = 16, since 1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40, 41 is an
A sequence. G. Szekeres has conjectured that r{4(3*+1)} = 2% Thisis
proved* for k=1, 2, 3, 4.

More generally, he has conjectured that, if we denote by 7,(N) the
maximum number of integers less than or equal to N such that no I of

* Tt is easily seen that » {{;(3“—{—])} > 2k; for, if v << 3(3%—1) is any integer not con-
taining the digit 2 in the ternary scale, then the integers x4 1 form an A4 sequence.
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them form an arithmetic progression, then, for any £, and any prime p,

—9)pk
p <('Z7—_—p2)_£l—i-"l) = (p—1)*
An immediate and very interesting consequence of this conjecture
would be that for every k there is an infinity of £ combinations of primes
forming an arithmetic progression.

Another consequence of it would be a new proof of a theorem of van der
Waerden which would give much better limits than any of the previous
proofs. Namely, it would follow from the conjecture that, if we denote hy
N = f(k, 1) the least integer such that, if we split the integers up to N into
l classes, at least one of them contains an arithmetic progression of k
terms, then

flk, Ty < e loal,
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NOTE ON THE THEORY OF SERIES
R. Coorer*.

1. This note examines the relation between two series Xu,, Zv, for
which u,, ~ v, as n— o and one and only one of the series converges. It
is easy to see that. corresponding to any conditionally convergent series
2v,, we can construct a non-convergent series Zu,, for which %, ~v,. It
is sufficient to take

v
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On the other hand, not every non-convergent series whose terms tend
to zero can belong to such a pair of series. An example of this is given by
the series Zn~'; for, if ¢, = n-140(n1), Zv, cannot converge because

L‘“L,vn = logn+-o(log n).
1

In §2 we give proofs of the following tiwvo theorems, each of which gives
a sufficient condition for a non-convergent series to belong to such a pair.
The condition given in Theorem A is also a necessary condition.

* Received 6 February, 1936; read 20 February, 1936; revised 8 June, 1936.



