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with ix = v= 1, we then have

—H-^ j o •/>(*«,) exp (_ i^ g ) 4r

* *('+') j d- 2- - l

that is to say,

m = 0 2 .4 .6 . . . (2m) M=;O
V > n\ /l v '

On equating coefficients of odd powers of ^ on both sides of this
equation, Ave obtain Mitra's integral equation,

#L+i(s) = * f Ji(xy)DL+i(y)dy (m = 0, 1, 2, ...).
Jo

If. however, we equate coefficients of even powers of t, we obtain
the new non-homogeneous integral equation,

/•->m Y(m4- M\ " f*

$Ux) = (—Vjl) ) ~x Jo Ji(xy)Dlm{y)dy (m = 0, 1, 2, ...).

This integral equation may, of course, be written in the alternative form
DIM = E>U0)-x f J1(xy)DlJy)dy (m = 0, 1, 2, ...).

Jo
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ON SOME SEQUENCES OF INTEGERS

PAUL ERDOS and PAUL TUEAN*.

Consider a sequence of integers ax < a2 < ... ^ N containing no three
terms for which ai—al=al—as, i.e. a sequence containing no three
consecutive members of an arithmetic progression. Such sequences we
call A sequences belonging to -V, or simply A sequences. We consider
those with the maximum number of elements, and denote by r = r(N)

* Received 6 June, 1936; read 18 June, 1936.
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the number of elements of such maximum sequences. In this paper we
estimate r(N).

THEOREM I. r(2iV)<iV */ JV>8.

Remark. I t is interesting to observe that, as we shall see, the tlieorem
is true for N = 4, 5, 6, but not for N = 7.

Proof. First we observe that, if ax<a2< ... <ar represents an A
sequence belonging to N, then

a^K ... <N+l-ai (1)

is also an A sequence.

The same holds for

a1—k<a2—k<...<ar—k, (2)

for any integer k<av

Hence, evidently,

r(m-\-n) ^Lr(m)-\-r(n). (3)

We prove Theorem I by induction. Consider first the case N = 4. If
we have r(8) = 5, then, in consequence of (1) and (2), we may suppose that
1 and two other integers less than or equal to 4 occur in the maximum
sequence. Hence the sequence contains either 1, 2, 4 or 1, 3, 4. But it is
evident that neither of these sequences leads to r(8) = 5. Hence r(8) ^ 4,
and, since 1, 2, 4, 5 is an A sequence, r(8) = 4.

Consider now r(10). If r(10) = 6, then, in consequence of r(8) = 4 and
(2), 1, 2, 9, 10 occurs in the sequence. But then 3, 5, 6, and 8 cannot
occur. Thus the only possibility is 1, 2, 4, 7, 9, 10; this is impossible
because it contains 1, 4, 7. Hence r(10) ^ 5, and, since 1, 2, 4'3 9, 10 is
an A sequence, r(10) = 5*.

Now we consider r(12). If r(12) = 7, by the above argument 1, 2, 11, 12
occurs in our sequence. In consequence of r(8) = 4 and (2), 4 and 9
must occur, too. Hence the sequence contains 1, 2, 4, 9, 11, 12; but
it cannot contain any other integers. Thus r(12) = 6. Since 1, 2, 4, 5,
10, 11, 13, 14 is an A sequence, r(14) = 8 and r(13) = 7. In consequence
of (3), we have r(16) < 8, r(18) < 9, r(20) < 10, r(22) < 11.

From these results we now easily deduce the general theorem.

* r(9) = 5 and r( l l ) = 6, since 1, 2, 4, 8, 9 and 1, 2, 4, 8, 9, 11 are A sequences.
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Suppose that the theorem holds for 2JV—8. Then, by (3),

r(2JV)<r(2iV— 8)-fr(8) < iV— 3 + 4 = AT+l,

i.e. the theorem is proved, for we have established it for the special
cases 16, 18, 20, 22.

For sufficiently large N, we have a better estimate by

THEOREM II. For e > 0 and N>N0(e),

First we prove that r (17) = 8. Since r (14) = 8, it is evident that r (17) ^ 8.
In the case r(ll) = 9, the numbers 1 and 17 must occur, since r(14) = 8.
But then 9 cannot occur, and so, by (2), r(17) <r(8)+r(8) = 8. Thus
r(34)<16. Further, r(35) < 16. For, if r(35) > 17, then, by r(34) < 16,
the integers 1 and 35 must occur; but then 18 cannot occur, since the
sequence would contain 1, 18, 35. Hence, as previously, r(35) ^ 16.

Similarly r(71)<32, ..., r (2 & +2 f c - 3 - l )< 2k~1. Hence the result.
By a similar but very much longer argument we find that

r(18) = r(19) = r(20) = 8.

On the other hand, r(21)== 9, since 1. 3, 4, 8, 9, 16, 18, 19, 21 is an A
sequence; further,

r(22) = r(23) = 9.

Hence, as previously, we find that, for sufficiently large N>N(e),

At present this is the best result for r(N). It is probable that

r(N) = o(N).

It may be noted that, from r(20) = 8, r(41) < 16. On the other hand,
r(41) = 16, since 1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40, 41 is an
A sequence. G. Szekeres has conjectured that »'{|(3fc+l)} = 2fc. This is
proved* for k=l, 2, 3, 4.

More generally, he has conjectured that, if we denote by r,(N) the
maximum number of integers less than or equal to N such that no I of

* It is easily seen that r {£(3*'+])} > 2*; for, if u < £(3*— 1) is any integer not con-
taining the digit 2 in the ternary scale, then the integers u-\-l form an A sequence.
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them form an arithmetic progression, then, for any Jc, and any prime p,

An immediate and very interesting consequence of this conjecture
would be that for every k there is an infinity of k combinations of primes
forming an arithmetic progression.

Another consequence of it would be a new proof of a theorem of van der
Waerden which would give much better limits than any of the previous
proofs. Namely, it would follow from the conjecture that, if we denote by
N = f(k, I) the least integer such that, if we split the integers up to N into
I classes, at least one of them contains an arithmetic progression of k
terms, then
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NOTE ON THE THEORY OF SERIES

R. COOPER*.

1. This note examines the relation between two series Sw,,5 ^vn for
which un ~ vn as n-> oo and one and only one of the series converges. It
is easy to see that, corresponding to any conditionally convergent series
Z«.,,, we can construct a non-convergent series Sw,, for which u)hr*~>vn. I t
is sufficient to take

On the other hand, not every non-convergent series whose terms tend
to zero can belong to such a pair of series. An example of this is given bj'
the series Ew1; for, if v.tl = n~1-\-o{n~x), Sv,t cannot converge because

In § 2 we give proofs of the following two theorems, each of which gives
a sufficient condition for a non-convergent series to belong to such a pair.
The condition given in Theorem A is also a necessary condition.

* Received G February, 1936; read 20 February, 1936; revised 8 June, 1936.


