with $\mu=\nu=1$, we then have

$$
\begin{aligned}
& \frac{x}{\sqrt{ }\left(1-t^{2}\right)} \int_{0}^{\infty} J_{1}(x y) \exp \left(-\frac{1}{2} y^{2} \frac{1-t}{1+t}\right) d y \\
&=\frac{x}{\sqrt{ }\left(1-t^{2}\right)} \frac{x(1+t)}{2(1-t)} F_{1}\left(1 ; 2 ;-\frac{1}{2} x^{2} \frac{1+t}{1-t}\right) \\
&=\frac{1}{\sqrt{ }\left(1-t^{2}\right)}\left[1-\exp \left(-\frac{1}{2} x^{2} \frac{1+t}{1-t}\right)\right],
\end{aligned}
$$

that is to say,

$$
\begin{aligned}
x \int_{0}^{\infty} J_{1}(x y)\left(\sum_{n=0}^{\infty}\right. & \left.\frac{t^{n}}{n!} D_{n}{ }^{2}(y)\right) d y \\
& =\sum_{m=0}^{\infty} \frac{1.3 .5 \ldots(2 m-1)}{2.4 .6 \ldots(2 m)} t^{2 m}-\sum_{n=0}^{\infty}(-)^{n} \frac{t^{n}}{n!} D_{n}{ }^{2}(x) .
\end{aligned}
$$

On equating coefficients of odd powers of t on both sides of this equation, we obtain Mitra's integral equation,

$$
D_{I_{m+1}}^{2}(x)=x \int_{0}^{\infty} J_{1}(x y) D_{2_{m+1}}^{2}(y) d y \quad(m=0,1,2, \ldots) .
$$

If, however, we equate coefficients of even powers of t, we obtain the new non-homogeneous integral equation,

$$
D_{2 m}^{2}(x)=\left(\frac{2^{m} \Gamma\left(m+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}\right)^{2}-x \int_{0}^{\infty} J_{1}(x y) D_{2 m}^{2}(y) d y \quad(m=0,1,2, \ldots)
$$

This integral equation may, of course, be written in the alternative form

$$
D_{2_{m}}^{2}(x)=D_{2_{m}}^{2}(0)-x \int_{0}^{\infty} J_{1}(x y) D_{2 m}^{2}(y) d y \quad(m=0,1,2, \ldots)
$$

The University, Birmingham.

ON SOME SEQUENCES OF INTEGERS

Pacl Erdös and Paul Turán*.
Consider a sequence of integers $a_{1}<a_{2}<\ldots \leqslant N$ containing no three terms for which $a_{i}-a_{l}=a_{l}-a_{s}$, i.e. a sequence containing no three consecutive members of an arithmetic progression. Such sequences we call A sequences belonging to N, or simply A sequences. We consider those with the maximum number of elements, and denote by $r=i(N)$
the number of elements of such maximum sequences. In this paper we estimate $r(N)$.

Theorem I. $\quad r(2 N) \leqslant N$ if $N \geqslant 8$.
Remark. It is interesting to observe that, as we shall see, the theorem is true for $N=4,5,6$, but not for $N=7$.

Proof. First we observe that, if $a_{1}<a_{2}<\ldots<a_{r}$ represents an A sequence belonging to N, then

$$
\begin{equation*}
N+1-a_{r}<N+1-a_{r-1}<\ldots<N+1-a_{1} \tag{1}
\end{equation*}
$$

is also an A sequence.
The same holds for

$$
\begin{equation*}
a_{1}-k<a_{2}-k<\ldots<a_{r}-k \tag{2}
\end{equation*}
$$

for any integer $k<a_{1}$.
Hence, evidently,

$$
\begin{equation*}
r(m+n) \leqslant r(m)+r(n) . \tag{3}
\end{equation*}
$$

We prove Theorem I by induction. Consider first the case $N=4$. If we have $r(8)=5$, then, in consequence of (1) and (2), we may suppose that 1 and two other integers less than or equal to 4 occur in the maximum sequence. Hence the sequence contains either $1,2,4$ or $1,3,4$. But it is evident that neither of these sequences leads to $r(8)=5$. Hence $r(8) \leqslant 4$, and, since $1,2,4,5$ is an A sequence, $r(8)=4$.

Consider now $r(10)$. If $r(10)=6$, then, in consequence of $r(8)=4$ and (2), $1,2,9,10$ occurs in the sequence. But then $3,5,6$, and 8 cannot occur. Thus the only possibility is $1,2,4,7,9,10$; this is impossible because it contains $1,4,7$. Hence $r(10) \leqslant 5$, and, since $1,2,4,9,10$ is an A sequence, $r(10)=5^{*}$.

Now we consider $r(12)$. If $r(12)=7$, by the above argument $1,2,11,12$ occurs in our sequence. In consequence of $r(8)=4$ and (2), 4 and 9 must occur, too. Hence the sequence contains 1, 2, 4, 9, 11, 12; but it cannot contain any other integers. Thus $r(12)=6$. Since $1,2,4,5$, $10,11,13,14$ is an A sequence, $r(14)=8$ and $r(13)=7$. In consequence of (3), we have $r(16) \leqslant 8, r(18) \leqslant 9, r(20) \leqslant 10, r(22) \leqslant 11$.

From these results we now easily deduce the general theorem.

$$
{ }^{*} r(9)=5 \text { and } r(11)=6, \text { since } 1,2,4,8,9 \text { and } 1,2,4,8,9,11 \text { are } A \text { sequences. }
$$

Suppose that the theorem holds for $2 N-8$. Then, by (3),

$$
r(2 N) \leqslant r(2 N-8)+r(8)<N-3+4=N+1,
$$

i.e. the theorem is proved, for we have established it for the special cases 16, 18, 20, 22.

For sufficiently large N, we have a better estimate by
Theorem II. For $\epsilon>0$ and $N>N_{0}(\epsilon)$,

$$
r(N)<\left(\frac{4}{5}+\epsilon\right) N .
$$

First we prove that $r(17)=8$. Since $r(14)=8$, it is evident that $r(17) \geqslant 8$. In the case $r(17)=9$, the numbers 1 and 17 must occur, since $r(14)=8$. But then 9 cannot occur, and so, by (2), $r(17) \leqslant r(8)+r(8)=8$. Thus $r(34) \leqslant 16$. Further, $r(35) \leqslant 16$. For, if $r(35) \geqslant 17$, then, by $r(34) \leqslant 16$, the integers 1 and 35 must occur; but then 18 cannot occur, since the sequence would contain $1,18,35$. Hence, as previously, $r(35) \leqslant 16$.

Similarly $r(71) \leqslant 32, \ldots, r\left(2^{k}+2^{k-3}-1\right) \leqslant 2^{k-1}$. Hence the result.
By a similar but very much longer argument we find that

$$
r(18)=r(19)=r(20)=8 .
$$

On the other hand, $r(21)=9$, since $1,3,4,8,9,16,18,19,21$ is an A sequence ; further,

$$
r(22)=r(23)=9 .
$$

Hence, as previously, we find that, for sufficiently large $N>N(\epsilon)$,

$$
r(N)<\left(\frac{3}{8}+\epsilon\right) N .
$$

At present this is the best result for $r(N)$. It is probable that

$$
r(N)=o(N) .
$$

It may be noted that, from $r(20)=8, r(41) \leqslant 16$. On the other hand, $r(41)=16$, since $1,2,4,5,10,11,13,14,28,29,31,32,37,38,40,41$ is an A sequence. G. Szekeres has conjectured that $r\left\{\frac{1}{2}\left(3^{k}+1\right)\right\}=2^{k}$. This is proved* for $k=1,2,3,4$.

More generally, he has conjectured that, if we denote by $r_{l}(N)$ the maximum number of integers less than or equal to N such that no l of

[^0]them form an arithmetic progression, then, for any k, and any prime p,
$$
r_{p}\left(\frac{(p-2) p^{k}+1}{p-1}\right)=(p-1)^{k}
$$

An immediate and very interesting consequence of this conjecture would be that for every k there is an infinity of k combinations of primes forming an arithmetic progression.

Another consequence of it would be a new proof of a theorem of van der Waerden which would give much better limits than any of the previous proofs. Namely, it would follow from the conjecture that, if we denote by $N=f(k, l)$ the least integer such that, if we split the integers up to N into l classes, at least one of them contains an arithmetic progression of k terms, then

$$
f(k, l)<l_{i}^{c l i \log l}
$$

The University, Manchester;
Budapest VI, Andrássy út 50 .

NOTE ON THE THEORY OF SERIES

R. C'OOPER*.

1. This note examines the relation between two series $\Sigma u_{n}, \Sigma v_{n}$ for which $u_{n} \sim v_{n}$ as $n \rightarrow \infty$ and one and only one of the series converges. It is easy to see that, corresponding to any conditionally convergent series Σv_{n}, we can construct a non-convergent series Σu_{n} for which $u_{n} \sim v_{n}$. It is sufficient to take

$$
u_{n}=v_{n}+\frac{\left|v_{n}\right|}{\left|v_{1}\right|+\left|v_{2}\right|+\ldots+\left|v_{n}\right|} .
$$

On the other hand, not every non-convergent series whose terms tend to zero can belong to such a pair of series. An example of this is given by the series Σn^{-1}; for, if $v_{n}=n^{-1}+o\left(n^{-1}\right), \Sigma v_{n}$ cannot converge because

$$
\sum_{1}^{n} v_{n}=\log n+o(\log n) .
$$

In $\S 2$ we give proofs of the following two theorems, each of which gives a sufficient condition for a non-convergent series to belong to such a pair. The condition given in Theorem A is also a necessary condition.

[^1]
[^0]: * It is easily seen that $r\left\{\frac{1}{2}\left(3^{k}+1\right)\right\} \geqslant \underline{\underline{2}}^{k}$; for, if $u \leqslant \frac{1}{2}\left(3^{k}-1\right)$ is any integer not containing the digit 2 in the ternary scale, then the integers $u+1$ form an A sequence.

[^1]: * Received 6 February, 1936; read 20 February, 1936; revised 8 June, 1936.

