Excerpt from

Purely Combinatorial Proofs of Van Der Waerden-Type Theorems by William Gasarch and Andy Parrish

Lemma 0.0.1 For all k, s, c, there exists $U=U(k, s, c)$ such that for every c-coloring $\chi:[U] \rightarrow[c]$ there exists a, d such that

$$
\chi(a)=\chi(a+d)=\cdots=\chi(a+(k-1) d)=\chi(s d)
$$

Proof: We prove this by induction on c. Clearly, for all k, s,

$$
U(k, s, 1)=\max \{k, s\} .
$$

We assume $U(k, s, c-1)$ exists and show that $U(k, s, c)$ exists. We will show that

$$
U(k, s, c) \leq W((k-1) s U(k, s, c-1)+1, c) .
$$

Let χ be a coloring of $[W((k-1) s U(k, s, c-1)+1, c)]$. By the definition of W there exists a, d such that

$$
\chi(a)=\chi(a+d)=\cdots=\chi(a+(k-1) s U(k, s, c-1) d) .
$$

Assume the color is RED. There are several cases.
Case 1: If $s d$ is RED then since $a, a+d, \ldots, a+(k-1) d$ are all RED, we are done.
Case 2: If $2 s d$ is REDthen since. $a, a+2 d, a+4 d, \ldots, a+2(k-1) d$ are all RED, we are done.

Case $\mathbf{U}(\mathbf{k}, \mathbf{s}, \mathbf{c}-\mathbf{1})$: If $U(k, s, c-1) s d$ is REDthen since
$a, a+U(k, s, c-1) d, a+2 U(k, s, c-1) d, \ldots, a+(k-1) U(k, s, c-1) d$ are all RED, we are done.
Case $\mathbf{U}(\mathbf{k}, \mathbf{s}, \mathbf{c}-\mathbf{1}) \mathbf{s d}+\mathbf{1}$: None of the above cases happen. Hence
$s d, 2 s d, 3 s d, \ldots, U(k, s, c-1) s d$
are all NOT RED.
Consider the coloring $\chi^{\prime}:[U(k, s, c-1)] \rightarrow[c-1]$ defined by

$$
\chi^{\prime}(x)=\chi(x s d)
$$

The KEY is that NONE of these will be colored REDso there are only $c-1$ colors. By the inductive hypothesis there exists a^{\prime}, d^{\prime} such that

$$
\chi^{\prime}\left(a^{\prime}\right)=\chi^{\prime}\left(a^{\prime}+d^{\prime}\right)=\cdots=\chi^{\prime}\left(a^{\prime}+(k-1) d^{\prime}\right)=\chi^{\prime}\left(s d^{\prime}\right)
$$

so

$$
\chi\left(a^{\prime} s d\right)=\chi\left(a^{\prime} s d+d^{\prime} s d\right)=\cdots=\chi\left(a^{\prime} s d+(k-1) d^{\prime} s d\right)=\chi\left(s d^{\prime} s d\right)
$$

Let $A=a^{\prime} s d$ and $D=d^{\prime} s d$. Then

$$
\chi(A)=\chi(A+D)=\cdots=\chi(A+(k-1) D=\chi(s D) .
$$

I

