Lemma 0.0.1 For all \(k, s, c \), there exists \(U = U(k, s, c) \) such that for every \(c \)-coloring \(\chi : [U] \to [c] \) there exists \(a, d \) such that

\[
\chi(a) = \chi(a + d) = \cdots = \chi(a + (k - 1)d) = \chi(sd)
\]

Proof: We prove this by induction on \(c \). Clearly, for all \(k, s \),

\[
U(k, s, 1) = \max\{k, s\}.
\]

We assume \(U(k, s, c - 1) \) exists and show that \(U(k, s, c) \) exists. We will show that

\[
U(k, s, c) \leq W((k - 1)sU(k, s, c - 1) + 1, c).
\]

Let \(\chi \) be a coloring of \([W((k - 1)sU(k, s, c - 1) + 1, c)] \). By the definition of \(W \) there exists \(a, d \) such that

\[
\chi(a) = \chi(a + d) = \cdots = \chi(a + (k - 1)sU(k, s, c - 1)d).
\]

Assume the color is RED. There are several cases.

Case 1: If \(sd \) is RED then since \(a, a + d, \ldots, a + (k - 1)d \) are all RED, we are done.

Case 2: If \(2sd \) is RED then since \(a, a + 2d, a + 4d, \ldots, a + 2(k - 1)d \) are all RED, we are done.

\vdots

Case \(U(k, s, c - 1)sd \): If \(U(k, s, c - 1)sd \) is RED then since

\[
a, a + U(k, s, c - 1)d, a + 2U(k, s, c - 1)d, \ldots, a + (k - 1)U(k, s, c - 1)d
\]

are all RED, we are done.

Case \(U(k, s, c - 1)sd + 1 \): None of the above cases happen. Hence

\[
sd, 2sd, 3sd, \ldots, U(k, s, c - 1)sd
\]

are all NOT RED.

Consider the coloring \(\chi' : [U(k, s, c - 1)] \to [c - 1] \) defined by

\[
\chi'(x) = \chi(xs)\text{.}
\]
The KEY is that NONE of these will be colored RED so there are only \(c - 1 \) colors. By the inductive hypothesis there exists \(a', d' \) such that

\[
\chi'(a') = \chi'(a' + d') = \cdots = \chi'(a' + (k - 1)d') = \chi'(sd')
\]

so

\[
\chi(a'sd) = \chi(a'sd + d'sd) = \cdots = \chi(a'sd + (k - 1)d'sd) = \chi(sd'sd)
\]

Let \(A = a'sd \) and \(D = d'sd \). Then

\[
\chi(A) = \chi(A + D) = \cdots = \chi(A + (k - 1)D) = \chi(sD).
\]