SIAM J. Coneet
Vol 4. No. 4. December 1978

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY*

SHIMON EVENt anp R. ENDRE TARJANG

Abstract. An algorithm of Dinic for finding the maximum flow in a network is described. It is
then shown that if the vertex capacities are all equal to one, the algorithm requires at most O} VIV ED
time, and if the edge capacities are all equal to one, the algorithm requires at most O(|V|** - |E]) time.

Also, these bounds are tight for Dinic’s algorithm.
These results are used to test the vertex connectivity of a graph in O V|'?-1E?) time and the
edge connectivity in O V]>' -|E]) time.

Key words. Dinic’s algorithm, maximum flow, connectivity, vertex connectivity, edge connec-
tivity

1. Network flow. Let G(V'. E) be a finite directed graph, where V is the set of
vertices and E is the set of edges. Each edge e is assigned a capacity c(e) = 0.
One of the vertices, s, is called the source, and another, ¢, is called the sink. We seek
a flow function f(e) on the edges such that for every e, c(e) = f(e) = 0 and such
that the total flow which enters a vertex, other than s or ¢, will equal the total
flow which leaves the vertex. Of all such flows, we want one for which the net total
flow which emanates from s is maximum.

This well-known network flow problem [1] was recently reexamined. A
solutionin O(n®) steps, where nis the number of vertices, was produced by Edmonds
and Karp [2] in 1969. A solution in O(/V|?* - |E]) steps was published in Russian by
Dinic [3] in 1970.

In this section we present a solution in O(|V|? - |E|), essentially the same as
Dinic’s. (This version was discovered independently by S. Even and J. Hopcroft.)

The algorithm runs in phases, at most | V| — 1 in number. We start with zero
flow: that is, f(e) = O for every e € E. In each phase, the flow is increased. New
phases are applied until no increase is possible. At that point, the proof of maxi-
mality is the same as that of Ford and Fulkerson [1], and it will not be repeated
here. However, the algorithm up to that point is not a restriction of the freedom
allowed by the Ford and Fulkerson algorithm—as is the case with the Edmonds
and Karp algorithm. The computation within each phase is through a different
method of labeling and path finding.

Assume that we have a present flow f(e). An edge is usable in the forward
directionif f(e) < c{e},and it is usable in the backward direction iff(e) > 0. Clearly,
an edge may be usable in both directions.

Each phase starts with a breadth-first search from s. That 1s, we start by label-
ing s with 0: i.e, A(s) = 0. Next, we label with ! all unlabeled vertices which are
reachable from s via a single usable edge, where the usable direction is from s to

* Received by the editors June 27, 1974, and in revised form November 15, 1974.

t Computer Science Department, Technion-Israel Institute of Technology, Haifa, Israel. On
leave of absence from the Department of Applied Mathematics, Weizmann Institute of Science, Rehovot.
Israel. Parts of this work were completed during the summers of 1972 and 1973 while he visited the
Department of Computer Science, Cornell University, Ithaca, New York.

1 Computer Science Division, University of California at Berkeley, Berkeley, California 94720.
The work of this author was supported in part by the National Science Foundation under Grant
NSF-GJ-35604X. and by a Miller Research Feltowship.

507

508 SHIMON EVEN AND R. ENDRE TARJAN

them. This action is called scanning s. We scan the vertices in the order they are
labeled ; that is, first-labeled, first-scanned. When v is scanned, all unlabeled
vertices reachable from v are labeled A(v) + 1. Once ¢ is labeled while scanning,
say, w, we continue scanning all labeled but unscanned vertices v for which A(v)
= A(w), and terminate the breadth-first search once we reach a vertex v, waiting
to be scanned, for which A(v) > A(w).

Itis easy to see that this is nothing but the well-known algorithm {4] for finding
a shortest path from s to t when length is measured by the number of edges on the
path. Edges are used only in a usable direction, and every shortest path indicates
an augmenting path for increasing the flow.

As we conduct the breadth-first search, we prepare a copy of all vertices and
edges traced. For every vertex v, we keep a list of the edges which are usable from
v to vertices which are labeled A(v) + 1. The total number of steps required for this
is O(|E}) if the data structure of the graph is originally by lists of adjacent edges
for each vertex. Let us call the newly prepared structure the auxiliary graph. All
paths from s to ¢ in the auxiliary graph are of length A(f) edges.

Now we use the auxiliary graph to trace flow augmenting paths, from s to ¢.
These paths are found by depth-first search [5], [6]. We start tracing from s.
move through a usable edge to a vertex labeled 1, move from there to a vertex
labeled 2, etc. If we reach ¢, we have an augmenting path, and we push through it
as much flow as is possible. All edges along the path which cease to be usable (in
the direction used) due to this change in the flow are erased from the auxiliary
graph, and a new depth-first search is started. Clearly, each time an augmenting
path is used, at least one edge 1s removed from the auxiliary graph. (Such an edge
is called a bottleneck of the path.) If the depth-first search ends in a dead-end,
namely, a vertex v from which no usable edge leads toa vertex whose labelis A(v) + 1,
then we retrace to the vertex preceding v on the path and erase the last edge from
the path and from the auxiliary graph. We continue the search from there. If
we cannot proceed from s the phase is over.

Finding one successful path takes O(A(t)) steps, and in the case of failure
(when we retrace), the number of steps cannot exceed O(A(1)). In either case, at
least one edge is erased. Thus the total number of steps in tracing paths during
one phase is bounded by O(V| -|E}). 1t follows that each phase cannot take more
than O(V| - |El) steps. We shall show that the number of phases is bounded by
[V| — 1, and therefore the whole algorithm does not take more than O(V|* - |E]).

Each auxiliary graph, when first constructed, describes all shortest augmenting
paths for the present f(e). It has the property that there is no usable edge which
leads, in a usable direction, from a vertex v to a vertex whose label is higher than
A(v) + 1. The changes in the flow performed by pushing flow through a shortest
augmenting path may create a new usable direction for some of its edges, but these
directions are from some v to a vertex labeled A(v) — 1. Thus the property remains
valid through all the changes during the phase. It follows that at the end of the
phase, a shortest augmenting path is of length higher than A(t). Thus, from phase
to phase, A(t) increases, and therefore the number of phases is bounded by | V| — L.

In the last phase, the labeling does not reach ¢, and the proof of maximality
(which brings up the max-flow min-cut theorem) is identical with that of Ford and

Fulkerson {1].

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY 509

2. Zero-one network flow. Consider now a network flow problem. as above.
except that for all e€ E, c(e) = 1. (One should realize that even if for all ee E,
c(e) 1s integral, not necessarily 1, the algorithm described above will never intro-
duce fractions.") It follows that for all flow functions along the way and for every
e, f(e) is either zero or one.

When we trace an augmenting path, the increase in the flow through itisexactly
I, and all edges used in it are erased from the auxiliary graph ; that is, each edge,
when used. is a bottleneck. Also, each time we backtrack one edge, it is erased.
It follows that the number of steps per phase is at most O(E]). and the total number
of steps the algorithm requires is bounded by O(| V| - |E}).

Another bound, O(E|*"?), which is better for sparse graphs can be proved,
but we have to prepare a few tools first.

Let G(V, E) be a network with integral edge capacities c(e). Assume the maxi-
mum total flow from s to t is M. Also, assume that through Dinic’s algorithm
(or any other algorithm which does not introduce fractions), the flow has been
increased from zero to a present flow function f, and the present total flow from
stotis F. Define now the network G(V, E) with capacities &(e) as follows:

(i) If ee E and f(e) < c(e), then e € E and &(e) = cle) — f(e).

(1) If e E and f(e) > 0 then ¢ € E, where ¢’ connects between the same two

vertices as e, but in the reverse direction, and &e') = f(e).
Clearly, each edge of G generates at least one edge in G, and if 0 < f(e) < c(e),
e generates two edges. However, in the case that c(e) = 1 for every edge e, each
edge generates exactly one edge in G, since f(e) can be either 0 or 1.

We shall use the following notation: (S; S), is a cut separating s from ¢ in G ;
thatis, SUS = V,SNS =, seS, teSand (S:3)is the set of edges in G which
lead from a vertex in S to a vertex in §.

LEMMA 1. The maximum flow in G is M — F.

Proof. The definition of G implies that

Y day= Y (da)-f@)+ Y fle),

ae(S;8)é ae(S;8)c ee(S;S)G
However,
F= Y f@—- Y fl),
ae(S;8)G ee{§5;S)G
Thus

2 da)= Y ca)-F,
ae(S;8)é ae(S;8)g

This implies that a minimum cut of G corresponds to a minimum cut of G (namely,
is defined by the same S). By the max-flow min-cut theorem, the value of the mini-
mum cut of G is M. Thus the value of a minimum cut in G is M — F. Again, by
the max-flow min-cut theorem, the maximum flow in Gis M — F. Q.E.D.

LEMMA 2. Let G(V, E) be a network in which c(e) = 1 for every e e E. Assume
the maximum flow from s to t is M. The distance from s to t when the flow is zero
everywhere is at most |E|/M.

' This holds for all “‘reasonable™ algorithms for network flow problems.

510 SHIMON EVEN AND R. ENDRE TARJAN

Proof. Let V, = {v|v is at distance i from s} . Here the distances are with zero
flow and V; corresponds to the set of vertices on the ith level of the first phase
of Dinic’s algorithm. Let I be the distance from s to t. The set of edges from ¥, to
V., is a cut, and therefore the number of edges between V, and V.| is at least

M. Thus
I-M < |E|. Q.E.D.

THEOREM 1. For networks with unit edge capacities, Dinic’s algorithm requires
at most O(E*?) steps.

Proof- Il M < |E|"*, then the number of phases is bounded by |E]'"?, and the
result follows. Otherwise. consider the phase during which the flow reaches the
value M — |E]''2. The value of the flow, F, when the auxiliary graph for this phase
is constructed is less than M — |E|"2. However, this auxiliary graph is identical
with the initial auxiliary graph for the network G. G still has unit edge capacities,
and by Lemma ! its maximum flow is

M=M—F>M-—(M—|E"?)=|E'.
Thus, by Lemma 2. the length, /. of a shortest augmenting path satisfies

zg@qa”l.

Thus the number of phases up to this point is at most |E]'/? — 1, and since the
number of phases to completion is at most |E|'/?, the total number of phases is at
most 2|E|V2. QE.D.

A network is of type | if it satisfies the following conditions :

(i) All (edge) capacities are equal to 1.

(i) There are no parallel edges; that is, an edge is identified by its start and

end vertices.

LeMMA 3. Let G(V, E} be a network of type 1, with maximum flow M from s to .
The distance from s to t when the flow is zero everywhere is at most 2| Vl/fﬁ.

Proof. Let ¥, and | be as in the proof of Lemma 2. Since the network is of
type 1, we have |V} - |V, | = M. Thus, forall 0 < i < [, either

Mz M or |V, lz /M.

Since Y !_ IV] < |V, we have
[+1
[_TJ VM =V,

and I £ 2|V|/\/M. QED.
THEOREM 2. For networks of type 1, Dinic’s algorithm requires at most O(| V{*/3
- |E]| steps.

Proof. The proof is similar to that of Theorem 1:if M < |V|?3, the result
follows immediately. Let F be the flow when the auxiliary graph for the phase
during which the flow reaches the value M — |V]*? is constructed. Again, this
auxiliary graph is identical to the initial auxiliary graph for the network G. G may
not be of type I since it may have parallel edges, but it can have at most two

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY 511

parallel edges from one vertex to another.? By Lemma 1, M > {V}*/3. By a variation
of Lemma 3, the length [of a shortest augmenting path satisfies

2\/“/] ﬁ !V|2/3

‘V 2/3

Thus the number of phases up to this point is at most O(| V{*?) and since the number
of phases to completion is at most [V|*>, the total number of phases is at most
o(Vv|**. QED.

In certain applications, we need upper bounds on the flow through vertices.
This restriction can be translated to bounds on the flow through edges as follows:
each vertex v which has a vertex capacity ¢(v) is split into two vertices, " and ¢”.
which have no explicit upper bound on the flow through them; a new edge e
connects from v’ to v” and c(e) = c(v); all edges which formerly led to v now lead
to v', and all edges which emanated from v now emanate from v”. Clearly, the new
edge e and its capacity implicitly specify the upper bound on the flow through v

A network is of rype 2 if all (edge) capacities are equal to 1 and every vertex v
other than s or ¢ either has a single edge emanating from it or has a single edge
entering it.

One important source of such networks is the case of networks with vertex
unit capacities for all vertices other than the source and the sink, which were
translated into edge capacities as above. Even if the original network had no edge
capacities (), all edge flows (assuming no edges go directly from s to 1) are im-
plicitly bounded by 1.

LEMMA 4. Let G(V, E) be a network of type 2 with maximum flow M fromstot.
The distance from s to t when the flow is zero everywhere is at most (|V| — 2)/M + 1.

Proof. The structure of G implies that a flow in G can be decomposed into
vertex-disjoint directed paths from s to ¢.> The number of these paths is equal to
the value of the flow. Assume we have a flow function f which achieves M. Let /
be the length of a shortest path among the paths implied by f. Thus each path uses
at least | — 1 intermediate vertices. We have

M-(I-D<|V] -2 QED.

LEMMA S. If G is a network of type 2 and the present flow function is f. then G
is also of type 2.

Proof. If there is no flow through v (per f), then v still satisfies the condition
that there is a single edge entering it or a single edge emanating from it. If the
flow going through vis |, assume it enters via e,, and leaves via e, In G both these
edges do not appear, but each gives rise to an edge in the reverse direction. The
other edges of G which are incident to v remain intact in G. Thus the number of
incoming edges and the number of outgoing edges of v did not change. Q.E.D.

2 In G, we may have antiparallel edges; that is e .and e, where both connect between the same
two vertices but in opposite directions. One of them may stay in G while the other gives rise to an edge
which is paraliel to the first,

3 Namely, no two paths share a vertex except s and ¢. In addition, the flow may imply directed
cycles which are of no interest to us.

512 SHIMON EVEN AND R. ENDRE TARJAN

THEOREM 3. For a network of type 2. Dinic’s algorithm requires at most
O(|V}''2 - |E|) steps.

Proof. 1f M < |V|"/?, then the number of phases is bounded by |V'|'/*, and
the result follows. Otherwise, consider the phase during which the flow reaches the
value M — |V|'%. Thus the value of the flow. F, when the auxiliary graph for this
phase is constructed is less than M — [V['"?. However. this auxiliary graph is
identical to the initial auxiliary graph for the network G. By Lemma 5, G is also
of type 2. By Lemma 1, the maximum flow in G is greater than {V|'?. By Lemma 4.
the length. I. of a shortest augmenting path satisfies
V) -2
Thus the number of phases up to this point is at most O V{'’?). Since the number
of phases to completion is at most |¥|"?, the total number of phases is at most
o(v1'?. QED. '

3. Applications. We want to point out two areas of applications of the
results of the previous sections. They are:

(1) matching in the bipartite graph:

(1) connectivity of a graph.

The best known algorithm for finding a maximum matching in a bipartite
graph is that of Hopcroft and Karp [7]. Their algorithm takes at most O(n*®)
steps;itisa variant of the Hungarian method and is very close to Dinic’s algorithm,
in spite of the fact that they do not use the network-flow formulation. In fact, we
have borrowed the idea for the bounds of the previous section from them. However,
their result can be viewed as a special case of Theorem 3. One can use the network-
flow approach to solve the maximum matching in the bipartite graph {1}, and
the network is of type 2.

In the remainder of this section we shall discuss the testing of connectivity
in a graph.

Let G(V, E) be a finite undirected graph. We assume that G has no self-loops.
A set of vertices, S, is called an (a, b) vertex separator if {a,b; < V — S and every
path connecting a and b passes through at least one vertex of S. Let N(a, b) be the
least cardinality of an (a, b) vertex separator, assuming one exists.* It is a theorem
that N(a, b) is equal to the maximum number of vertex disjoint paths connecting
a with b. This theorem is well known and is one of the variations of Menger’s
theorem [8]. It is not only reminiscent of the max-flow min-cut theorem, but in
fact can be proved by it. Dantzig and Fulkerson [9] pointed out this relationship.
and their proof offers an algorithm to determine N(a, b). This is done as follows:

Construct a directed network flow graph G(V, E), where V= V and E is a
set of directed edges ; for each e € E, we have ¢’ and e” in E, where ¢’ and e” connect
between the two end vertices of ¢ and are directed in opposite directions. Each ¢,
other than a and b, has vertex capacity 1. These vertex capacities can now be trans-
lated to edge capacities, as was pointed out in the previous section. The maximum
flow in this network is equal to N(a, b). This last network is of type 2, and therefore
Dinic’s algorithm achieves thisresult inat most O(V|'/? - | El)steps.(See Theorem 3).

I < 1= 0(V]'Y.

* Clearly, if a and b are connected by an edge, then no (g, b) vertex separator exists.

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY

wn
(8]

The vertex-connectivity, c. of G is defined in the following way:
(i) If G is completely connected,’ then ¢ = (Vi — 1.

() If G is not completely connected. then ¢ = min, , N(a. b).

(If G is not completely connected, then the minimum value of P(a, b), where P(a, b)
is the maximum number of vertex disjoint paths connecting a and b, will be equal
to min, , N(a, b), in spite of the fact that N(a, b} is only defined for pairs which are
not connected by an edge.) '

The obvious way, then, to find ¢ if G is not completely connected is to compute
N{a, b) for all pairs a, b which are not connected by an edge. This leads to at most
O(1V]*) computations, and each requires at most O(1¥|'2 .|E|) steps. Hence at
most O(1V|? - |E]) steps. .

However. a slightly better bound can be proven.

LEMMA 6. The (edge or vertex) connectivity, ¢, of an undirected graph G(V, E)
with no self-loops and no parallel edges satisfies ¢ < 2|E|/| V.

Proof. The connectivity cannot exceed min, d(v). where d(v) is the degree of
vertex v.* Also,

Mdv)=2- |E],

Thus ¢ < 2|E})jV]. Q.E.D.

Now let us conduct the procedure in the following manner: we choose a
vertex vy and compute N(v,, v) for each v not connected to v, by an edge: there are
at most |V| such computations. We repeat the computation for Uy, vy, etc. We
terminate with v, once k exceeds the minimum value of N{a, b) observed so far, y.

THEOREM 4. The value y resulting from the procedure above is equal to the
connectivity, c.

Proof. By Menger’s theorem, there is a vertex separator S such that |§] = ¢.
Thus at least one of the vertices v, Uz, """, Uey g 1S DOt in the separator. Assume
it is v;. There is a vertex v such that N(v;,v) = ¢. Clearly y 2 ¢. Also k > v. Thus
k > ¢ + 1. Therefore y=c Q.ED.

Lemma 6 and Theorem 4 imply that k = 2lEJ/I¥| + 1. Thus the total number
of steps of our procedure is at most O(V|2 . |E|?).

Incase G is a directed graph, similar definitions and approach lead to the same
result, except that for each v,,v,, -, Uy, We compute both N{v;, v) and N(v, v,)
(which are now not necessarily the same) for each applicable .7

A natural idea, in relation to these computations is to use the technique of
Gomory and Hu {10]. They find the maximum flows between every two vertices
in an undirected flow graph by solving only [V] — 1 flow problems. However,
their technique is not applicable to directed graphs. Observe that the network
flow problems we solve, even for the vertex connectivity of undirected graphs, are
all directed. Thus this does not suggest an improvement.

Now let us consider the question of edge connectivity. Again, let G(V. E) be
a finite undirected graph. A set of edges, T, is called an (a, by edge separator if

* Each pair of vertices is connected by an edge. In this case, there are no vertex separators.
¢ The degree of a vertex is the number of edges incident to it.
" If there is an edge from r, to ¢. N(v;.v) 1s not computed, and if there is an edge from v to 1,

N{r,v;} is not computed.

514 SHIMON EVEN AND R. ENDRE TARJAN

{a, b} = Vand every path connecting a and b passes through at least one edge of
T. Let M(a, b) be the least cardinality of an (a, b) edge separator. It is a theorem
that M(a, b) is equal to the maximum number of edge disjoint paths connecting a
with b. This is another variation of Menger’s theorem, and again, one can use the
network flow approach to determine M(a, b). Here, too, we may construct G, but
one can use the undirected graph, with edge capacities all equal to 1. Since G is
of type 1, both Theorem 1 and Theorem 2 provide upper bounds on the number
of steps Dinic’s algorithm will need. Thus

O(El - min {| V], |E|'/})

1s an upper bound on the number of steps for evaluating M(a, b).

The edge connectivity, ¢, of G is defined by ¢’ = min, , M(a, b).

Let T'be a minimum edge separator in G ; that is, | T} == ¢'. Let v be any vertex
of G; then every vertex v’ on the other side of T satisfies M(v, ') = ¢’. Thus in
order to determine ¢’, we can use

¢'= min M(v.v).
v'eV —{v}
This takes at most O(V| - |E| - min {|V|?/,|E|"/%}) steps.

The approach described above can be used to determine the edge connectivity
for directed graphs, too, with the modification that for every v, both M(v, v') and
M(v’, v) have to be computed. The same bounds follow.

It is interesting to note that using the technique of Gomory and Hu would
yield the same bound for edge connectivity in the undirected case, when one uses
Dinic’s algorithm to solve each of the {V] — 1 flow problems.® However, our
observation is simpler and works for directed graphs as well.

4. Lower bounds. In this section we shall show that the upper bounds on
Dinic’s algorithm, discussed in §§ 1 and 2, are tight. Namely, in each case there
are graphs for which the number of steps is as high as the upper bound.

N. Zadeh [11] showed a family of flow problems for which Edmonds and
Karp’s algorithm requires O(n*) augmenting paths and a total of O(n®) steps. The
same family requires O(| V|? - | E]) steps when Dinic’s algorithm is used, thus proving
that the bound given in § | cannot be improved.

Let us now consider the problem of maximum matching for a family of
bipartite graphs.

Let

Xp=Aa]l £j<i<m}, Y, =
E, = {(aipbij)ll =j=2i
E,={(ay, b ;s 1 Sj<i=mj,
E,=E, UE".

The bipartite graph G, (X,,, Y, E,) is drawn for m = 4 in Fig. 1. Clearly, the
maximum matching in this case is unique and is given by E/,. The value of the

{bij“ =jsi ém}’
=m

——

¥ In the case of edge connectivity of undirected graphs their technique is applicable.

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY 518

gy Q2 Gpp 0Oz Q3 Q33 Ja Q42 TGa3 Jag

by bai bae b3 D3 byz ba Dae bas Daa
FiG. |
matching 1s

mm + 1)
— =

O(m?),

and the number of vertices in the graph is
V] = m(m + 1) = O(m?).

Assume now that we are looking for a maximum matching for G, by using
Dinic’s algorithm, as suggested in § 3. The network is achieved by adding two new
vertices : s, the source, and ¢, the sink. Also, connect s with'each a;; via a directed
edge (s, a;j) with capacity 1, direct all the edges of G,, from X,, to Y, and assign
each edge the capacity 1 (one may use here x as well), and, finally, connect each
b;; to t via a directed edge (b;;, t) again with capacity 1. The network is shown, for
m = 4, in Fig. 2.

j?

Fi1G. 2

The first phase of Dinic’s algorithm may produce a unit flow in each of the
edges of E/ . The corresponding matching is shown in Fig. 3, for m = 4, where
the edges in the matching are represented by wiggly lines. In this case, the second
phase will add {(a,,, b,,), (a,,,b;,)} to the matching, and subtract {(a;,, b,,)}-
In general, the ith phase will add to the matching the set

{(a“ by lag, b)), - (a, b))}

516 SHIMON EVEN AND R. ENDRE TARJAN

FiG. 3

and subtract the set
ayy, b;,), (a;3.b:3). -, (@;;-y. by); -

Therefore the number of phases will be m. It is not hard to see that the total number
of steps is O(m?). Since |E| = O(m”), these examples show that the bounds given
by Theorems | and 3 are tight. Namely, the bound O(E|*?) is the best possible,
for graphs with unit edge capacities, in terms of |E], and the bound O(V|12 |E})
is the best possible, for graphs of type 2 in terms of | V| and |E|.

Clearly, for dense graphs of type 2, the bound O(| V| V/2 . |El)1s more informative
than O(E*?), and one may wonder if O(V|"Y2 . |E)) still remains tight there. A
family of dense graphs (O(E)) = O(|V|?)) for which this bound is still tight is
achieved by adding to G, the following set of edges:

{(aij’bkl),(l SiSi<kA(Gsl S k<m.

The steps of Dinic’s algorithm can be chosen in such a way that none of these
edges ever enters the matching. An examination reveals that

IEl = O(m®), V| = O(m?),

and the number of steps is O(m®).

Next, we want to show that the bound given by Theorem 2 cannot be improved
either. Let

V= 1s.1; U lall <i<m® U bl sigm’
Ufell si=m? U {djlsism)A(1<j<m)
U {efl

1A

i <m?,

and

E ={s.a)ll <i< m> U {(e;)1 < i < m?

Uila, b)ll <i,j < m3)

Ul el i< m?) A (1 2j=m?
Ullei, di)ll < i < m?)

Ulldmie(I Sism) A (1 <j < m)

u {(dijvdi+l,k)'(l si<m)A(l Sjk=m).

The graph G, (V.- E,) is shown for the case m = 2 in Fig. 4. Now assume we want
to find the maximum number of edge disjoint paths between s and 1. If we use
Dinic’s algorithm for finding a maximum flow from s to t, where all edge capacities

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY

7

(|
TS
Nl
(7]

\ 1/

S R N MTA S = =
\\ﬁﬁﬁwﬁﬁﬁ‘aﬁgaﬁﬁvﬂraﬁ /
‘y R e S s S /
- e e e | = 7
A e S e el 4‘& <
e T S S e e 8 \
G e e P e NS, .,%g'sva. S
A e Rt LR SR R SEERNIAN
(@@ (o (@) Tog) Xor) Yoo

FiG. 4

are 1, we first find a path of length 6 (via d,,. ,), then of length of 7, etc., up to a
path of length m* + 5 (via d,). The number of phases is therefore O(m?). The
number of edges is O(m®), and so is the number of steps per phase. Thus the total
number of steps is O(m®). Since [E| = O(m®) and |V]| = O(m?), O(m®) = O(V|
-|E}). This shows that the bound given by Theorem 2 is tight. :

5. Remarks. One may make changes in Dinic’s algorithm to produce an
algorithm for which the lower bounds, as established by the examples of the pre-
vious section, are not equal to the upper bounds of § 2. However, for all the changes

517

518 SHIMON EVEN AND R. ENDRE TARJAN

we have tried, we could find other examples which showed that the upper bounds
of § 2 are tight. Yet, let us show some results which seem to indicate that a better
algorithm exists.

THEOREM 3. For a network of type 2, the total length of all augmenting paths
in Dinic’s algorithm is at most O(|V| -log|V]).

Proof. The last augmenting path, by Lemma 4, is of length at most (| V| — 2)/1
+ 1, the next to last is at most (V] — 2)/2 + | long, etc. Since the number of
augmenting paths is at most [V} — 1, the total length of the augmenting paths L

satisfies
V-1

1
L2V —1+(VI=2)-) 7= O(V|-log|Vl]).
i=1
THEOREM 6. For a network of type 1, the total length of all augmenting puths in
Dinic’s algorithm is at most

O(min {| V32 _|E| - log|V]}).

Proof- By a similar argument, following this time Lemma 3. and observing that
the number of augmenting paths is again bounded by | V| — 1, we get

wi-1 g
LZ|VE—14+2V — = O(V|*"?).
P
On the other hand. if we use Lemma 2, we get
vi—-1 l
L<I|E- ¥ —=0(B-log|V) QE.D.

i=1

It remains to be shown that one could trace all these paths without spending
more time than their total lengths.

REFERENCES

[1] L. R. Forp anD D. R. FULKFRSON, Flows in Networks. Princeton University Press, Princeton,
N.J., 1962.

{2] J. EDMONDS AND R. M. Karp, Theoretical improvements in algorithmic efficiency for network
flow problems. J. Assoc. Comput. Mach.. 19 (1972). pp. 248-264.

[3] E. A. Dintc, Algorithm for solution of a problem of maximum flow in a network with power estima-
tion. Soviet Math. Dokl.. 11 (1970). pp. 1277-1280.

[4] E. F. MooRE, The shoriest path through a maze. Proc. of an Internat. Symp. on the Theory of
Switching (April 1957), Harvard University Press, Cambridge, Mass., 1959, pp. 285-292.

[5] J. HopcrOFT AND R. TARIAN, Algorith 447: Efficient algorithms for graph manipulation, Comm..
ACM, 16 (1973). pp. 372-378.

6] R. TARIAN. Depih-first search and linear graph algorithms., this Journal. 2 (1972). pp. 146-160.

{7] J. E. HopcrOFT AND R. M. KARP. An n*'? algorithm for maximum matching in bipartite graphs.
this Journal. pp. 225-231.

[8} K. MENGER. Zur allgemeinen Kurventheorte. Fund. Math., 10 (1927). pp. 96-115.

[9] G. B. DanTziG AND D. R. FULKERSON, On the max-flow min-cut theorem of networks. Linear
Inequalities and Related Systems, Annals of Math. Study 38, Princeton University Press,
Princeton, N.J., 1956. pp. 215-221.

[10] R. E. Gomory aND T. C. Hu, Multi-terminal network flows. 1. Soc. Indust. and Appl. Math.. 9
(1961), pp. 551-570

{11} N. ZapeH, Theoretical efficiency of the Edmonds—Karp algorithm for computing maximal flows.
J. Assoc. Comput. Mach., 19 (1972), pp. 184-192.

