Certifying a Number is in A using Polynomials

(This post was done with the help of Max Burkes and Larry Washington.) During this post, $\mathrm{N}^{+}\{1,2,3, \ldots\}$.
Recall: Hilbert's 10th problem was to (in todays terms) find an algorithm that would, on input a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{Z}[x]$, determine if there are integers a_{1}, \ldots, a_{n} such that $p\left(a_{1}, \ldots, a_{n}\right)=0$.

From the combined work of Martin Davis, Yuri Matiyasevich, Hillary Putnam, and Julia Robinson it was shown that there is no such algorithm. I have a survey on the work done since then, see
https://arxiv.org/abs/2104.07220.
The following is a corollary of their work:
Main Theorem Let $A \subseteq \mathrm{~N}^{+}$be an r.e. set. There is a polynomial $p\left(y_{0}, y_{1}, \ldots, y_{n}\right) \in \mathbf{Z}\left[y_{0}, y_{1}, \ldots, y_{n}\right]$ such that

$$
\left.(x \in A) \operatorname{iff}\left(\exists a_{1}, \ldots, a_{n} \in \mathrm{~N}\right)\left[\left(p\left(x, a_{1}, \ldots, a_{n}\right)=0\right) \wedge(x>0)\right]\right\} .
$$

Note

1. Actual examples of polynomials p are of the form

$$
p_{1}\left(y_{0}, y_{1}, \ldots, y_{n}\right)^{2}+p_{2}\left(y_{0}, y_{1}, \ldots, y_{n}\right)^{2}+\cdots+p_{m}\left(y_{0}, y_{1}, \ldots, y_{n}\right)^{2}
$$

as a way of saying that we want a_{1}, \ldots, a_{n} such that the following are all true simultaneously:

$$
p_{1}\left(x, a_{1}, \ldots, a_{n}\right)=0, p_{2}\left(x, a_{1}, \ldots, a_{n}\right)=0, \ldots, p_{m}\left(x, a_{1}, \ldots, a_{n}\right)=0
$$

2. The condition $x>0$ can be phrased

$$
\left(\exists z_{1}, z_{2}, z_{3}, z_{4}\right)\left[x-1-z_{1}^{2}-z_{2}^{2}-z_{3}^{2}-z_{4}^{2}=0\right] .
$$

This phrasing uses that every natural number is the sum of 4 squares.
The Main theorem gives a ways to certify that $x \in A$: Find $a_{1}, \ldots, a_{n} \in \mathbf{Z}$ such that $p\left(x, a_{1}, \ldots, a_{n}\right)=0$.

Can we really find such a_{1}, \ldots, a_{n} ?

A High School student, Max Burkes, working with my math colleague Larry Washington, worked on the problem of finding a_{1}, \ldots, a_{n}.

Not much is known on this type of problem. We will see why soon. Here is a list of what is known.

1. Jones, Sato, Wada, Wiens (see
https://www.cs.umd.edu/~gasarch/BLOGPAPERS/Jonesh10.pdf)
obtained a 26 -variable polynomial $q\left(x_{1}, \ldots, x_{26}\right) \in \mathbf{Z}\left[x_{1}, \ldots, x_{26}\right]$ such that

$$
x \in \operatorname{PRIMES} \text { iff }\left(\exists a_{1}, \ldots a_{26} \in \mathbb{N}\right)\left[\left(q\left(a_{1}, \ldots, a_{26}=x\right) \wedge(x>0)\right] .\right.
$$

To obtain a polynomial that fits the main theorem take
$p\left(x, x_{1}, \ldots, x_{26}, z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(x-q\left(x_{1}, \ldots, x_{26}\right)\right)^{2}+\left(x-z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}\right)^{2}$.
Jones et al. wrote the polynomial q using as variables a, \ldots, z which is cute since thats all of the letters in the English Alphabet. See their paper pointed to above, or see Max's paper here: https://www.cs. umd.edu/~gasarch/BLOGPAPERS/BurkesMax.pdf
2. Nachiketa Gupta, in his Masters Thesis, (see
https://www.cs.umd.edu/~gasarch/BLOGPAPERS/PrimeThesis.pdf)
tried to obtain the the 26 numbers a_{1}, \ldots, a_{26} such that $q\left(a_{1}, \ldots, a_{26}\right)=$ 2 where q is the polynomial that Jones et al. came up with. Nachiketa Gupta found 22 of them. The other 4 are, like the odds of getting a Royal Fizzbin, astronomical. Could todays computers (21 years later) or AI or Quantum or Quantum AI obtain those four numbers? No, the numbers are just to big.
3. There is a 19 -variable polynomial p from the Main Theorem for the set

$$
\left\{(x, y, k): x^{k}=y\right\} .
$$

See Max's paper here https://www.cs.umd.edu/~gasarch/BLOGPAPERS/ BurkesMax.pdf Page 2 and 3, equations 1 to 13 . The polynomial p is the sum of squares of those equations. So for example $r(x, y, z)=1$ becomes $(r(x, y, z)-1)^{2}$.

Max Burkes found the needed numbers to prove $1^{1}=1$ and $2^{2}=4$. The numbers for the $2^{2}=4$ are quite large, though they can be written down (as he did). His paper is here
https://www.cs.umd.edu/~gasarch/BLOGPAPERS/BurkesMax.pdf
Some Random Thoughts:

1. It is good to know some of these values, but we really can't go much further.
2. Open Question: Can we obtain polynomials for primes and other r.e. sets so that the numbers used are not that large. Tangible goals: (1) Get a complete verification-via-polynomials that 2 is prime. (2) The numbers to verify that $2^{3}=8$.
3. In a 1974 book about progress on Hilbert's problems (I reviewed it in this book rev col:
https://www.cs.umd.edu/~gasarch/bookrev/44-4.pdf.
there is a chapter on Hilbert's 10 problem by Davis-MatiyasevichRobinson that notes the following. Using the polynomial for primes, there is a constant c such that, for all primes p there is a computation that shows p is prime in $\leq c$ operations. The article did not mention that the operations are on enormous numbers. OPEN: Is there some way to verify a prime with a constant number of operations using numbers that are not quite so enormous.
