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PROOF TWO: 2-ary Case

PROOF TWO and PROOF THREE are due to
Joseph Mileti (2008)

He did infinite case and his interest was logic.

He showed that if COL :
([n]

a

)
→ ω is computable then there exists

I ⊆ [a] and infinite I -homog set H ∈ Π2a−2.

Someone had the crazy idea of taking his proof and seeing what
happens in the finite case.

I don’t know why I did that.

These slides are the ONLY source for this material!
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What We Use

I Use R1 and ER1 to prove graph version.

I Use Ra−1 and ERa−1 to prove a-hypergraph version.

In Proof THREE we will get rid of use of Ra−1.
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Lemma on Recurrences

We use the following Lemma on Recurrences in ALL of Mileti’s
proofs.
Lemma: Assume 0 < c < 1, 0 < δ ≤ 1/2 and b ∈ R+. Define a
sequence as follows

b0 ≥ b
bi ≥ c(bi−1)

δ

Then
bi ≥ c1+δ+δ2+···+δi−1

bδi ≥ c1/(1+δ)bδi ≥ c2bδi
.

Note: We may use this in a recurrence like

b0 ≥ b
bi ≥ c

i (bi−1)
δ

and take our value of c to be c/i . Note that this is still good for a
lower bound— c/i is the smallest that coeff can go.

We refer to this as Rec Lemma.
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Proof TWO of Can Ramsey Proof 2-ary case

Given COL :
([n]

2

)
→ ω define a sequence.

Stage 0: X = ∅, A0 = [n].
Stage s: Have X = {x1, . . . , xs−1},
COL′ : X → ω × {homog, rain}, As−1 defined.
Let xs be least elt of As−1.

Case 1: (∃c)[|{y ∈ As−1 : COL(xs , y) = c}| ≥
√
|As−1|].

COL′(xs) = (c ,homog)
As = {y ∈ As−1 : COL(xs , y) = c}

Note: |As | ≥
√
|As−1|.
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Can Ramsey Proof TWO

Case 2: (∀c)[|{y ∈ As−1 : COL(xs , y) = c}| <
√
|As−1|.

Make all colors coming out of xs to right diff:
Let As be set of all x ∈ As , x is LEAST with color COL(xs , x).
Formally As is {y ∈ As−1 :

COL(xs , y) /∈ {COL(xs , y
′) : xs < y ′ < y ∧ y ′ ∈ As−1}

}

Now have:

(∀y , y ′ ∈ As)[COL(xs , y) 6= COL(xs , y
′)].

Note: |As | ≥
√
|As−1|.
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Want to make colors DIFF

Important note and convention: For the rest of Case 2 (∀x ∈ X )
means only those x with color (−, rain). Want to make the
following true:

(∀x ∈ X )(∀y , y ′ ∈ As)[COL(x , y ′) 6= COL(xs , y)]

Its OKAY if COL(x , y) = COL(xs , y).

For each y ∈ As we thin out As so that:

I (∀x ∈ X )(∀y ′ ∈ As − {y})[COL(x , y ′) 6= COL(xs , y)].

I (∀x ∈ X )(∀y ′ ∈ As − {y})[COL(x , y) 6= COL(xs , y
′)].

BILL- SHOW AT BOARD

William Gasarch-U of MD PROOF TWO of the Finite Canonical Ramsey Theorem: Mileti’s FIRST Proof



More to do!

T = As (Current Version).

wh i l e T 6= ∅
y = l e a s t e l ement o f T .
T = T − {y}
I f (∃x ∈ X , y ′ ∈ T − {y})[COL(x , y ′) = COL(xs , y)]

then T = T − {y ′} , As = As − {y ′}
(Do t h i s f o r a l l such x , y ′ )

I f (∃x ∈ X , y ′ ∈ T − {y})[COL(x , y) = COL(xs , y
′)]

then T = T − {y ′} , As = As − {y ′}
(Do t h i s f o r a l l such x , y ′ )

Note: At end |As | ≥
√
|As−1|/s (see next slide for why).
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Analysis of while Loop

Recall: only looking at x ∈ X colored (−, rain). Hence all of the
x ∈ X we consider have all DIFF colors coming out of it. Call this
statement DIFF (x).

Consider the statement:
If (∃x ∈ X , y ′ ∈ T − {y})[COL(x , y ′) = COL(xs , y)]

We think of x as tossing y ′ OUT.

CLAIM: x can only toss out ONE y ′.
PROOF: If COL(x , y ′) = COL(x , y ′′) = COL(xs , y) then DIFF (x)
is false. Constradiction.
So it now seems that each x ∈ X could toss out an element, and
hence you could toss s − 1 elements. But NO- see next slide.
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Analysis of while loop

CLAIM: If x , x ′ toss out y ′, y ′′ then y ′ = y ′′.
PROOF: Recall again that we are only looking at x ∈ X colored
(−, rain). Inductively we know that
(∀x 6= x ′ ∈ Y )(∀y ′ 6= y ′′ ∈ As)[COL(x , y ′) 6= COL(x ′, y ′′)].
Hence the only way that COL(x , y ′) = COL(x ′y ′′) is if y ′ = y ′′.
BOTTOMLINE: This first clause can only toss out ONE element.
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Analysis of while loop

By the construction xs has all DIFF colors coming out of. Call this
statement DIFF (xs).

Consider the statement:
If (∃x ∈ X , y ′ ∈ T − {y})[COL(x , y) = COL(xs , y

′)]
If this happens we think of x as tossing y ′ out.

CLAIM: x can only toss out ONE y ′.
PROOF: If x tosses out y ′ and y ′′ then
COL(x , y) = COL(xs , y

′) = COL(xs , y
′′). This violates DIFF (xs).

BOTTOMLINE: Each x ∈ X dumps at most one element per
stage. Hence this second IF statement dumps at most |X | ≤ s − 1
elements.
BOTTOMBOTTOMLINE: Each stage As declares one element IN
(namely y) and declares at most s elements OUT.
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So how big is As+1 after all of this?

In stage i we KEEP yi in As and we DUMP a set of elements |Yi |
from As . We know |Yi | ≤ s. Let b be the number of elements in
As after the while loop.

We begin with the set {y1, . . . , yb} ∪ Y1 ∪ · · · ∪ Yb. Hence√
|As−1| ≤ b + bs = (b + 1)s

(b + 1)s ≥
√
|As−1|

b ≥
√
|As−1|/s

To Reiterate:
Note: At end |As | ≥

√
|As−1|/s.
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OKAY- What is COL′(xs)?

RECAP: Have

I (∀y , y ′ ∈ As)[COL(xs , y) 6= COL(xs , y
′)].

I (∀x ∈ X )(∀y , y ′ ∈ As)[COL(xs , y) 6= COL(x , y ′)]

f (s) TBD. t = |As | ≥
√

|As−1|
s .

Case 2.1: (∃i < s)[|{y ∈ As : COL(xi , y) = COL(xs , y)}| ≥ t
f (s) ].

COL′(xs) = COL′(xi )
As = {y ∈ As : COL(xi , y) = COL(xs , y)}

Note: |As | ≥ t
f (s) .
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OKAY- What is COL′(xs)?

Case 2.2: (∀i < s)[|{y ∈ As : COL(xi , y) = COL(xs , y)}| < t
f (s) ].

COL′(xs) = (`, rain) ` is least-unused-rain-number
As = As − {y : (∃i)[COL(xi , y) = COL(xs , y)].

Note: If (say) COL′(xs) = (19, rain) then the 19 has no real
meaning except that its NOT 1, 2, . . . , 18.

Note: |As | ≥ t − (s − 1) t
f (s) ≥ t(1− (s−1)

f (s) ).
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Recurrence for |As |

Case 1 yields: |As | ≥ t
f (s)

Case 2 yields: |As | ≥ t(1− s−1
f (s))

Take f (s) = 1 + (s − 1) = s to obtain that in both cases get:

|As | ≥ t
s ≥

√
|As−1|
s2

Let as = |As |.
a0 = n
as ≥

√
as−1

s2

By Rec Lemma with b = n, c = 1
s2 , δ = 1/2, i = s we get

as ≥
n1/2s

s2

Will later see how far we need to go.
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How far out do we need to go?

We determine r later.
Have X = {x1, x2, . . . , xr}, COL′ : X → ω × {homog, rain}.
Case 1: There are r/2 colors of the form (−,homog).
Case 1a: There are

√
r/2 that are the same. HOMOG.

Case 1b: There are
√

r/2 that are the different. MIN-HOMOG

Case 2: There are r/2 colors of the form (−, rain).
Case 1a: There are

√
r/2 that are the same. MAX-HOMOG

Case 1b: There are
√

r/2 that are the different. RAINBOW

Need r = 2k2.
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Estimate n

Need: ar ≥ 2 where r = 2k2.

Have: as ≥ n1/2s

s2

Let s = 2k2. Need

n1/2s

s2
≥ 1

n1/2s ≥ s2

n ≥ s2s+1

Suffice to take n = 222s
= Γ2(4k2)

UPSHOT: ER2(k) ≤ Γ2(4k2).
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PROS and CONS

1. GOOD-Proof reminsicent of Ramsey Proof.

2. BAD-Proof complicated(?).

3. GOOD- ER2(k) ≤ Γ2(4k2). (We’ve seen worse).
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PROOF TWO: 3-ary CASE

JUST LIKE 2-ary case!

Will use R2 and ER2.

Theorem: For all k there exists n such that for all
COL :

([n]
3

)
→ ω there exists I ⊆ [3] and an I -homog set of size k.
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Proof in the Style of Ramsey

Given COL :
([n]

3

)
→ ω define a sequence.

Stage 1 a1 = 1, X = {x1}, A1 = [n]− X .
Stage s: Have X = {x1, . . . , xs−1},
COL′ :

( X
a−1

)
→ ω × {homog, rain}, and As−1.

Let A0
s = As−1 and xs be least element of As−1.

For all 0 ≤ L ≤ s − 1 we define COL′(xL, xs) and thin out A,
Form As,0, As,1, . . ., As,s .
Assume have As,L−1 and COL′(x1, xs), . . ., COL′(xL−1, xs).
Notation: We denote As,L by AL throughout.
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Case 1

Case 1: (∃c)[|{x ∈ AL−1 : COL(xL, xs , x) = c}| ≥
√
|AL−1|.

COL′(xL, xs) = (c ,homog)
AL = {x ∈ AL−1 : COL(xL, xs , x) = c}

Note: |AL| ≥
√
|AL−1|.
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Case 2

Case 2: (∀c)[|{x ∈ AL−1 : COL(xL, xs , x) = c}| <
√
|AL−1|.

Make all colors coming out of (xL, xs) to the right different:

Let AL be the set of all x ∈ AL−1 such that x is the LEAST
number with the color COL(xL, xs , x).
Formally AL is {x ∈ AL−1 :

COL(xL, xs , x) /∈ {COL(xL, xs , y) : xs < y < x ∧ y ∈ AL−1}}

}

Now have

(∀y , y ′ ∈ AL)[COL(xL, xs , y) 6= COL(xL, xs , y
′)].

Note: |AL| ≥
√
|AL−1|.
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Want to make colors DIFF

Important Note and Convention: For the rest of Case 2
(∀Z ∈

(X
2

)
) means all such Z with COL′(Z ) = (−, rain).

Want to make the following true

(∀Z ∈
(

X

2

)
)(∀y , y ′ ∈ As)[COL(Z , y ′) 6= COL(xL, xs , y)]

Its OKAY if COL(Z , y) = COL(xL, xs , y).

For each y ∈ AL we thin out AL so that:

I (∀Z ∈
(X

2

)
)(∀y ′ ∈ AL − {y})[COL(Z , y ′) 6= COL(xL, xs , y)].

I (∀Z ∈
(X

2

)
)(∀y ′ ∈ AL − {y})[COL(Z , y) 6= COL(xL, xs , y

′)].

BILL- SHOW AT BOARD
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More to do!

Use C for COL for space
T = AL (elements to process)

wh i l e T 6= ∅
y = l e a s t e l ement o f T .
T = T − {y} ( but y s t a y s i n AL )

I f (∃Z ∈
(X

2

)
, y ′ ∈ T )[C (xL, xs , y) = C (Z , y ′)] then

T = T − {y ′}, AL = AL − {y ′}
I f (∃Z ∈

(X
2

)
, y ′ ∈ T )[C (xL, xs , y

′) = C (Z , y)] then
T = T − {y ′}, AL = AL − {y ′}

Note: At end |AL| ≥
√
|AL−1|/

(s−1
2

)
≥ 2

√
|AL−1|/s2

Note: At end (∀Z ∈
(X

2

)
, y ′ ∈ AL))[COL(xL, xs , y) 6= COL(Z , y ′)].
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OKAY- What is COL′(xL, xs)?

RECAP:

I (∀y , y ′ ∈ AL)[COL(xL, xs , y) 6= COL(xL, xs , y
′)].

I (∀y , y ′ ∈ AL)(∀Z ∈
(X

2

)
)[COL(xL, xs , y) 6= COL(Z , y ′)].

f (s) TBD. Let t = |AL| ≥
2
√

|AL−1|
s2 .

Case 2.1:
(∃Z ∈

(X
2

)
)[|{y ∈ AL : COL(xL, xs , y) = COL(Z , y)}| ≥ t

f (s) ].

COL′(xL, xs) = COL(xi , xs)
AL = {y ∈ AL : COL(xL, xs , y) = COL(Z , y)}

Note: This will be a color of the form (−, rain).
Note: |AL| ≥ t

f (s) .
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OKAY- What is COL′(xL, xs)

Case 2.2:
(∀Z ∈

(X
2

)
)[|{y ∈ AL : COL(xL, xs , y) = COL(Z , y)}| < t

f (s) ].

COL′(xL, xs) = (`, rain) ` is least not-used-for-rain color.

AL = AL+1 − {y : (∃Z ∈
(X

2

)
)[COL(Z , y) = COL(xL, xs , y)].

Note: |AL| ≥ t −
(s−1

2

)
t

f (s) ≥ t(1−
(s−1

2

)
1

f (s))
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Picking f (s)

Case 1 yields: |AL| ≥ t
f (s) .

Case 2 yields: |AL| ≥ t(1−
(s−1

2

)
1

f (s))

Take f (s) = 1 +
(s−1

2

)
≤ s2/2 to obtain that in both cases get:

|AL| ≥
t

f (s)
≥

2
√
|AL−1|
s2

2

s2
≥

√
|AL−1|
s4

.

We do this process s times.
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Whats Really Going on?

b0 = b = as−1

bL ≥
√

bL−1

s4

By Rec Lemma with c = 1/s4, δ = 1/2, i = L we get

bL ≥
m1/2L

s8
.

In stage s do this for s times. Hence

as ≥ bs ≥
a
1/2s

s−1

s8
.
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Bound on As

Let as = |As |.

a0 = n

as ≥ a
1/2s

s−1

s8

By Rec Lemma with bi = ai , c = 1/s8, δ = 1/2s , i = s, we get

as ≥
n1/2s2

s16

We later see how far we need to go.
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Now CASES

We determine r later
Have X = {x1, x2, . . . , xr}, COL′ :

(X
2

)
→ ω × {homog, rain}.

I Some of the colors are of form (−,homog),

I Some of the colors are of form (−, rain),

We would like to have a subset that has colors of the same type.

What to do?

Use RAMSEY’S THEOREM ON PAIRS JUST 2 COLORS!

COL′′(x , y) = Π2(COL′(x , y)).

Let r = R2(m). Let H be the homog set of size m rel to COL′′.
We determine m later.
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Homog of color homog

Case 1: All pairs in H colored homog (real colors). Have

(∀x < y < z1 < z2)[COL(x , y , z1) = COL(x , y , z2)].

COL′′′(x , y) = Π1(COL′(x , y)) = COL(x , y ,−)

Get an I -homog set where I ⊆ [2].

COL(y1, y2, y3) = COL(z1, z2, z3) iff

COL′′′(y1, y2) = COL′′′(z1, z2)(def of COL′′′ iff)

(∀i ∈ I )[yi = zi ](def of I -homog)

Get I -homog set.
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Homog of color rain

Case 2: All pairs in H colored rain.
Have

(∀x < y < z1 < z2)[COL(x , y , z1) 6= COL(x , y , z2)].

COL′′′(x , y) = Π1(COL′(x , y))
Get an I -homog set where I ⊆ [2].

COL(y1, y2, y3) = COL(z1, z2, z3) iff

y3 = z3 ∧ COL′′′(y1, y2) = COL′′′(z1, z2) (from the construction

iff y3 = z3 ∧ (∀i ∈ I )[yi = zi ] (def of I -homog)).

Get I ∪ {3}-homog.
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Estimate n

NEED: m = ER2(k) = k2 for COL′′′.
NEED r = R2(m) Note that r ≤

Γ1(2ER2(k)) ≤ Γ1(2Γ2(4k2)) ≤ Γ1(Γ2(8k2)) ≤ Γ3(8k2)

Note r2 ≤ Γ3(16k2).
Need construction to run r steps. Need n such that

n1/2r2

r16
≥ 1

n ≥ r16×2r2

Suffices to take

n = 22r2

= Γ2(r
2) ≤ Γ2(Γ3(16k2)) ≤ Γ5(16k2).

So
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PROS and CONS

1. GOOD-Proof reminsicent of Ramsey Proof.

2. GOOD-Seemed to be able to avoid alot of cases.

3. BAD-Proof complicated(?).

4. GOOD?- ER3(k) ≤ Γ5(16k2).
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PROOF TWO: a-ary Case

REALLY JUST LIKE 3-ary case! (I mostly replaced 3 with a).
Will use Ra−1 and ERa−1.
Theorem: For all k there exists n such that for all
COL :

([n]
a

)
→ ω there exists I ⊆ [a] and an I -homog set of size k.
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Proof in the Style of Ramsey

Given COL :
([n]

a

)
→ ω define a sequence.

Stage a− 2 (∀1 ≤ i ≤ a− 2)[xi = i ]. X = {x1, . . . , xa−1}.
Aa−1 = [n]− X .
Stage s: Have X = {x1, . . . , xs−1},
COL′ :

( X
a−1

)
→ ω × {homog, rain}, and As−1.

Let A0
s = As−1 and xs be least element of As−1.

For all XL ∈
( X
a−2

)
we define COL′(XL, xs) and thin out A,

Form A0
s , A1

s , . . ., A
( s

a−2)
s

Assume have AL−1
s and COL′(X1, xs), . . ., COL′(XL−1, xs) defined.

Notation: We denote AL
s by AL throughout.
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Case 1

Case 1: (∃c)[|{x ∈ AL−1 : COL(XL, xs , x) = c}| ≥
√
|AL−1|.

COL′(XL, xs) = (c ,homog).
AL = {x ∈ AL−1 : COL(XL, xs , x) = c}

Note: |AL| ≥
√
|AL−1|.
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Can Ramsey Proof

Case 2: (∀c)[|{x ∈ AL−1 : COL(XL, xs , x) = c}| <
√
|AL−1|.

Make all colors coming out of (XL, xs) to the right different:

Let AL be the set of all x ∈ AL−1 such that x is the LEAST
number with the color COL(XL, xs , x).
Formally AL = {x ∈ AL−1 :

COL(XL, xs , x) /∈ {COL(XL, xs , y) : xs < y < x ∧ y ∈ AL−1}

}

Now have

(∀y , y ′ ∈ AL)[COL(XL, xs , y) 6= COL(XL, xs , y
′)].

Note: |AL| ≥
√
|AL−1|.
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Want to make colors DIFF

Important Note and Convention: For the rest of Case 2 we only
care about Z ∈

( X
a−1

)
such that COL′(Z ) = (−, rain).

Want to make the following true

(∀Z ∈
(

X

a− 1

)
)(∀y , y ′ ∈ As)[COL(Z , y ′) 6= COL(XL, xs , y)]

Its OKAY if COL(Z , y) = COL(XL, y).

For each y ∈ AL we thin out AL so that:

I (∀Z ∈
( X
a−1

)
)(∀y ′ ∈ AL − {y})[COL(Z , y ′) 6= COL(XL, xs , y)].

I (∀Z ∈
( X
a−1

)
)(∀y ′ ∈ AL − {y})[COL(Z , y) 6= COL(XL, xs , y

′)].

BILL- SHOW AT BOARD
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More to do!

Use C for COL for space
T = AL (elements to process)

wh i l e T 6= ∅
y = l e a s t e l ement o f T .
T = T − {y} ( but y s t a y s i n AL )

I f (∃Z ∈
( X
a−1

)
, y ′ ∈ T )[C (XL, xs , y) = C (Z , y ′)] then

T = T − {y ′} AL = AL − {y ′}
I f (∃Z ∈

( X
a−1

)
y ′ ∈ T )[C (XL, xs , y

′) = C (Z , y)] then

T = T − {y ′} AL = AL − {y ′}

Can show that for each y ∈ T that is considered:
1) There is at most ONE Z such that there is a y ′ ∈ T such that
C (XL, xs , y) = C (Z , y ′).
2) For each Z ∈

( X
a−1

)
there is at most one y ′ ∈ T such that

C (XL, xs , y
′) = C (Z , y).
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Analysis

Begin with T = AL. Every iteration we

I Ensure one elements stays in AL.

I Remove at most
( s
a−1

)
+ 1 ≤ sa−1 elements of AL.

c0 =
√

AL−1 (initial size of AL)
ci = ci−1 − sa−1.
Can show ci = c0 − isa−1.
New |AL| ≥ Numb of iterations ≥ c0/sa−1 ≥

√
|AL−1|/sa−1.

Also: At end
(∀Z ∈

( X
a−1

)
, y ′ ∈ AL))[COL(XL, xs , y) 6= COL(Z , y ′)].
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OKAY- What is COL′(XL, xs)?

RECAP:

I (∀y , y ′ ∈ AL)[COL(XL, xs , y) 6= COL(XL, xs , y
′)]

I (∀y , y ′ ∈ AL)(∀Z ∈
( X
a−1

)
)[COL(XL, xs , x) 6= COL(Z , y ′)]

f (s) TBD. Let t = |AL| ≥
√

|AL−1|
sa−1

Case 2.1:
(∃Z ∈

( X
a−1

)
)[|{y : COL(XL, xs , y) = COL(Z , y)}| ≥ t

f (s) ].

COL′(XL, xs) = COL(Xi , xs)
AL = {y ∈ AL : COL(XL, xs , y) = COL(Z , y)}

Note: This will be a color of the form (−, rain).
Note: |AL| ≥ t

f (s) .
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OKAY- What is COL′(XL, xs)

Case 2.2:
(∀Z ∈

( X
a−1

)
)[|{y ∈ AL : COL(XL, xs , y) = COL(Z , y)}| < t

f (s) ].

COL′(XL, xs) = (`, rain) (` is least not-used-for-rain color.)

AL = AL − {y : (∃Z ∈
( X
a−1

)
[COL(XL, xs , y) = COL(Z , y)].

Note: |AL| ≥ t −
(s−1
a−1

)
t

f (s) ≥ t(1−
(s−1
a−1

)
1

f (s))
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Picking f (s)

Case 1 yields |AL| ≥ t
f (s) .

Case 2 yields |AL| ≥ t(1−
(s−1
a−1

)
1

f (s))

Take f (s) = 1 +
(s−1
a−1

)
≤ sa/a!. Both cases yield:

|AL| ≥
t

f (s)
≥

√
|AL−1|
sa−1

a!

sa
≥

√
|AL−1|
s2a

.

(We could have kept the a! and have denom s2a−1 but what we do
is simpler and does not lose much.)

We do this process
(s−1
a−1

)
≤ sa−1 times.
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Whats Really Going on?

b0 = b = as−1

bL ≥
√

bL−1

s2(a−1)

By Rec Lemma with δ = 1/2, c = s2a−2, i = L we get

bL ≥
b1/2L

s4a−4
.

In stage s do this for ≤ sa−1 times. Hence

as ≥ bsa−1 ≥
a
1/2sa−1

s−1

s4a−4
.
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Bound on As

Let as = |As |.

a0 = n

as ≥ a
1/2sa−1

s−1

s4a−4 .

by Rec Lemma with δ = 1/2sa−1
, c = 1/s4a−4, b = a0 = n, i = s,

we get

as ≥
n1/2sa

s8a−8

We later see how far we need to go.
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Now CASES

We determine r later
Have X = {x1, x2, . . . , xr}, COL′ :

(X
a

)
→ ω × {homog, rain}.

I Some of the colors are of form (−,homog),

I Some of the colors are of form (−, rain),

We would like to have a subset that has colors of the same type.

What to do?

Use RAMSEY’S THEOREM ON (a− 1)-tuples JUST 2 COLORS!

COL′′(W ) = Π2(COL′(W )).

Let r = Ra−1(m). Let H be the homog set of size m rel to COL′′.
We determine m later.
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Homog of color homog

Case 1: Color is homog (real colors). Have

(∀Y ∈
(

H

a− 1

)
, z1, z2)[COL(Y , z1) = COL(Y , z2)].

COL′′′(Y ) = Π1(COL′(Y )) = COL(Y ,−)

Get an I -homog set where I ⊆ [a− 1].

COL(y1, . . . , ya) = COL(z1, . . . , za) iff

COL′′′(y1, . . . , ya−1) = COL′′′(z1, . . . , za−1)(def of COL′′′ iff

(∀i ∈ I )[yi = zi ](def of I -homog)

So get I -homog set.
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Homog of color rain

Case 2: Color is rain.
Have

(∀Y ∈
(

H

a− 1

)
, z1, z2)[COL(Y , z1) 6= COL(Y , z2)].

COL′′′(Y ) = Π1(COL′(Y ))
Get an I -homog set where I ⊆ [a− 1].

COL(y1, . . . , ya) = COL(z1, . . . , za) iff

ya = za ∧ COL′′′(y1, . . . , ya−1) = COL′′′(z1, . . . , za−1) (from const.

iff ya = za ∧ (∀i ∈ I )[yi = zi ] (def of I -homog)).

Get I ∪ {a}-homog set.
Need m = ERa−1(k) for COL′′′.
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Estimate n

NEED m = ERa−1(k) for COL′′′.
NEED r = Ra−1(m).

r = Ra−1(ERa−1(k)) ≤ Γa−2(ERa−1(k)).

Need construction to run r steps. Need n such that

n1/2r

r8a−8
≥ 1

n ≥ r8a×2r

Suffices to take n = 222ar
= Γ2(2ar)

n =≤ Γ2(2ar) = Γ2(2aΓa−2(ERa−1(k)) ≤ Γa(ERa−1(2ak).

So

ERa(k) ≤ Γa(ERa−1(2ak)).
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SOLVE REC

ER1(k) ≤ Γ0(k
2)

ERa(k) ≤ Γa(ERa−1(2ak))

Can show
ERa(k) ≤ Γf (a)(4ak2) where f (a) = a2+a−2

2 .
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PROS and CONS

1. GOOD-Proof reminsicent of Ramsey Proof.

2. GOOD-Seemed to be able to avoid alot of cases.

3. BAD-Proof complicated(?).

4. GOOD?- ERa(k) ≤ Γf (a)(4ak2) where f (a) = a2+a−2
2 . An

improvement!
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