PROOF THREE of the Finite Canonical Ramsey Theorem: Mileti's SECOND Proof

William Gasarch-U of MD

William Gasarch-U of MD PROOF THREE of the Finite Canonical Ramsey Theorem: Mil

- 4 回 ト 4 ヨ ト 4 ヨ ト

MODIFY PROOF TWO by GETTING RID of R_{a-1} .

William Gasarch-U of MD PROOF THREE of the Finite Canonical Ramsey Theorem: Mil

・ロン ・回と ・ヨン・

3

It is often easier to proof something harder.

Theorem: For all a, for all $\alpha \in \mathbb{N}$, for all k there exists n such that for all $COL : {[n] \choose a} \to \omega \times [\alpha]$ there exists a set H of size k such that

- 1. There exists $I \subseteq [a]$ such that H is *I*-homog with respect to $\Pi_1(COL)$.
- 2. *H* is homog with respect to $\Pi_2(COL)$.

Definition: $GER_a(k, \alpha)$ is the least *n* that works.

- イボト イラト - ラ

- 1. $GER_1(k, \alpha)$ EASY to bound (your HW)
- 2. Using modification of PROOF THREE can bound $GER_a(k, \alpha)$ using $GER_{a-1}(-, -)$ WITHOUT using R_{a-1} or any R at all!

Given
$$COL : {[n] \\ a} \rightarrow \omega \times [\alpha]$$
 define a sequence.
Stage $a - 2$ ($\forall 1 \le i \le a - 2$)[$x_i = i$]. $X = \{x_1, \dots, x_{a-1}\}$.
 $A_{a-1} = [n] - X$.
Stage s : Have $X = \{x_1, \dots, x_{s-1}\}$,
 $COL' : {X \\ a-1} \rightarrow \omega \times [\alpha] \times \{\text{homog, rain}\}, \text{ and } A_{s-1}$.
KEY: Will use $GER_{a-1}(k', 2\alpha)$ for some k' later.
Let $A_0^c = A_{s-1}$ and x_s be least element of A_{s-1} .

ヘロン 人間 とくほど くほどう

æ

Form A_s^0 , A_s^1 , ..., $A_s^{\binom{s}{a-2}}$ Assume have A_s^{L-1} and $COL'(X_1, x_s)$, ..., $COL'(X_{L-1}, x_s)$ defined. **Notation:** We denote A_s^L by A_L throughout.

(同) (ヨン (ヨン)

This is the KEY diff from PROOF TWO. Before doing ANYTHING else we do the following: Let i be the number that MAXIMIZES

$$\{y \in A_{L-1} \mid \Pi_2(COL(X_L, x_s, y)) = i\}.$$

We ONLY work with these, we KILL all of the others. Let

$$A_0^{L-1} = \{ y \in A_{L-1} \mid \Pi_2(COL(X_L, x_s, y)) = i \}.$$

Note

$$|A_0^{L-1}| \ge |A_{L-1}| / \alpha.$$

イロト イポト イヨト イヨト

Case 1:
$$(\exists c)[|\{x \in A_0^{L-1} : COL(X_L, x_s, x) = c\}| \ge \sqrt{|A_0^{L-1}|}.$$

 $COL'(X_L, x_s) = (c, (i, \text{homog}))$
 $A_L = \{x \in A_0^{L-1} : COL(X_L, x_s, x) = (c, i)\}$
Note: $|A_L| \ge \sqrt{|A_0^{L-1}|} \ge \sqrt{|A_{L-1}|/\alpha}.$

・ロト・(中下・(中下・(日下・(日下)))

Can Ramsey Proof

Case 2: $(\forall c)[|\{x \in A_{L-1} : COL(X_L, x_s, x) = (c, i)\}| < \sqrt{|A_{L-1}|}.$ Make all colors coming out of (X_L, x_s) to the right different:

Let A_L be the set of all $x \in A_{L-1}$ such that x is the LEAST number with the color $COL(X_L, x_s, x)$. Formally $A_L = \{x \in A_{L-1} :$

 $COL(X_L, x_s, x) \notin \{COL(X_L, x_s, y) : x_s < y < x \land y \in A_{L-1}\}$ $\}$

Now have

$$(\forall y, y' \in A_L)[COL(X_L, x_s, y) \neq COL(X_L, x_s, y')].$$

Note: $|A_L| \ge \sqrt{|A_{L-1}|/\alpha}$.

・吊り ・ヨリ ・ヨリー ヨ

Important Note and Convention: For the rest of Case 2 we only care about $Z \in {X \choose a-1}$ such that COL'(Z) = (-, (i, rain)). Want to make the following true

$$(\forall Z \in \binom{X}{a-1})(\forall y, y' \in A_s)[COL(Z, y') \neq COL(X_L, x_s, y)]$$

Its OKAY if $COL(Z, y) = COL(X_L, y)$.

For each $y \in A_L$ we thin out A_L so that:

- ► $(\forall Z \in \binom{X}{a-1})(\forall y' \in A_L \{y\})[COL(Z, y') \neq COL(X_L, x_s, y)].$
- ► $(\forall Z \in \binom{X}{a-1})(\forall y' \in A_L \{y\})[COL(Z, y) \neq COL(X_L, s_s, y')].$

- イボト イラト - ラ

More to do!

Use C for COL for space $T = A_L$ (elements to process)

while
$$T \neq \emptyset$$

 $y = \text{least element of } T$.
 $T = T - \{y\}$ (but y stays in A_L)
If $(\exists Z \in \binom{X}{a-1}, y' \in T)[C(X_L, x_s, y) = C(Z, y')]$ then
 $T = T - \{y'\}$ $A_L = A_L - \{y'\}$
If $(\exists Z \in \binom{X}{a-1}y' \in T)[C(X_L, x_s, y') = C(Z, y)]$ then
 $T = T - \{y'\}$ $A_L = A_L - \{y'\}$

Note: Similar to argument in 1st proof we get, at end, $|A_L| \ge \sqrt{|A_{L-1}|}/\sqrt{\alpha}s^{a-1}$. Note: At end $(\forall Z \in {X \choose a-1}, y' \in A_L))[COL(X_L, x_s, y) \neq COL(Z, y')]$.

・ 同 ト ・ ヨ ト ・ ヨ ト

OKAY- What is $COL'(X_L, x_s)$?

RECAP:

►
$$(\forall y, y' \in A_L)[COL(X_L, x_s, y) \neq COL(X_L, x_s, y')]$$

► $(\forall y, y' \in A_L)(\forall Z \in \binom{X}{a-1})[COL(X_L, x_s, x) \neq COL(Z, y')]$
 $f(s)$ TBD. Let $t = |A_L| \ge \frac{\sqrt{|A_{L-1}|}}{\sqrt{\alpha}s^{a-1}}$
Case 2.1:
 $(\exists Z \in \binom{X}{a-1})[|\{y : COL(X_L, x_s, y) = COL(Z, y)\}| \ge \frac{t}{f(s)}].$

$$COL'(X_L, x_s) = COL(X_L, x_s)$$

$$A_L = \{ y \in A_L : COL(X_L, x_s, y) = COL(Z, y) \}$$

Note: This will be a color of the form (-, (i, rain)). Note: $|A_L| \ge \frac{t}{f(s)}$.

イロト イヨト イヨト イヨト 三日

Case 2.2:

$$(\forall Z \in \binom{X}{a-1})[|\{y \in A_L : COL(X_L, x_s, y) = COL(Z, y)\}| < \frac{t}{f(s)}].$$

 $\begin{array}{ll} COL'(X_L, x_s) &= (\ell, (i, \mathrm{rain})) \ (\ell \ \text{is least not-used-for-rain color.}) \\ A_L &= A_L - \{y : (\exists Z \in \binom{X}{a-1}) [COL(X_L, x_s, y) = COL(Z, y)]. \end{array}$

Note: $|A_L| \ge t - {\binom{s-1}{a-1}} \frac{t}{f(s)} \ge t(1 - {\binom{s-1}{a-1}} \frac{1}{f(s)})$

Picking f(s)

Case 1 yields $|A_L| \geq \frac{t}{f(s)}$.

Case 2 yields $|A_L| \ge t(1 - {s-1 \choose a-1} \frac{1}{f(s)})$

Take $f(s) = 1 + {\binom{s-1}{a-1}} \le \frac{s^a}{a!}$. Both cases yield:

$$|A_L| \geq \frac{t}{f(s)} \geq \frac{\sqrt{|A_{L-1}|}}{\sqrt{\alpha}s^{a-1}} \frac{a!}{s^a} \geq c\sqrt{|A_{L-1}|}$$

where $c = \frac{a!}{\sqrt{\alpha}s^{2a}}$ (could have used s^{2a-1} but that would not gain us much). We later see how far we need to go.

不得下 イヨト イヨト 二日

Whats Really Going on?

$$c=rac{a!}{\sqrt{lpha}s^{2a}}.$$
 We assume $c<1.$ (If $c\geq 1$ then we ignore it.)

$$\begin{array}{ll} b_0 &= b = a_{s-1} \\ b_L &\geq c \sqrt{b_{L-1}} \end{array}$$

By Rec Lemma

$$b_L \geq c^2 b^{1/2^L}$$

In stage s do this for $\leq s^{a-1}$ times. Hence

$$a_s \ge b_{s^{a-1}} \ge c^2 b^{1/2^{s^{a-1}}} \ge rac{(a!)^2}{lpha s^{4_a}} b^{1/2^{s^{a-1}}} \ge dm^{1/2^{s^{a-1}}}$$

Where $d = rac{(a!)^2}{s^{4_a lpha}}$.

イロン スポン メヨン スヨン

Let $a_s = |A_s|$.

$$\begin{array}{ll} a_0 &= n \\ a_s &\geq da_{s-1}^{1/2^{s^{a-1}}}. \end{array}$$

By Rec Lemma

$$a_s \geq d^2 n^{1/2^{s^a}}$$

We later see how far we need to go.

ヘロン 人間 とくほど くほどう

э

We will run the construction until X has r elements— we determine r later

Have
$$X = \{x_1, x_2, \dots, x_r\}$$
,
 $COL' : {X \choose a-1} \rightarrow \omega \times ([\alpha] \times \{\text{homog, rain}\})$. We can apply
 $GER_{a-1}(k, 2\alpha)$

KEY: In PROOF TWO we applied Ramsey at this step to get either all homog or all rain. Here we don't need to since *GER* will take care of that.

Get I-homog set wrt to $\Pi_1 \circ COL'$ that is also homog wrt $\Pi_2 \circ COL'.$

$$H=\{z_1,z_2,\ldots,z_k\}.$$

Cases depend on if $\Pi_2 \circ COL'$ homog color is (-, homog) or (-, rain).

・ 同 ト ・ ヨ ト ・ ヨ ト

Homog of color (-, homog)

Case 1: Π_2 Color is (-, homog) (real colors). Have

$$(\forall Y \in \binom{H}{a-1}, z_1, z_2 \in H)[COL(Y, z_1) = COL(Y, z_2)].$$

H is *I*-homog set where $I \subseteq [a-1]$ wrt $\Pi_1 \circ COL'$.

$$COL(y_1,\ldots,y_a) = COL(z_1,\ldots,z_a)$$
 iff

 $COL'(y_1, \ldots, y_{a-1}) = COL'(z_1, \ldots, z_{a-1}) (def of COL' iff$

$$(\forall i \in I)[y_i = z_i](def of I-homog)$$

So H is I-homog set.

イロト イポト イヨト イヨト 二日

Homog of color rain

Case 2: Π_2 Color is $(-, \operatorname{rain})$. Have

$$(\forall Y \in \binom{H}{a-1}, z_1, z_2)[COL(Y, z_1) \neq COL(Y, z_2)].$$

H is *I*-homog set where $I \subseteq [a-1]$ wrt $\Pi_1 \circ COL'$.

$$COL(y_1,\ldots,y_a) = COL(z_1,\ldots,z_a)$$
 iff

 $y_a = z_a \wedge COL'(y_1, \ldots, y_{a-1}) = COL'(z_1, \ldots, z_{a-1})$ (from const.

iff
$$y_a = z_a \land (\forall i \in I)[y_i = z_i]$$
 (def of *I*-homog)).

So H is $I \cup \{a\}$ -homog set. Need $r = GER_{a-1}(k, 2\alpha)$. Estimate n

LET
$$r = GER_{a-1}(k, 2\alpha)$$
.
NEED

$$a_r \ge d^2 \frac{n^{1/2^{r^a}}}{r^{8a}} \ge 1$$
$$a_r \ge (a!/\alpha r^{4a}\alpha)^2 n^{1/2^{r^a}} \ge 1$$
$$n^{1/2^{r^a}} \ge \frac{e^{4a}}{r} \text{ where } e = \frac{1}{d^2} = \frac{\alpha^2}{(a!)^4}$$
$$n \ge er^{4a2^{r^a}}$$

If suffices to take $n = \Gamma_2(ear^a)$

$$\begin{split} & GER_1(k,\alpha) = \alpha k^2. \\ & GER_a(k) \leq \Gamma_2(\frac{\alpha^2}{(a!)^4} \times a \times GER_{a-1}(k,2\alpha)) \\ & \text{For simplicity lets not use the } a. \text{ (The reader is challenged to get a better bound using it.} \\ & GER_a(k) \leq \Gamma_2(\alpha^2 GER_{a-1}(k,2\alpha)) \end{split}$$

ヨッ イヨッ イヨッ

$$\begin{aligned} & GER_{1}(k, \alpha) = \alpha k^{2}. \\ & GER_{1}(k, 2\alpha) = 2\alpha k^{2}. \\ & GER_{2}(k, \alpha) \leq \Gamma_{2}(\alpha^{2}GER_{1}(k, 2\alpha)) \leq \Gamma_{2}(\alpha^{2}2\alpha^{2}k^{2}) = \Gamma_{2}(2\alpha^{4}k^{2}) \\ & GER_{2}(k, 2\alpha) \leq \Gamma_{2}(2(2\alpha)^{4}k^{2}) = \Gamma_{2}(2^{5}\alpha^{4}k^{2}) \\ & GER_{3}(k, \alpha)) \leq \Gamma_{2}(\alpha^{2}\Gamma_{2}(2^{5}\alpha^{4}k^{2}) \leq \Gamma_{4}(2^{5}\alpha^{6}k^{2}) \\ & GER_{3}(k, 2\alpha)) \leq \Gamma_{4}(2^{11}\alpha^{6}k^{2}) \\ & GER_{4}(k, \alpha)) \leq \Gamma_{2}(\alpha^{2}\Gamma_{4}(2^{11}\alpha^{6}k^{2}) \leq \Gamma_{6}(2^{11}\alpha^{8}k^{2}) \\ & GER_{4}(k, 2\alpha)) \leq \Gamma_{6}(2^{19}\alpha^{8}k^{2}) \\ & GER_{5}(k, 2\alpha)) \leq \Gamma_{2}(\alpha^{2}\Gamma_{6}(2^{19}\alpha^{8}k^{2})) \leq \Gamma_{8}(2^{19}\alpha^{10}k^{2}) \\ & GER_{5}(k, 2\alpha)) \leq \Gamma_{8}(2^{29}\alpha^{10}k^{2}) \end{aligned}$$

$$GER_{a}(k,\alpha) \leq \Gamma_{2a-2}(2^{a+(a+1)^{2}}\alpha^{2a}k^{2}))$$

In particular:

$$ER_{a}(k) = GER_{a}(k,1) \leq \Gamma_{2a-2}(2^{a+(a+1)^{2}}k^{2})$$

- 1. GOOD-Proof reminsicent of Ramsey Proof.
- 2. GOOD-Seemed to be able to avoid alot of cases.
- 3. BAD-Proof complicated(?).
- 4. GOOD: $ER_a(k) \leq \Gamma_{2a-2}(2^{a+(a+1)^2}k^2)$ BIG improvement!

- イボト イヨト - ヨ