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Abstract Let A be a set. Given {x1, . . . , xn}, I may want to know (1) which elements of
{x1, . . . , xn} are inA, (2) how many elements of {x1, . . . , xn} are inA, or (3)
is |{x1, . . . , xn} ∩ A | even. All of these can be determined with n queries to
A. For whichA, n can we get by with fewer queries? Other questions involving
‘how many queries do you need to . . . ’ have been posed and (some) answered.
This article is a survey of the gems in the field—the results that both answer an
interesting question and have a nice proof.
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Introduction
Let the halting problemK be the set of all programs which halt on 0. Assume

that I give you 1000 programs and ask you which of them halt, that is, which
of them are in K. You cannot answer since K is undecidable. What if I allow
you to ask 999 questions to K? Now can you determine which of the 1000 are
in K? You can! First build, for each i 0 ≤ i ≤ 1000, a program Pi which
halts if at least i of the given programs halt. By asking whether Pi ∈ K you
can find out the answer to the query “Do at least i of the given programs halt?”
Now binary search allows you to find with 10 queries the number of programs
which halt. Say you find out that exactly 783. of the 1000 programs halt. You
can run all 1000 of them until you see 783 of them halting, and then you know
that the rest do not halt. More generally, if you have 2n − 1 programs, you can
find out which ones halt by asking n questions. This is the first theorem in the
field of Bounded Queries. It was discovered independently by Beigel, Hay, and
Owings in the early 1980’s.

This observation leads to many other questions of interest. The field of
Bounded Queries, founded independently by Beigel [Be87] and Gasarch [Ga85],
raises the following types of questions:
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(1) Given a function f and a set X , how many queries to X are needed to
compute f?

(2) Given a set X and an n ≥ 1, are there functions that can be computed
with n queries to X but not with n− 1?

This paper is a survey of the nicest results in the field of bounded queries.
For a more complete exposition of the field, see [GM99].

1. Definitions
We use notation from [So87], with the notable exception that we use “com-

putable” instead of “recursive” and “c.e.” instead of “r.e.” This change of
terminology was proposed by Soare [So96] for reasons that we agree with;
hence we use it. In addition it is being accepted by the community. We remind
the reader of some standard notations.

Notation 1.1.

(1) M0,M1, . . . is a list of all Turing machines.

(2) ϕ0, ϕ1, ϕ2, . . . is a list of all computable partial functions. We obtain
this by letting ϕe be the partial function computed by Me.

(3) W0,W1, . . . is a list of all c.e. sets. We obtain this by letting We be the
domain of Me.

(4) D0, D1, . . . is a list of all finite sets indexed in a way that you can effec-
tively recover the elements of the set Di from the index i. One can view
i as a bit vector, soD10111011 would represent {0, 1, 3, 4, 5, 7}. Note that
D0 = ∅.

(5) M ()
0 ,M

()
1 , . . . is a list of all oracle Turing machines.

1.1 Functions of Interest
This paper examines the complexity of the following functions and sets.

Definition 1.2. Let A be a set, and let n ≥ 1.

(1) CA
n : Nn → {0, 1}n is defined by

CA
n (x1, . . . , xn) = A(x1)A(x2) · · ·A(xn).

(2) #A
n : Nn → {0, . . . , n} is defined by

#A
n (x1, . . . , xn) = |{i : xi ∈ A}|.
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(3) ODDA
n = {(x1, . . . , xn) ∈ Nn : #A

n (x1, . . . , xn) is odd}.
These functions are interesting because they can all be computed with n

parallel queries easily; hence the question of whether they can be computed in
less than n (perhaps sequential) is intriguing. Also note that CA

n gives more
information then #A

n which gives more information then ODDA
n .

1.2 Bounded Query Classes
Definition 1.3. Let f be a function, A ⊆ N, and n ∈ N. f ∈ FQ(n,A) if
f ≤T A via an algorithm that makes at most n queries to A.

In the introduction we proved that CK
2n−1 ∈ FQ(n,K). Two aspects of that

result motivate the next definition.
Aspect 1: When trying to determine CK

7 (x1, . . . , x7), our first question is “Do
at least 4 of the programs halt?” If the answer is YES, we then ask “Do at least
6 of the programs halt?” If the answer to the first question is NO, however,
the second question is “Do at least 2 of the programs halt?” Note that the
second question asked depends on the answer to the first. Thus the queries
are sequential. We may want to determine the smallest m such that we can
compute CK

2n−1 with m parallel queries to K.
Aspect 2: Let’s say that of 7 programs, exactly 3 halt. But suppose that when
the queries are made, the answers given are incorrect, so you think there are
4 that halt. If you run them looking for 4 to halt, you will wait forever, so
your computation will not terminate. Is there a way to compute CK

2n−1 with n
queries such that even the use of incorrect answers leads to convergence (though
perhaps to the wrong bit string)?

Definition 1.4. Let f be a function, A ⊆ N, and n ∈ N.

(1) f ∈ FQ||(n,A) if f ≤T A via an algorithm that makes at most n queries
to A, with the restriction that the queries must be made in parallel (i.e.,
they are nonadaptive). (The symbol || stands for parallel.)

(2) f ∈ FQC(n,A) if f ≤T A via an algorithm that makes at most n queries
to A, with the restriction that the algorithm must converge (perhaps to
the wrong answer) regardless of the choice of oracle (The C stands for
converge.)

(3) f ∈ FQC||(n,A) iff ≤T Avia an algorithm that makes at mostnqueries
to A, with the restrictions that the queries must be made in parallel and
the algorithm must converge regardless of the choice of oracle.

We now define several bounded-query classes consisting of sets that can be
decided by making queries to an oracle.
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Definition 1.5. Let A,B be sets, and let n ∈ N.

(1) B ∈ Q(n,A) if χB ∈ FQ(n,A).

(2) B ∈ Q||(n,A) if χB ∈ FQ||(n,A).

(3) B ∈ QC(n,A) if χB ∈ FQC(n,A).

(4) B ∈ QC||(n,A) if χB ∈ FQC||(n,A).

Definition 1.6. Let f, g be functions. The notions of f ∈ FQ(n, g), f ∈
FQ||(n, g), etc. can be easily defined.

Definition 1.7. For all the notions in this subsection we can define relativized
versions. For example, FQX(n,A) is the set of functions that can be computed
with n queries to A and an unlimited number of queries to X .

1.3 Enumerability Classes
The notion of enumerability is very useful in the study of bounded queries.

The concept within computability theory is due to Beigel [Be87]. The concept
within complexity theory is due independently to Beigel [Be87] and Cai &
Hemachandra [CH89]. The term “enumerability” is due to Cai & Hemachandra.

Definition 1.8. Let f be a function, and let m ≥ 1. We define f ∈ EN(m) (f
is m-enumerable) in two different ways. We leave it to the reader to show that
they are equivalent.

(1) f ∈ EN(m) if there exist computable partial functions g1, . . . , gm such
that (∀x)[f(x) ∈ {g1(x), . . . , gm(x)}].

(2) f ∈ EN(m) if there is a computable function h such that, for every x,
f(x) ∈Wh(x) and |Wh(x)| ≤ m.

Definition 1.9. Let f be a function, and let m ≥ 1. We define f ∈ SEN(m)
(f is strongly m-enumerable) in two different ways. We leave it to the reader
to show that they are equivalent.

(1) f ∈ SEN(m) if there exist computable functions g1, . . . , gm such that
(∀x)[f(x) ∈ {g1(x), . . . , gm(x)}].

(2) f ∈ SEN(m) if there is a computable function h such that, for every x,
f(x) ∈ Dh(x) and |Dh(x)| = m. (One can easily show that the require-
ments |Dh(x)| ≤ m and |Dh(x)| = m define the same set of functions.)

The following theorem establishes the relationship between query complex-
ity and enumeration complexity.
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Theorem 1.10. Let f be a function, and let n ∈ N. Then the following state-
ments are equivalent.

(1) (∃X)[f ∈ FQ(n,X)].

(2) f ∈ EN(2n).

(3) (∃Y ≡T f)[f ∈ FQ||(n, Y ) ∧ Y ∈ Q(1, f)].

Proof: We leave the (easy) proof that (1)⇒(2) to the reader. The fact that
(3)⇒(1) is obvious. We present the proof that (2)⇒(3). If n = 0, then f is
computable, so (2)⇒(3) is obvious. Hence we assume that n > 0.

Suppose that f ∈ EN(2n). We define a set Y ≡T f that codes information
about f into it so that f ∈ FQ||(n, Y ); however, Y uses a small amount of
information about f so we will have Y ∈ Q(1, f).

Assume f is 2n-enumerable via g0, . . . , g2n−1. Let gi,s(x) denote what
happens when you run the computation for gi on input x for s steps. Let t, i be
the following functions.

t(x) = µs[(∃j)[gj,s(x) ↓= f(x)]],

i(x) = µj[gj,t(x)(x) ↓= f(x)].

We represent i(x) in base 2. We refer to the rightmost bit as the ‘0th bit’,
the next bit as the ‘1st bit’, etc. For every k with 0 ≤ k ≤ n− 1, we define

ik(x) = the kth bit of i(x) .

Let
Y = {(x, k) : ik(x) = 1}.

It is easy to see that Y ∈ Q(1, f) and f ∈ FQ||(n, Y )

The next theorem is an analogue of Theorem 1.10 for strong enumeration.
We leave the proof to the reader.

Theorem 1.11. Let f be a function, and let n ∈ N. Then the following state-
ments are equivalent.

(1) (∃X)[f ∈ FQC(n,X)].

(2) f ∈ SEN(2n).

(3) (∃Y ≡T f)[f ∈ FQC||(n, Y ) ∧ Y ∈ QC(1, f)].

Note 1.12. All the notions in this subsection can be relativized. For example,
f ∈ SENX(m) if there exist computable-in-X functions g1, . . . , gm such that
(∀x)[f(x) ∈ {g1(x), . . . , gm(x)}].
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By Theorems 1.10 and 1.11, any result we obtain about enumerability implies
a result about bounded queries. In practice, the results about enumerability are
sharper. We state results of both types.

1.4 Definitions from Computability Theory
1.4.1 Selective Sets.

We will use selective sets as defined by Jockusch [Jo68]. (He called them
“semirecursive” but he now agrees that “selective” would have been a better
name.) These sets have nice properties in terms of bounded queries. In partic-
ular, if A is selective, then (∀k ≥ 1)[CA

k ∈ SEN(k + 1)]. In Section 4 we will
use these sets to help us prove theorems about c.e. sets.

We define selective sets in two ways that are provably equivalent. The
equivalence is due to McLaughlin and Appel but was presented in [Jo68].

Definition 1.13. A set A is selective if one of the following two equivalent
conditions holds.

(1) There exists a computable function f : N2 → N such that, for all x, y,

f(x, y) ∈ {x, y}, and
A ∩ {x, y} 6= ∅ ⇒ f(x, y) ∈ A.

The terminology ‘selective set’ comes from the fact that f selects which
of x, y is more likely to be in A.

(2) There exists a computable linear orderingv such that A is closed down-
ward under v, i.e., (∀x, y)[(x ∈ A ∧ y v x)⇒ y ∈ A].

Note 1.14. Let X be a set. We define “selective in X” by making v and f
computable in X in definition 1.13.

Lemma 1.15. If A is selective, then (∀k ≥ 1)[CA
k ∈ SEN(k + 1)].

Proof: Let A be selective via ordering v, and let k ≥ 1. The following
algorithm shows that CA

k ∈ SEN(k + 1).

(1) Input (x1, . . . , xk). Renumber so that x1 v · · · v xk.

(2) Output the set of possibilities {1i0k−i | 0 ≤ i ≤ k}.
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1.4.2 Extensive Sets.
We will use extensive sets. These are nice since they are ‘almost computable.’

In Section 3 we will use them to obtain a lower bound on the enumerability of
a function from a lower bound on its strong enumerability. In Section 4 we will
use these sets (along with selective sets) to help us prove theorems about c.e.
sets.
Definition 1.16. A setX is extensive if, for every computable partial function g
with finite range, there is a total function h ≤T X such that h extends g. (The
Turing degrees of the extensive sets are the same as the Turing degrees of the
consistent extensions of Peano arithmetic [Sc62], [Od89, pages 510–515], but
this is not important for our purposes. For this reason they are sometimes
called PA sets. They have also been referred to as DNR2 sets, which stands for
Diagonally Non Recursive; see [Jo89].)

Note 1.17. Clearly K is extensive. It is easy to show that all extensive sets are
not computable. What is of more interest, although we will not use it, is that
there are low extensive sets [JS72].

Jockusch and Soare [JS72] proved the following theorem. We will use it in
Theorems 3.4 and 4.4 to show that a set A is computable by showing that A is
computable in every extensive set.
Theorem 1.18. There exists a minimal pair of extensive sets. That is, there
exist extensive sets X1 and X2 such that, for all A, if A ≤T X1 and A ≤T X2

then A is computable.

1.4.3 Computably Bounded Sets.
We will use computably bounded sets. These are nice in terms of convergence

(see Lemma 1.20 below) and hence will be used when we study the difference
between FQ(n,A) and FQC(n,A) (also between Q(n,A) and QC(n,A)).
Definition 1.19. A set X is computably bounded (abbreviated c.b.) if, for
every (total) function f : N→ N such that f ≤T X , there exists a computable
function g such that (∀x)[f(x) < g(x)]. (In the literature, the Turing degrees
of c.b. sets are said to be hyperimmune free; this term comes from an equivalent
definition that we are not using.)

The following theorem is due to Miller and Martin [MM68]; the proof can
also be found in [Od89]. In Section 5.2 we will use this theorem to explore
questions about more queries being more powerful.
Lemma 1.20.

(1) There exist c.b. sets B ≤T ∅′′.
(2) If B is a c.b. set and A ≤T B, then A ≤tt B.
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2. The Complexity of C
�

�

The function CA
n (x1, . . . , xn) = A(x1) · · ·A(xn) can clearly be computed

with n queries to A and is clearly 2n-enumerable. We have already seen that
neither result is tight, as CK

n can be computed with O(log n) queries to K and
CK
n is (n+ 1)-enumerable.
Is CK

n n-enumerable? What about sets other than K? This section will
address these and other questions.

2.1 The Complexity of C
�

� for General Sets
In this section we show that, for every setA, if (∃n)(∃X)[CA

2n ∈ FQ(n,X)]
then A is computable. By Theorem 1.10, it suffices to show that if (∃n)[CA

2n ∈
EN(2n)] thenA is computable. Note that 2n appears in two places. It is cleaner
to prove the stronger statement that if (∃n)[CA

n ∈ EN(n)] thenA is computable.
Recall that in the introduction we answered 1000 instances of K by asking

10 sequential queries to K. Corollary 2.4 below will show that the questions
need to be sequential; that is, 999 parallel queries would not suffice.

The following theorem was first proved by Beigel in his thesis [Be87]. It
also appears in [BGGO93].

Definition 2.1. If 1 ≤ i ≤ j ≤ n and b = b1b2 · · · bn ∈ {0, 1}n, then b[i : j] is
defined as bibi+1 · · · bj .

Theorem 2.2. Let m ≥ 1, and let A be a set such that CA
m ∈ EN(m). Then A

is computable.

Proof: The proof is by induction on m. The conclusion of the theorem is
obvious if m = 1; hence the base case is established. So assume that m > 1,
and that the m− 1 case is true. We show that A is computable.

Assume CA
m ∈ EN(m) via g1, . . . , gm. We would like to show that CA

m−1 ∈
EN(m− 1); by the induction hypothesis, this would prove that A is com-
putable. So we attempt to show the existence of computable partial functions
h1, . . . , hm−1 such that CA

m−1 ∈ EN(m− 1) via h1, . . . , hm−1. Either our
algorithm, A1, works, or its very failure to do so leads to an algorithm, A2, that
decides A outright.

We have CA
m ∈ EN(m). We want CA

m−1 ∈ EN(m− 1). Given (x1, . . . , xm−1)

we want to somehow use the CA
m ∈ EN(m) algorithm. We will do this by adding

to (x1, . . . , xm−1) a variety of y’s to form m elements and then running the
CA
m ∈ EN(m) algorithm. The hope is to find a y such that we know

|{g1(x1, . . . , xm−1, y)[1 : m−1], . . . , gm(x1, . . . , xm−1, y)[1 : m−1]}| ≤ m−1.

ALGORITHM A1
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(1) Input (x1, . . . , xm−1).

(2) Search for i, j, y such that 1 ≤ i < j ≤ m, gi(x1, . . . , xm−1, y) ↓,
gj(x1, . . . , xm−1, y) ↓, and

gi(x1, . . . , xm−1, y)[1 : m− 1] = gj(x1, . . . , xm−1, y)[1 : m− 1].

(3) (If this step is reached, then i, j, and y were found in step 2.) For every l
with 1 ≤ l ≤ m− 1, let

hl(x1, . . . , xm−1) =

{
gl(x1, . . . , xm−1, y)[1 : m− 1], if l < j;
gl+1(x1, . . . , xm−1, y)[1 : m− 1], if l ≥ j.

Let x1, . . . , xm−1 ∈ N. We show that if A1(x1, . . . , xm−1) ↓, then

CA
m−1(x1, . . . , xm−1) ∈ {hl(x1, . . . , xm−1) : 1 ≤ l ≤ m− 1}.

So suppose that A1(x1, . . . , xm−1) ↓. Since step 2 terminates, we have i, j, y
such that 1 ≤ i < j ≤ m, gi(x1, . . . , xm−1, y) ↓, gj(x1, . . . , xm−1, y) ↓, and

gi(x1, . . . , xm−1, y)[1 : m− 1] = gj(x1, . . . , xm−1, y)[1 : m− 1].

Thus the set

{g1(x1, . . . , xm−1, y)[1 : m− 1], . . . , gm(x1, . . . , xm−1, y)[1 : m− 1]}

has at most m− 1 elements, and is equal to the set

{h1(x1, . . . , xm−1), . . . , hm−1(x1, . . . , xm−1)}.

Moreover, CA
m−1(x1, . . . , xm−1) is in this set, by our assumption about A and

our choice of g1, . . . , gm.
We show that either algorithm A1 yields CA

m−1 ∈ EN(m− 1), or some
other algorithm (A2, built out of the failure of A1 to work) yields that A is
computable.
Case 1: (∀x1, . . . , xm−1)[A1(x1, . . . , xm−1) ↓]. Then by the reasoning
above, CA

m−1 ∈ EN(m− 1) via h1, . . . , hm−1. By the induction hypothe-
sis, A is computable.
Case 2: (∃x′1, . . . , x′m−1)[A1(x′1, . . . , x

′
m−1) ↑]. We use this tuple to devise

a new algorithm, A2, that shows outright that A is computable.
Since A1(x′1, . . . , x

′
m−1) ↑, note that, for all i < j ≤ m and for every

y, it cannot be the case that gi(x′1, . . . , x′m−1, y) and gj(x
′
1, . . . , x

′
m−1, y)

converge and their outputs agree on the first m − 1 bits. Let b′1 · · · b′m−1 =

CA
m−1(x′1, . . . , x

′
m−1).
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ALGORITHM A2

(1) Input y.

(2) Dovetail the g1(x′1, . . . , x
′
m−1, y), . . . , gm(x′1, . . . , x

′
m−1, y) computa-

tions, stopping when you find i and a bit b such that

gi(x
′
1, . . . , x

′
m−1, y) ↓= b′1 · · · b′m−1b.

(3) (If this step is reached, then i and b were found in step 2.) Output b.

Let y ∈ N. We show that A2(y) ↓= A(y). Since

CA
m(x′1, . . . , x

′
m−1, y) ∈ {g1(x′1, . . . , x

′
m−1, y), . . . , gm(x′1, . . . , x

′
m−1, y)},

we know that (∃i, b)[gi(x′1, . . . , x′m−1, y) ↓= b′1 · · · b′m−1b]. Hence A2(y) ↓.
If in step 2 it is discovered that gi(x′1, . . . , x′m−1, y) ↓= b′1 · · · b′m−1b, then it
cannot be the case that (∃j 6= i)(∃b′)[gj(x′1, . . . , x′m−1, y) ↓= b′1 · · · b′m−1b

′],
since this would imply that

gi(x
′
1, . . . , x

′
m−1, y)[1 : m− 1] = gj(x

′
1, . . . , x

′
m−1, y)[1 : m− 1],

contrary to the choice ofx′1, . . . , x′m−1. Hence for every j 6= i, eithergj(x′1, . . . , x′m−1, y)
diverges, or it converges and is wrong on one of the first m− 1 bits. It follows
that gi(x′1, . . . , x′m−1, y) = CA

m(x′1, . . . , x
′
m−1, y), soA(y) = b = A2(y).

Corollary 2.3. Let n ∈ N and A,X ⊆ N. If CA
2n ∈ FQ(n,X), then A is

computable.

Proof: This follows from Theorems 2.2 and 1.10.

This survey began by showing that you could answer 1000 queries toK with
10 sequential queries to K. By this next corollary we know that the sequential
nature is inherent– we could not have answered 1000 queries to K with 999
parallel queries to K.

Corollary 2.4. Let n ≥ 1 and A ⊆ N. If CA
n ∈ FQ||(n− 1, A), then A is

computable.

Proof: If CA
n ∈ FQ||(n− 1, A) then an easy induction shows that, for all

m ≥ n, CA
m ∈ FQ||(n− 1, A). In particular,

CA
2n−1 ∈ FQ||(n− 1, A) ⊆ FQ(n− 1, A).

By Theorem 1.10, FQ(n− 1, A) ⊆ EN(2n−1), so we have CA
2n−1 ∈ EN(2n−1).

By Theorem 2.2, A is computable.
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The queries in the algorithm given in the introduction (the one that showed
that CK

2n−1 ∈ FQ(n,K)) were made sequentially, and now we know that this
is inherent. What if we use another oracle? By Theorem 1.10, there exists a Y
such that CK

2n−1 ∈ FQ||(n, Y ). Note that the set Y is useful not because it has
high Turing degree (in fact, K ≡T Y ) but because of the way information is
stored in it.

2.2 The Complexity of C
�

� for Natural Sets B
Sets that are Σi-complete or Πi-complete are natural. The set K is surely

natural, and we have CK
n ∈ EN(n+ 1). Are there other natural sets B for

which CB
n ∈ EN(n+ 1), or at least CB

n ∈ EN(2n − 1). The answer is NO.
We show that for every noncomputable set A, CA′

n /∈ EN(2n − 1). This result
first appeared in [BGGO93].

Definition 2.5. Let k, n ∈ N such that 1 ≤ k ≤ n. S(n, k) =
∑k−1

i=0

(
n
i

)
.

The following lemma has appeared in several places independently. It
was first discovered by Vapnik and Chervonenkis [VC71], and subsequently
rediscovered by Sauer [Sa72], Clarke, Owings, and Spriggs [COS75], and
Beigel [Be87]. The reason why it has been discovered by so many is that
it has applications in probability theory [VC71], computational learning the-
ory [BEHW89], computational geometry [HW87], and of course bounded
queries. It has also been attributed to Shelah [Sh72]; however, that paper
does not contain it. I suspect that Shelah had a proof, and that people refer to
that paper because its title sounds as if it should contain it.

Lemma 2.6. Let Y ⊆ {0, 1}n. Let k ≤ n. Assume that for every i1, .., ik with
1 ≤ i1 < i2 < . . . < ik ≤ n, the projected set

{~b′ ∈ {0, 1}k | (∃~b ∈ Y )[~b′ is the projection of~b on coordinates i1, . . . , ik ]}
has at most 2k − 1 elements. Then Y has at most S(n, k) elements.

The next lemma shows that if you can save just a little bit on enumerabiliy
(that is, CB

k ∈ EN(2k − 1) instead of the obvious CB
k ∈ EN(2k)), then, for

large n, you can save a lot in terms of enumerability. This will enable us to
show that for the jump of any noncomputable set, you cannot even save a little.

Theorem 2.7. Let k ≥ 1, and let B be a set. If CB
k ∈ EN(2k − 1), then

(∀n ≥ k)[CB
n ∈ EN(S(n, k))]. If CB

k ∈ SEN(2k − 1), then (∀n ≥ k)[CB
n ∈

SEN(S(n, k))].

Proof: Assume that CB
k ∈ EN(2k − 1) via g. The proof for SEN(2k − 1)

is similar.
We show CB

n ∈ EN(S(n, k)). In input (x1, . . . , xn) enumerate elements of
{0, 1}n as follows. Enumerate all strings b1 · · · bn such that, for all i1, . . . , ik
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with 1 ≤ i1 < i2 < . . . < ik ≤ n, the projection bi1bi2 · · · bik shows up in
Wg(xi1 ,xi2 ,... ,xik )

Let Y be the set of strings enumerated. We need to show that CB
n ∈ Y and

that |Y | ≤ S(n, k).
Let CB

n = ~b. For every 1 ≤ i1 < i2 < · · · < ik ≤ n we clearly have the
projection bi1bi2 · · · bik in Wg(xi1 ,xi2 ,... ,xik ); hence~b ∈ Y .

For every 1 ≤ i1 < i2 < · · · < ik ≤ n the number of elements inY projected
on those coordinates is at most 2k−1 since |Wg(xi1 ,xi2 ,... ,xik )| ≤ 2k−1; hence
by Lemma 2.6 |Y | ≤ S(n, k).

Theorem 2.8. If (∃k ≥ 1)[CA′
k ∈ EN(2k − 1)], then A is computable.

Proof: Assume (∃k ≥ 1)[CA′
k ∈ EN(2k − 1)]. We show that

(∃n ≥ 1)[CA
n ∈ EN(n)], hence that A is computable (by Theorem 2.2).

By Theorem 2.7, (∀n ≥ k)[CA′
n ∈ EN(S(n, k))]. For large n, S(n, k) =

O(nk), hence we write CA′
n ∈ EN(O(nk)).

Since A ≤m A′, we have CA
n ∈ EN(O(nk)). By Theorem 1.10,

(∃Y ≡T A)[CA
n ∈ FQ||(O(k log n), Y ) = FQ||(O(log n), Y ) = FQ(1,CY

O(logn))].

Since Y ≡T A, we have Y ≤m A′, hence

CA
n ∈ FQ(1,CY

O(logn)) ⊆ FQ(1,CA′
O(logn)).

By Theorem 2.7, CA′
O(logn) ∈ EN(S(O(log n), k)) ⊆ EN(O((log n)k)).

Hence CA
n ∈ EN(O((log n)k)). For n large, O((log n)k) ≤ n, which implies

that CA
n ∈ EN(n).

By a proof similar to that of Theorem 2.7, we obtain the following.

Theorem 2.9. Let k ≥ 1, and let A be a set. If CA
k ∈ SEN(2k − 1), then

(∀n ≥ k)[CA
n ∈ SEN(S(n, k))].

3. The Complexity of #
�

�

We now know that for noncomputable setsA, CA
n /∈ EN(n). What if we ask

for less information? Realize that there are 2n possibilities for CA
n , which is a

lot. In contrast, there are only n+ 1 possibilities for #A
n , so perhaps there are

some noncomputable sets A such that #A
n ∈ EN(n). Alas, no such set exists!

Beigel conjectured that if #A
n ∈ EN(n), then A is computable. Ow-

ings [Ow89] showed that if #A
n ∈ SEN(n), then A is computable, and also

that if #A
2 ∈ EN(1), then A is computable. (Owings stated his theorem as

#A
n ∈ EN(n)⇒ A ≤T K. The form we state follows from the same proof.)
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Kummer [Ku92] then proved Beigel’s conjecture. Kummer’s proof used a
Ramsey-type theorem on trees. Later, Kummer and Stephan [KS94] observed
that Owings’ proof could be extended to show Beigel’s conjecture. We present
Owings’ proof followed by Kummer and Stephan’s observation.

Most theorems in computability theory relativize. For the next theorem, we
need to prove its relativized form, since we need this stronger version as a way
to strengthen the induction hypothesis.

Notation 3.1. If D is a set, then P(D) denotes the power set of D.

If #A
n ∈ SENX(n) via f then f ≤T X and f(x1, . . . , xn), outputs ≤ n

possibilities for #A
n (x1, . . . , xn). Note that there may be other setsB such that

#B
n ∈ SENX(n) via f . We will be interested in the set of all such sets. The

next definition clarifies these concepts.

Definition 3.2. Let X be a set, let n ≥ 1, and let f be a function such that

f : Nn → P({0, . . . , n}),

f ≤T X , and

(∀x1, . . . , xn)[|f(x1, . . . , xn)| ≤ n].

The triple (n, f,X) is helpful, and

SEf = {Z | (∀x1, . . . , xn)[#Z
n (x1, . . . , xn) ∈ f(x1, . . . , xn)]}.

(Note that the sets in SEf are precisely the sets Z for which f is a strong
enumerator-in-X of #Z

n .)

Theorem 3.3. Let n ≥ 1, and let A,X be sets such that #A
n ∈ SENX(n).

Then A ≤T X .

Proof: Since #A
n ∈ SENX(n), there exists a functionf : Nn → P({0, . . . , n})

such that (n, f,X) is helpful and A ∈ SEf .
We show that since (n, f,X) is helpful, we have (∀C ∈ SEf )[C ≤T X].

Our proof is by induction on n. For n = 1, SEf has only one element, which
is clearly computable in X .

So assume that n ≥ 2 and, as induction hypothesis, that for every set Y and
every function g : Nn−1 → P({0, . . . , n− 1}),

(n− 1, g, Y ) helpful⇒ (∀D ∈ SEg)[D ≤T Y ].

To prove thatA ≤T X , we actually prove that the following three conditions
hold.

(1) (∀B,C ∈ SEf )[C ≤T B ⊕X].
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(2) SEf is countable.

(3) (∀C ∈ SEf )[C ≤T X].

That (1) ⇒ (2) is trivial. That (2) ⇒ (3) comes from the following two
facts: (a) SEf is the set of infinite branches of a tree that is computable in f , (b)
any tree with countably many infinite branches (but at least one) has some branch
computable in the tree (proved by Owings, and independently by Jockusch and
Soare [JS72]; see also [Od89, Prop. V.5.27, page 507]).

Hence we need prove only (1).
LetB,C ∈ SEf . To prove thatC ≤T B⊕X , we first show thatB−C ≤T

B ⊕X and C −B ≤T B ⊕X .
To show that B − C ≤T B ⊕ X , we use the induction hypothesis. In

particular, we show that there exists an (n − 1)-ary function g such that (n −
1, g, B ⊕X) is helpful and B − C ∈ SEg. By the induction hypothesis, this
yields B − C ≤T B ⊕X .

If B − C = ∅, then clearly B − C ≤T B ⊕X and we are done. Hence we
can assume B − C 6= ∅, so choose z0 ∈ B − C. We use z0 in our algorithm
for g.
ALGORITHM FOR g

(1) Input (x1, . . . , xn−1).

(2) Make the queries “x1 ∈ B?”, . . . , “xn−1 ∈ B?”. If there is some i such
that xi /∈ B, then xi /∈ B − C; hence #B−C

n−1 (x1, . . . , xn−1) < n − 1,
so let g(x1, . . . , xn−1) = {0, . . . , n− 2} and halt. Otherwise, go to the
next step.

(3) (Since we have reached this step, we know that {x1, . . . , xn−1} ⊆ B.)
Note that B − C ∩ {x1, . . . , xn−1} = C ∩ {x1, . . . , xn−1}. Hence
#B−C
n−1 (x1, . . . , xn−1) = n− 1−#C

n−1(x1, . . . , xn−1). Therefore, we
need only find ≤ n− 1 possibilities for #C

n−1(x1, . . . , xn−1).

(4) Since z0 /∈ C, we have #C
n−1(x1, . . . , xn−1) = #C

n (x1, . . . , xn−1, z0).

Therefore, we need only find≤ n−1 possibilities for #C
n (x1, . . . , xn−1, z0).

(5) Sincex1, . . . , xn−1, z0 ∈ B andB ∈ SEf , we haven ∈ f(x1, . . . , xn−1, z0).
Since z0 /∈ C, we know that #C

n (x1, . . . , xn−1, z0) 6= n. Moreover,
C ∈ SEf , so #C

n (x1, . . . , xn−1, z0) ∈ f(x1, . . . , xn−1, z0) − {n}.
Now note that |f(x1, . . . , xn−1, z0)−{n}| ≤ n−1, so we have≤ n−1
possibilities for #C

n (x1, . . . , xn−1, z0). Using this information, define
g(x1, . . . , xn−1) and halt.

Since (n, f,X) is helpful (hence f ≤T X) andB,C ∈ SEf , it is clear from
the algorithm that (n − 1, g, B ⊕ X) is helpful and B − C ∈ SEg. By the
induction hypothesis, B − C ≤T B ⊕X .
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Noting thatC−B = B−C, we easily see that the proof thatC−B ≤T B⊕X
is similar. Now

C = (C ∩B) ∪ (C −B) = [(B − C) ∩B] ∪ (C −B).

Since we have shown that both B − C and C − B are computable in B ⊕X ,
we have C ≤T B⊕X . This proves that condition (1) holds. Since (1)⇒ (3),
we also have C ≤T X .

By Theorem 3.3, we have that if #A
n ∈ SEN(n), then A is computable. We

want to obtain the analogous result for EN(n). Extensive setsX are used, since
they can turn an EN(n) computation into an SENX(n) computation.

Theorem 3.4. Let n ≥ 1, and let A be a set. If #A
n ∈ EN(n), then A is

computable.

Proof: Assume #A
n isn-enumerable via computable partial functionsh1, . . . , hn.

Thus for all x1, . . . , xn ∈ N,

#A
n (x1, . . . , xn) ∈ {h1(x1, . . . , xn), . . . , hn(x1, . . . , xn)}.

We can assume that each hi has finite range, namely {0, . . . , n}.
Let X be any extensive set (see Definition 1.16). Since X is extensive, each

hi has a total extension that is computable in X . Using these extensions, we
obtain that #A

n ∈ SENX(n). By Theorem 3.3, we have A ≤T X . Since X
was any extensive set, we have that, for every extensive setX ,A ≤T X . Since
there exist minimal pairs of extensive sets (Theorem 1.18), we obtain that A is
computable.

4. The Complexity of ODD
�

�

We now know that if A is noncomputable, then #A
n /∈ EN(n). Asking for

#A
n seems (in retrospect) like asking for a lot of information. What if we just

want to know the parity of #A
n ? Determining the parity of #A

n entails finding
only one bit of information. This problem is easy in terms of enumerability in
a trivial way: there are only two possibilities for it.

If we return to bounded queries (rather than enumerability), interesting ques-
tions arise. For example, how hard is ODDA

n in terms of queries to A?
The main theorem of this chapter is the following:
If A is c.e. and (∃n ≥ 1)[ODDA

n ∈ Q||(n− 1, A)], then A is computable.
We will give two proofs of this theorem. The first proof shows that if

ODDA
n ∈ Q||(n− 1, A) and A is c.e. then CA

n ∈ EN(n), hence by Theo-
rem 2.2, A is computable. This proof gives intuition for the result but involves
some details that need to be done carefully. The second proof uses selective
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and extensive sets and is very elegant; however, it is less insightful as to why
the theorem is true. I leave as an exercise the task of comparing the two proofs
and determining which one is better.

The following are also known.

(1) If A and B are c.e. and ODDA
n ∈ Q||(n− 1, B) then A is computable.

(2) If A and B are c.e. and ODDA
2n ∈ Q(n,B) then A is computable.

The first result can be proven by simple variations of the proofs given here.
The second one is more complicated. The results in this section, and the
two results stated below that we are not going to prove, have appeared in
both [GM99] and [Beetal 00]. Our main result has three proofs. We present
two here; one additional proof can be found in [GM99].

4.1 A Direct Proof
Theorem 4.1. If A is computably enumerable and ODDA

n ∈ Q||(n− 1, A)
then A is computable.

Proof: In the following we assume that A has an enumeration As and that
ODDA

n is computed byM with n− 1 parallel queries toA itself. We show that
then CAn is in EN(n) which gives that A is computable by Theorem 2.2.
ALGORITHM FOR CA

n ∈ EN(n).

(1) Input (x1, . . . , xn).

(2) RunM ()(x1, . . . , xn) until the queries are made. Let them be (y1, . . . , yn−1).
(Do not ask them.)

(3) Enumerate a tuple (As(x1), . . . , As(xn)) as a possiblity for CA
n iff the

computationM(x1, . . . , xn) with query answers (As(y1), . . . , As(yn−1))
terminates within s steps and its output agrees withAs(x1)+. . .+As(xn)
modulo 2.

The enumerated set contains CA
n (x1, . . . , xn) since for sufficiently large s

the setsAs andA coincide at all queried places andM has converged. We now
show that we have enumerated at most n strings. There are two cases.
Case 1: There are two different outputs (a1, . . . , an) and later (b1, . . . , bn)
where the corresponding computationM(x1, . . . , xn) with query answers (As(y1), . . . , As(yn)))
uses in both cases the same values c1, . . . , cn−1 for As(y1), . . . , As(yn−1).
Then a1 +a2 + . . .+an + 2 ≤ b1 + b2 + . . .+ bn and no tuple with cardinality
a1 + a+ 2 + . . .+ an + 1 is enumerated. Since for every cardinality at most
one tuple is enumerated, at most n elements are enumerated.
Case 2: For every output (a1, . . . , an) the corresponding computationM(x1, . . . , xn)
with query answers (As(y1), . . . , As(yn)) uses values c1, . . . , cn−1 forAs(y1), . . . , As(yn−1)
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not used for any other output. As these values c1, . . . , cn−1 originate from an
enumeration of A, this tuple can take at most n values and so the cardinality of
the set enumerated is at most n.

4.2 An Elegant Proof
We show the following.

If A is selective and (∃n ≥ 1)[ODDA
n ∈ Q||(n− 1, A)], then A is

computable.

IfA is c.e. and (∃n ≥ 1)[ODDA
n ∈ Q||(n− 1, A)], thenA is computable.

In investigating the complexity of ODDA
n , we first look at selective sets A,

and we then proceed to c.e. sets A. This is because we obtain the result about
c.e. sets from the result about selective sets.

4.2.1 ODD
�

� for Selective SetsA.

Theorem 4.2. Let n ≥ 1, and let A be a selective set such that ODDA
n ∈

Q||(n− 1, A). Then A is computable.

Proof: If n = 1, then since (∀x)[ODDA
1 (x) = A(x)], we have that A is

computable. Hence we can assume that n ≥ 2. Let A be selective via v, and
assume that ODDA

n ∈ Q||(n− 1, A) via MA.
The following algorithm shows that CA

2n+1 ∈ FQ||(2n,A). By Corollary 2.4,
this yields that A is computable.

(1) Input (x1, . . . , x2n+1), where x1 v · · · v x2n+1. Note that

CA
2n+1(x1, . . . , x2n+1) ∈ {1i02n+1−i | 0 ≤ i ≤ 2n+ 1}.

(2) Simulate the computation ofMA(x2, x4, x6, . . . , x2n) to obtain the queries
z1, . . . , zn−1 that are made in this computation. (We do not make these
queries at this point. We have not yet used A in any manner.)

(3) Obtain CA
2n(x1, x3, x5, . . . , x2n+1, z1, z2, z3, . . . , zn−1), by making 2n

parallel queries to A.

(4) (We know the status of both x1 and x2n+1 with respect to membership
inA.) If x1 /∈ A, then CA

2n+1(x1, . . . , x2n+1) = 02n+1, so output 02n+1

and halt. If x2n+1 ∈ A, then CA
2n+1(x1, . . . , x2n+1) = 12n+1, so output

12n+1 and halt. If x1 ∈ A and x2n+1 /∈ A, go to the next step.
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(5) There is a unique i < n such that {x1, x2, x3, . . . , x2i+1} ⊆ A and
{x2i+3, x2i+4, x2i+5, . . . , x2n+1} ⊆ A. We do not yet know whether
x2i+2 ∈ A, but we do know that

CA
2n+1(x1, x2, x3, . . . , x2n+1) =

{
12i+102n+1−(2i+1), if x2i+2 /∈ A;

12i+202n+1−(2i+2), if x2i+2 ∈ A.

Moreover, CA
n+1(x1, x3, x5, . . . , x2n+1) = 1i+10(n+1)−(i+1), so

CA
n (x2, x4, x6, . . . , x2n) =

{
1i0n−i, if x2i+2 /∈ A;

1i+10n−(i+1), if x2i+2 ∈ A.

Hence x2i+2 ∈ A iff ODDA
n (x2, x4, x6, . . . , x2n) and i are of opposite

parity.
Using the value of CA

n−1(z1, . . . , zn−1) from step 3, compute
b = MA(x2, x4, x6, . . . , x2n) = ODDA

n (x2, x4, x6, . . . , x2n).
Using i and b, compute and output CA

2n+1(x1, . . . , x2n+1): There are
two cases.

b = i mod 2: Then x2i+2 /∈ A, so output 12i+102n+1−(2i+1).
b 6= i mod 2: Then x2i+2 ∈ A, so output 12i+202n+1−(2i+2).

4.2.2 ODD
�

� for C.E. Sets A. Our plan is to make c.e. sets look like
selective sets and then apply a version of Theorem 4.2.

Lemma 4.3. Let A be a c.e. set, and let X be an extensive set. Then A is
selective in X .

Proof: Choose a computable enumeration {As}s∈N of A. Let g be the
0,1-valued computable partial function such that dom(g) ⊆ N2 and, for all
x, y,

g(x, y) =





1, if (∃s)[x ∈ As ∧ y /∈ As];
0, if (∃s)[y ∈ As ∧ x /∈ As];
↑, otherwise.

Since X is extensive, there is a 0,1-valued total function h ≤T X such that h
extends g. Now define f : N2 → N by

f(x, y) =

{
x, if h(x, y) = 1;
y, if h(x, y) = 0.

It is easy to show that A is selective in X via f .
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Theorem 4.4. Let n ≥ 1, and let A be c.e. If ODDA
n ∈ Q||(n− 1, A), then A

is computable.

Proof: Suppose that ODDA
n ∈ Q||(n− 1, A). Let X be any extensive set

(see Definition 1.16). Trivially, ODDA
n ∈ QX

|| (n− 1, A). By Lemma 4.3, A
is selective in X . By a relativized version of Theorem 4.2, we have A ≤T X .
Since X was any extensive set, we have that, for every extensive set X , A ≤T

X . Since there exist minimal pairs of extensive sets (Theorem 1.18), we obtain
that A is computable.

5. Do More Queries Help?
In prior sections, we asked ‘How many queries does it take to compute

BLAH?’ We now ask a more abstract question: ‘If I have k queries, can I
compute more functions than I could if I had only k − 1 queries?’ The answer
depends on what you want to compute (functions or sets) and what you are
querying. The short answer is that for computing functions, it always helps to
have more queries, but for deciding sets there are cases where more queries do
not help.

5.1 More Queries Do Help Compute More Functions!
The results in this section are due to Beigel [Be88]. They later appeared

in [GM99].

Theorem 5.1. If (∃n)[FQ(n,A) = FQ(n+ 1, A)], then A is computable.

Proof: By way of contradiction, suppose A is noncomputable. We exhibit a
function in FQ(n+ 1, A)− FQ(n,A). If n = 0, then CA

1 ∈ FQ(n+ 1, A)−
FQ(n,A). So assume that n ≥ 1.

By Corollary 2.3, CA
2n /∈ FQ(n,A). Since CA

n ∈ FQ(n,A), there is
some i ≥ n + 1 such that CA

i /∈ FQ(n,A) and CA
i−1 ∈ FQ(n,A). We

show that CA
i ∈ FQ(n+ 1, A).

Choose an oracle Turing machine M () so that CA
i−1 ∈ FQ(n,A) via MA.

The following algorithm computes CA
i with at most n+ 1 queries to A. Thus

CA
i ∈ FQ(n+ 1, A)− FQ(n,A).

(1) Input (x1, . . . , xi).

(2) Run MA(x1, . . . , xi−1). (By hypothesis, MA makes at most n queries
to A.)

(3) Make one additional query to A, namely, “xi ∈ A?”.

(4) Output CA
i (x1, . . . , xi) (by concatenating the results of steps 2 and 3).
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The theorem is proved.

The next theorem is an analogue of Theorem 5.1 for the bounded-query
classes FQC(n,A), FQ||(n,A), and FQC||(n,A). We leave the proof to the
reader.
Theorem 5.2. Let A be a set.

(1) If (∃n)[FQC(n,A) = FQC(n+ 1, A)], then A is computable.

(2) If (∃n)[FQ||(n,A) = FQ||(n+ 1, A)], then A is computable.

(3) If (∃n)[FQC||(n,A) = FQC||(n+ 1, A)], then A is computable.

5.2 More Queries Do Not Always Help Decide More Sets!
Definition 5.3. ∅(ω) = {〈x, i〉 | x ∈ ∅(i)}.

The next theorem shows that when deciding sets by making parallel queries
to ∅(ω), more queries do not help. We then show that when deciding sets by
making serial queries to ∅(ω), allowing more queries does enable us to decide
more sets. Finally, we exhibit an (unnatural) set such that allowing a greater
number of serial queries (with this set as oracle) does not help.

Most of the results in this chapter are in [GM99] but were known many
years earlier. They are due to Beigel and Gasarch (no reference available, but
I was there). The one exception is Theorem 5.5, which Frank Stephan proved
recently and appears here for the first time.
Theorem 5.4. For all n ≥ 1, Q||(n, ∅(ω)) = Q(1, ∅(ω)).

Proof: Let n ≥ 1, and let A ∈ Q||(n, ∅(ω)) via M (). Here is an algorithm
for A ∈ Q(1, ∅(ω)).

(1) Input x.

(2) Run M ()(x) until the questions (q1 ∈ ∅(ω), . . . , qn ∈ ∅(ω)) are asked,
but do not try to answer them. Note that, for each i, there exist yi, zi such
that the question “qi ∈ ∅(ω)?” is actually the question “yi ∈ ∅(zi)?” Let
z be the max of the zi.

(3) The question “Is there a set of answers for y1 ∈ ∅(z1), . . . , yn ∈ ∅(zn)

that are true and lead to a path of theM ()(x) computation that converges
to 1?” (note that the answer to this question is yes iff x ∈ A) can be
phrased as a query to ∅(ω) (via a query to ∅(z+1)). Let “q ∈ ∅(ω)?” be
that query, and ask it.

(4) If q ∈ ∅(ω), output 1; otherwise, output 0.
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Theorem 5.4 uses the set ∅(ω), which is somewhat natural. Can we use the
same set as an example of an oracle for which additional serial queries do not
help? As the next result shows, the answer to this question is no.

Theorem 5.5. Q(2, ∅(ω))−Q(1, ∅(ω)) 6= ∅.
Proof: Let C be the set of ordered pairs (x, y) such that

x ∈ K, and

if s is the length of the longest string of 1’s on the tape after Mx(x) halts
then y ∈ ∅(s). (We assume s ≥ 2.)

Note that we think of x as an index of a Turing machine and y as an index
of an oracle Turing machine.

Clearly, C ∈ Q(2, ∅(ω)). We show that C /∈ Q(1, ∅(ω)). Assume, by way of
contradiction, that C ∈ Q(1, ∅(ω)) via M ().

We create Turing machine Mx and oracle Turing machine M ()
y such that

M∅
(ω)

(x, y) 6= C(x, y). The construction of these two machines uses the
recursion theorem implicitly.

PROGRAM FOR Mx

(1) Simulate M ()(x, y) in such a way that you never write two consecutive
1’s on the tape. (E.g., use 00 for 0 and 01 for 1.) Stop the simluation
when the one query is made. Let this query be “q ∈ ∅(k)?” (Do not make
the query.)

(2) Print 01k0 and then halt. (Hence the longest string of 1’s on the tape has
length k.)

Note 5.6. Since x ∈ K and prints out a sequence of k 1’s we know that
(x, y) ∈ C iff y ∈ ∅(k).

PROGRAM FOR M
()
y

(1) Simulate M∅(ω)
(x, y). When the query, “q ∈ ∅(k)?”, is encountered,

make the query. (We will be supplying y with an oracle for ∅(k) so this
can be done.)

(2) If the simulation outputs 0 (so M∅(ω)
(x, y) thinks that (x, y) /∈ C which

is equivalent to y /∈ ∅(k)) then halt (which causes y ∈ ∅(k)). If the
simulation outputs 1 (so M∅(ω)

(x, y) thinks that (x, y) ∈ C which is
equivalent to y ∈ ∅(k)) then diverge (which causes y /∈ ∅(k)). The
simulation must output something since M∅(ω)

(x, y) computes C.
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The key point is that oracle programx is constructed to print out a long enough
string of 1’s so that oracle program y is able to simulate M∅(ω)

(x, y), make an
appropriate query, and diagonalize. It is easy to see thatM∅(ω)

(x, y) 6= C(x, y).

The next theorem shows that when deciding sets with sequential queries,
more queries do not always help. The set being queried is much less natural
than the set used in the previous theorem.

Definition 5.7. Att is the set of (codes of) Boolean combinations of formulas
of the form “vi” that are true when you interpret vi to be i ∈ A. For example,
the (code of the) formula (v12 ∧ (v14 ∨ ¬ v9)) is in Att iff 12 ∈ A and (14 ∈
A or 9 /∈ A).

Theorem 5.8. IfB is a c.b. set (see Definition 1.19) andn ≥ 1, then Q(n,Btt) =
Q(1, Btt). In fact, Q(n,Btt) = QC(1, Btt).

Proof: Let n ≥ 1, and letA ∈ Q(n,Btt). Clearly,A ∈ Q(n,Btt)⇒ A ≤T

B. By Lemma 1.20, A ≤T B ⇒ A ≤tt B. By the definition of ≤tt and Btt,
we easily have that A ≤m Btt. Clearly, A ∈ Q(1, Btt). Note that we actually
have A ∈ QC(1, Btt).

6. Does Allowing Divergence Help?
The algorithm in the introduction showed that CK

2n−1 ∈ FQ(n,K). For
that algorithm, incorrect answers could cause divergence. Is there an algo-
rithm where all query paths converge? More formally, can we obtain CK

2n−1 ∈
FQC(n,K)? Also, can we obtain CK

2n−1 ∈ SEN(2n)? Combining the first the-
orem in this section (which was first proved in [BGGO93]) with Theorem 1.11,
we find that the answer to both of these questions is NO—in a strong way.

However, the more general question arises as to when does allowing diver-
gence help. We would like to know whether there are sets A such that any
computation with A as an oracle can be replaced with one where all query
paths converge. To accomplish this, we explore the question of whether, and to
what extent, it helps to allow divergence when incorrect answers are given to
one or more of the queries.

The results in this section were stated in [Beetal 96]. Full proofs appeared
in [GM99].
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6.1 A Natural Example of a Function Where Allowing
Divergence Helps

We address the question that motivated the study of divergence: is there
an algorithm for CK

n which has all paths converging which asks less than n
queries?
Theorem 6.1. For all n ≥ 1, CK

n /∈ SEN(2n − 1). (Hence, by Theorem 1.10,
(∀X)[CK

n /∈ FQC(n− 1, X)].)
Proof: We offer two proofs. The first one uses the Recursion Theorem. The
second one avoids using the Recursion Theorem. We leave as an open problem
the question of which proof is better.
A Proof That Uses the Recursion Theorem

Let n ≥ 1, and suppose, by way of contradiction, that CK
n ∈ SEN(2n − 1).

Choose a computable function f such that CK
n (x1, . . . , xn) ∈ Df(x1,... ,xn)

and |Df(x1,... ,xn)| = 2n − 1. By an implicit use of the recursion theorem, we
construct programs a1, . . . , an such that CK

n (a1, . . . , an) /∈ Df(a1,... ,an).
Program ai does the following: Compute f(a1, . . . , an) and determine the

set Df(a1,... ,an). Find the vector b1b2 · · · bn /∈ Df(a1,... ,an). Halt iff bi = 1.
Programs a1, . . . , an conspire to make CK

n (a1, . . . , an) = b1b2 · · · bn /∈
Df(a1,... ,an). This is the contradiction.
A Proof That Does Not Use the Recursion Theorem

It is easy to construct a c.e. set A such that, for all n, CA
n /∈ SEN(2n − 1).

Since K is m-complete, A ≤m K. One can use this to show that if there is an
n such that CK

n ∈ SEN(2n − 1) then, for that n, CA
n ∈ SEN(2n − 1). Since

this is not true, we must have that, for all n, CK
n /∈ SEN(2n − 1).

6.2 A Natural Example of a Set Where Allowing
Divergence Does Not Help

Let A,B be sets and n ∈ N. If A ∈ Q(n,B), we can decide whether x ∈ A
by making n queries to B; if the wrong answers are supplied, however, the
algorithm may diverge. Is there a set B such that whenever A ∈ Q(n,B) we
also haveA ∈ QC(n,B) (that is, even with wrong answers, the algorithm does
not diverge)?

By Theorem 5.8, there exists such a set, but it is not natural. We show that
K, clearly a natural set, has this property.
Theorem 6.2. For all n ∈ N, Q(n,K) = QC(n,K).
Proof: Let A ∈ Q(n,K) via MK . We show that A ∈ QC(n,K).
Notation 6.3. We are using M () for our oracle Turing machine. We intend to
run it with oracle K. To approximate this we will run it for s steps and use
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oracle Ks. This is denoted MKs
s . Do not confuse this with running Turing

machine s. The subscript is the number of steps I am running the machine, not
an index of a machine.

We first give an intuition behind the proof. Consider the following sce-
nario: Given x, find MKs

s (x) for s = 1, 2, 3, . . . until an s0 is found such that
M

Ks0
s0 (x) ↓= b ∈ {0, 1}. (Here, the subscripts s, s0 refer to the number of

steps of the computation, not the index of the oracle machineM ().) There is no
reason to believe that b = A(x); however, we can ask questions about whether
at some later time the machine (with a better approximation to K) changes its
mind. These are questions about mindchanges. If we find out that the number
of mindchanges is even, then b is the answer. If the number of mindchanges is
odd, then 1− b is the answer. Note, however, that we never ‘run a machine and
see what happens’ or carry out any other computation that risks diverging.

We now proceed rigorously.

Definition 6.4. Let M () be an oracle Turing machine. Let x, s0 ∈ N and
b ∈ {0, 1}. Assume that MKs0

s0 (x) ↓= b. The phrase “there are at least m
mindchanges past stage s0” means that there exist s1 < s2 < s3 < · · · < sm

such that s0 < s1, MKs1
s1 (x) ↓= 1 − b, MKs2

s2 (x) ↓= b, MKs3
s3 (x) ↓= 1 − b,

M
Ks4
s4 (x) ↓= b, etc., and

MKsm
sm (x) ↓=

{
b if m is even;
1− b if m is odd.

Note that the question “Are there at least m mindchanges?” can be phrased as
a query to K.

SinceMK(x) makes onlynqueries, there can be at most 2n−1 mindchanges.
The following algorithm shows that A ∈ QC(n,K).

(1) Input x.

(2) Find the least s0 such that MKs0
s0 (x) ↓, and let b ∈ {0, 1} be the output.

Note that such an s0 exists, since MK(x) ↓.

(3) Using binary search, one can determine, in n queries to K, how many
mindchanges the MK(x) computation makes past stage s0. If this num-
ber is even, output b; otherwise, output 1− b.

Note that the above algorithm converges even if fed the wrong answers. The
algorithm never runs any process that might not halt.
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6.3 An Unnatural Example of a Set Where Allowing
Divergence Helps A Lot

We show that there exists a set A such that Q(1, A)−⋃∞n=1 QC(n,A) 6= ∅.
In other words, there is a set B that you can decide with just one query to A,
provided you allow divergence if wrong answers are given; if you insist that
convergence occurs even if one or more of the queries are answered incorrectly,
however, then no fixed number of queries suffices.

The results in this chapter are due to Frank Stephan. He never published
them; however, they appear in [GM99].

The following easy lemma we leave to the reader.

Lemma 6.5. For allA ⊆ N and n ≥ 1, QC(n,A) ⊆ QC||(2
n − 1, A). Hence⋃∞

n=1 QC||(n,A) =
⋃∞
n=1 QC(n,A).

The next lemma restates the problem of getting B /∈ ⋃∞n=1 QC(n,A) in
terms of strong enumerability.

Lemma 6.6. Let A,B be sets such that (∃k ≥ 1)[CA
k ∈ SEN(2k − 1)] and

(∀k ≥ 1)[CB
k /∈ SEN(2k − 1)]. Then B /∈ ⋃∞n=1 QC(n,A). (The intuition

behind the statement of this lemma is that A is “easy” and B is “hard,” so it is
reasonable that B cannot be reduced to A in certain ways.)

Proof: We show that B /∈ ⋃∞n=1 QC||(n,A). By Lemma 6.5, we obtain
B /∈ ⋃∞n=1 QC(n,A).

Suppose that (∃n0 ≥ 1)[B ∈ QC||(n0, A)]. By making queries in parallel,
we have that (∀n ≥ 1)[CB

n ∈ FQC(1,CA
n0 n)].

Since (∃k ≥ 1)[CA
k ∈ SEN(2k − 1)], CA

n0 n ∈ SEN(O(nk)) (by Theo-
rem 2.9). Hence CB

n ∈ SEN(O(nk)). For large enough n, this contradicts the
hypothesis on B.

The next definition and lemma restate the problem of getting B ∈ Q(1, A)
and (∀k ≥ 1)[CB

k /∈ SEN(2k − 1)] in terms of fast-growing functions.

Definition 6.7. A function f : N → N is computably dominated if there is a
computable g such that (∀x)[f(x) < g(x)].

Lemma 6.8. Let A be a set such that there exists a function f ∈ FQ(1, A)
that is not computably dominated. Then there exists B ∈ Q(1, A) such that
(∀k ≥ 1)[CB

k /∈ SEN(2k − 1)].

Proof: Choose f ∈ FQ(1, A) so that f is not computably dominated. We
construct a set B ∈ Q(1, A) such that, for all e, k ∈ N with k ≥ 1, we satisfy
requirement

R〈e,k〉 : ¬(CB
k is strongly (2k − 1)-enumerable via ϕe).
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Let e, k ∈ N with k ≥ 1. If ϕe is not total, requirement R〈e,k〉 is automati-
cally satisfied. If ϕe is total and we satisfy R〈e,k〉, there will be some k-tuple
(x1, . . . , xk) of numbers such that

|Dϕe(x1,... ,xk)| ≥ 2k ∨ CB
k (x1, . . . , xk) /∈ Dϕe(x1,... ,xk).

Choose a computable partition {Z〈e,i,k〉}e,i,k∈N of N so that, for all e, i, k,
|Z〈e,i,k〉| = k. For all e, i, k with k ≥ 1, let ~z〈e,i,k〉 be the k-tuple of numbers
that is formed by taking the elements of Z〈e,i,k〉 in increasing numerical order.
For all e, k with k ≥ 1, we intend to satisfy R〈e,k〉 by constructing B so that if
ϕe computes a total function, then there is some i such that

|Dϕe(~z〈e,i,k〉)| ≥ 2k ∨ CB
k (~z〈e,i,k〉) /∈ Dϕe(~z〈e,i,k〉).

We construct B ∈ Q(1, A) by giving an algorithm for it.

(1) Input x.

(2) Find e, i, k such that x ∈ Z〈e,i,k〉.

(3) Compute t = f(i). (This requires at most one query to A.)

(4) Compute Me,t(~z〈e,i,k〉).

(5) There are two cases.

(a) Me,t(~z〈e,i,k〉) ↑: Output 0. (We have not made progress towards
satisfying requirement R〈e,k〉.)

(b) Me,t(~z〈e,i,k〉) ↓= y: There are two cases.

|Dy| ≥ 2k: Output 0. (Note that requirement R〈e,k〉 is auto-
matically satisfied.)
|Dy| ≤ 2k− 1: We want to setB(x), and for that matterB(z)
for all z ∈ Z〈e,i,k〉, such that CB

k (~z〈e,i,k〉) /∈ Dy. For now, we
can set only B(x). Find σ, the lexicographically least string
in {0, 1}k −Dy, and let j be such that x is the jth component
of ~z〈e,i,k〉. Output σ(j). (Note that for all z ∈ Z〈e,i,k〉, running
this algorithm on input z will get us to this same step and will
yield the same σ; hence we will have CB

k (~z〈e,i,k〉) = σ /∈ Dy,
and R〈e,k〉 will be satisfied.)

Let e, k ∈ N such that k ≥ 1. We show that R〈e,k〉 is satisfied. If ϕe is not
total, then clearly R〈e,k〉 is satisfied. Assume, by way of contradiction, that ϕe
is total and R〈e,k〉 is not satisfied. We use this to obtain a computable function
g that dominates f , in contradiction to our assumption about f .
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Since R〈e,k〉 is not satisfied, we know that, for every i, the Me(~z〈e,i,k〉)
computation does not halt within f(i) steps. (Otherwise, R〈e,k〉 would have
been satisfied when the elements of Z〈e,i,k〉 were input to the algorithm.) Since
ϕe is total, the following computable function dominates f :

g(i) = µt[Me,t(~z〈e,i,k〉) ↓].

Thus R〈e,k〉 is satisfied.

To obtain our result from Lemmas 6.6 and 6.8, it suffices to have a set A
such that

(∃k ≥ 1)[CA
k ∈ SEN(2k − 1)] and

there exists f ∈ Q(1, A) such that f is not computably dominated.

These two properties seem hard to obtain at the same time, since the first one
says that A is “easy” while the second one says that A is “hard.” Even so, the
following lemma allows us to obtain such sets easily.

Lemma 6.9.

(1) If A is selective, then (∃k ≥ 1)[CA
k ∈ SEN(2k − 1)]. (Actually, (∀k ≥

1)[CA
k ∈ SEN(k + 1)].)

(2) If A is a noncomputable c.e. set, then there is a function f ∈ FQ(1, A)
such that f is not computably dominated. (This is well known.)

(3) There exist noncomputable c.e. sets that are selective. (This is from
[Jo68]. The proof I present uses a set defined by Dekker [De54].)

Proof:

1) This follows from Lemma 1.15.

2) Choose a computable enumeration {As}s∈N of A, and let f be the function
defined by

f(x) =

{
µs[x ∈ As], if x ∈ A;
0, otherwise.

Clearly, f ∈ FQ(1, A). Suppose f is computably dominated, and choose a
computable g so that (∀x)[f(x) < g(x)]. Then

(∀x)[x ∈ A iff x ∈ Ag(x)].

This demonstrates that A is computable, a contradiction!
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3) Let C be a noncomputable c.e. set. Choose a computable enumeration
{Cs}s∈N of C such that at every stage exactly one new element comes in. Let
cs be the new element that comes in at stage s, and let

A = {s | (∃t > s)[ct < cs]}.
Clearly, A is c.e. Using Definition 1.13.2, it is easy to showA selective.

Theorem 6.10. There exists A such that Q(1, A)−⋃∞n=1 QC(n,A) 6= ∅.
Proof: This follows from Lemmas 6.6, 6.8, and 6.9.

Note 6.11. The following is known. Let A be a set.

(1) There exists B ≡tt A such that (∀n)[Q(n,B) = QC(n,B)] iff all
f ≤wtt A are computably dominated.

(2) There exists B ≡tt A such that Q(1, B)−⋃∞i=1 QC(n,B) 6= ∅ iff there
exists f ≤wtt A such that f is not computably dominated.

7. Does Order Matter?
Let A,B ⊆ N. I am allowed to make one query to A and one query to B in

some computation. Does the order in which I make the queries matter? The first
theorem in this section is due to Beigel (unpublished) and has been generalized
by McNicholl [McN00]. The second theorem is due to McNicholl [McN00];
however, the proof given here is due to Frank Stephan and has not been published
previously. Questions of this type were asked in complexity theory [HHW98]
before they were asked in computability theory.

Definition 7.1. Let A,B ⊆ N. QO(A,B) is the set of sets that I can decide
by an algorithm that makes one query to A and then one query to B. (The ‘O’
stands for ‘order.’) Q||(A,B) is the set of sets that I can decide by an algorithm
that makes one query to A and one query to B at the same time. (This differs
from the use of Q||(n,A) used earlier in this paper.)

Definition 7.2. If QO(A,B) = QO(B,A), then A and B commute.

Notation 7.3. We denote an oracle Turing machine that is going to query two
oracles, with one query each, by M ()(). We fill in the first () with the oracle
it queries first, and the second () with the oracle it queries second. If b1b2 ∈
{0, 1}2 then M b1b2(x) denotes what happens if you assume the answer to the
first question is b1 and the answer to the second question (if such a question
exists) is b2. (Note that you do not actually query either oracle.) If B ⊆ N,
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then (1) M (b1)(B)(x) denotes what happens if you assume the answer to the
first question is b1 but you get the true answer to the second question (if such
a question exists) by querying B, and (2) QUERY (M (b1)(B)(x)) denotes the
query to B that is encountered in the M (b1)(B)(x) computation, if it exists (if
it does not exist, then QUERY (M (b1)(B)(x)) is undefined). If we use this
notation, we are implicitly assuming that the query to B exists.

We leave the proof of the following easy lemma to the reader.

Lemma 7.4. Let i, j, q, x ∈ N, b1, b2, b ∈ {0, 1}, and M ()() be an oracle
Turing machine. Assume i < j. Then the following hold.

(1) If i ≥ 1, then the truth value of the statement

(q ∈ ∅(i)) ∧ (M b1b2(x) ↓= b)

can be determined by a query to ∅(i).
(2) If i ≥ 2, then the truth value of the statement

(q /∈ ∅(i)) ∧ (M b1b2(x) ↓= b)

can be determined by a query to ∅(i).
(3) The truth value of the statement

(q ∈ ∅(j)) ∧ (M (b1)(∅(i))(x) ↓= b)

can be determined by a query to ∅(j).
(4) The truth value of the statement

(q /∈ ∅(j)) ∧ (M (b1)(∅(i))(x) ↓= b)

can be determined by a query to ∅(j).
(5) The truth value of the statement

[(q ∈ ∅(i)) ∧ (QUERY (M (b1)(∅(j))(x)) ∈ ∅(j))]
∨[(q /∈ ∅(i)) ∧ (QUERY (M (b2)(∅(j))(x)) ∈ ∅(j))]

can be determined by a query to ∅(j).

Theorem 7.5. For all i, j ≥ 1, ∅(i) and ∅(j) commute. In fact,

QO(∅(i), ∅(j)) = QO(∅(j), ∅(i)) = Q||(∅(j), ∅(i)).
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Proof: Assume i < j. Let C ∈ QO(∅(i), ∅(j)) via M∅(i),∅(j) . We show that
C ∈ Q||(∅(j), ∅(i)). The intuition is that we can ask the question “what is the
answer to the second question going to be” and the question “what is the answer
to the first question” at the same time.

(1) Input x.

(2) Run the M∅(i),∅(j)(x) computation until the first query is encountered.
Call this query q (we do not make this query).

(3) Consider the following statement:

[(q ∈ ∅(i)) ∧ (QUERY (M (1)(∅(j))(x)) ∈ ∅(j))]
∨[(q /∈ ∅(i)) ∧ (QUERY (M (0)(∅(j))(x)) ∈ ∅(j))]

By Lemma 7.4.5, this can be phrased as a query z to∅(j). note that z ∈ ∅(j)
iff the second query of the M∅(i),∅(j) computation has the answer YES.

(4) Ask “z ∈ ∅(j)?” and “q ∈ ∅(i)?” at the same time. This will give you all
the information you need to simulate the computation of M∅(i),∅(j)(x).

Now letC ∈ QO(∅(j), ∅(i)) viaM∅(j),∅(i) . We show thatC ∈ QO(∅(i), ∅(j)).
We first prove this for the case where i ≥ 2. This is needed, since Lemma 7.4.2

does not hold when i = 1. We will prove the i = 1 case later.
The intuition is that we first find an approximation to the answer by seeing

which query path converges first, and then ask about mindchanges. We first ask
if there is a mindchange because of the second query, and then we ask if there
is a mindchange because of the first query.

(1) Input x.

(2) RunM ()()(x) along all query paths until one of them halts. (At least one
must halt, since the correct answers yield a halting path.) Let b be the
output on the halting path, let q1 be the first query encountered (the query
to ∅(j)), and let q2 be the second query encountered (a query to ∅(i)). We
will be asking questions about whether the computation wants to change
its mind about b. There are four cases, corresponding to the four possible
pairs of answers supplied to the queries.

(3) (a) Case 1: The answers 0,0 yield a halting path. By Lemma 7.4.1, we
can determine the truth value of the following statement by making
a query to ∅(i):

(q2 ∈ ∅(i)) ∧ (M01(x) ↓= 1− b).
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Make the query. If the answer is YES, let c = 1− b; otherwise, let
c = b. If q1 /∈ ∅(j) (do not ask this), then the final correct answer
is c. By Lemma 7.4.3, we can determine the truth value of the
following statement by making a query to ∅(j):

(q1 ∈ ∅(j)) ∧ (M (1)(∅(i))(x) ↓= 1− c).
Make the query. If the answer is YES, output 1 − c; otherwise,
output c.

(b) Case 2: The answers 0,1 yield a halting path. By Lemma 7.4.2 (and
i ≥ 2), we can determine the truth value of the following statement
by making a query to ∅(i):

(q2 /∈ ∅(i)) ∧ (M00(x) ↓= 1− b).
Make the query. If the answer is YES, let c = 1− b; otherwise, let
c = b. If q1 /∈ ∅(j) (do not ask this), then the final correct answer is
c. The rest of this case is identical to Case 1.

(c) Case 3: The answers 1,0 yield a halting path. By Lemma 7.4.1, we
can determine the truth value of the following statement by making
a query to ∅(i):

(q2 ∈ ∅(i)) ∧ (M11(x) ↓= 1− b).
Make the query. If the answer is YES, let c = 1− b; otherwise, let
c = b. If q1 ∈ ∅(j) (do not ask this), then the final correct answer
is c. By Lemma 7.4.4, we can determine the truth value of the
following statement by making a query to ∅(j):

(q1 /∈ ∅(j)) ∧ (M (0)(∅(i))(x) ↓= 1− c).
Make the query. If the answer is YES, output 1 − c; otherwise,
output c.

(d) Case 4: The answers 1,1 yield a halting path. By Lemma 7.4.2 (and
i ≥ 2), we can determine the truth value of the following statement
by making a query to ∅(i):

(q2 /∈ ∅(i)) ∧ (M10(x) ↓= 1− b).
Make the query. If the answer is YES, let c = 1− b; otherwise, let
c = b. If q1 ∈ ∅(j) (do not ask this), then the final correct answer is
c. The rest of the proof is identical to Case 3.

We now look at the case where i = 1. We need to show that if C ∈
QO(∅(j),K), then C ∈ QO(K, ∅(j)). Assume C ∈ QO(∅(j),K) via M ()().
We show that C ∈ QO(∅(i), ∅(j)).
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(1) Input x.

(2) Run all query paths of the M ()()(x) machine. If a second query is en-
countered (a query toK), then before pursuing the YES path, enumerate
K and wait for the element to enter. (If it never entersK, there is no point
in pursuing the YES path.) Wait until one of the four query paths halts—
with the caveat about the existence of a second query and pursuit of the
YES path for that query. (At least one must halt, since the correct answers
yield a halting path.) Let b be the answer on the halting path, let q1 be the
first query encountered (the query to ∅(j)), and let q2 be the second query
encountered (a query to K). We will be asking questions about whether
the computation wants to change its mind about b. Note that if there is a
mindchange because of the first query, then q2 may change (that is, the
actual query made to K may change). If it does, the answer to the new
q2 may differ from the one supplied for q2 on the original halting query
path (even if that answer was verified by enumeration of K). There are
four cases, corresponding to the four possible pairs of answers supplied
to the queries.

(3) (a) Case 1: The answers 0,0 yield a halting path. This is identical to
Case 1 in the previous algorithm.

(b) Case 2: The answers 0,1 yield a halting path. The query to K was
answered correctly. Note that if q1 /∈ ∅(j) (do not ask this), then the
final correct answer is b. The rest of this case is identical to Case 1.

(c) Case 3: The answers 1,0 yield a halting path. This is identical to
Case 3 in the previous algorithm.

(d) Case 4: The answers 1,1 yield a halting path. The query to K was
answered correctly. Note that if q1 ∈ ∅(j) (do not ask this), then the
final correct answer is b. The rest of the proof is identical to Case
4 in the previous algorithm.

We show that, for all i, ∅(i) and ∅(ω) do not commute. We first need a lemma
of interest in its own right.

Lemma 7.6. For all i, QO(∅(ω), ∅(i)) ⊆ Q(1, ∅ω).

Proof: LetA ∈ QO(∅(ω), ∅(i)) viaM∅ω ,∅(i) . The following algorithm shows
A ∈ Q(1, ∅ω). The intuition is that once we know the first query we can ask a
complex query about answering the first one and the rest of the computation.

(1) Input x
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(2) RunM ()()(x) until a query q ∈ ∅ω is encountered. Do not ask this query.

(3) Find z, k such that the query is actually of the form z ∈ ∅(k).

(4) Phrase the query

[(z ∈ ∅(k)) ∧ (M (1)(∅(i))(x)) ↓= 1]

∨[(z /∈ ∅(k)) ∧ (M (0)(∅(i))(x)) ↓= 1]

as a query y to ∅ω.

(5) Ask y ∈ ∅ω. If y ∈ ∅ω then output YES, else output NO.

The lemma follows.

Theorem 7.7. K and ∅(ω) do not commute.

Proof: Let C be the set from Theorem 5.5. Clearly, C ∈ QO(∅(i), ∅(ω)).
We show that C /∈ QO(∅(ω), ∅(i)). Assume, by way of contradiction, that
C ∈ QO(∅(ω), ∅(i)). By Lemma 7.6 we haveC ∈ Q(1, ∅(ω)). By Theorem 5.5
C /∈ Q(1, ∅(ω)). Hence we have our contradiction.
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