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In school, I had to memorize the values of sine and cosine at the angles 0, 30, 45, 60,
and 90 degrees. This always made me wonder: Why those angles and not others? After
all, there is some angle whose sine is, say, 3/4. Why not include it in the table? More
generally: What “nice” angles have “nice” values for sine and cosine?

The main goal of this paper is to find answers to these questions “organically”
by making naive guesses at the answers and seeing if these guesses are correct. By
successively refining our naive guesses, we end up with essentially complete answers.
The second goal of this paper is to highlight the connections between trigonometry
and Galois theory by using results from a standard course on Galois theory to answer
these questions. These things are well known to experts; we aim to popularize them.

The most a governor needs to know

The third goal of this article is to help out former Governor Jeb Bush of Florida. At
a July 2004 appearance to promote state-wide annual testing of students in public
schools, a high school student asked him: “What are the angles in a 3-4-5 triangle?”
The governor responded “I don’t know. 125, 90 . . . . and whatever remains on 180.”
[14] Aside from not noticing that 125 and 90 add up to more than 180, it’s not such a
bad answer. In his favor, the governor remembered that the interior angles add up to
180, something I’m not confident my governor would remember. Also, he got one of
the three angles right. Presumably he remembered that there is a right triangle that has
sides 3-4-5 and applied the side-side-side congruence theorem to conclude that every
3-4-5 triangle is a right triangle.

Unfortunately, the story gets worse. The high school student then replied: “It’s 30-
60-90,” which we all know is wrong, because the cosine of 30 degrees is

√
3/2, not

4/5.
And the story gets yet worse. The AP reporter asserted that the correct answer was

90, 53.1, and 36.9 degrees, which—although not really wrong—does not address the
question of whether or not the governor should have known these angles. A later story
[16] did better. It quoted a retired math professor who said “I don’t think those are very
well known angles” and “I wouldn’t expect many mathematicians to know that.”

A good answer to the student’s question is provided by the following theorem:

THE GOVERNOR’S THEOREM. If a right triangle has integer side lengths, then
the acute angles are irrational, when measured in degrees.

Looking at the trig table we all memorized, we notice that all the angles are integers
when measured in degrees, so no one—much less a governor—should be expected to
answer the student’s question.

1This is the text for the address at the 2006 MAA State Dinner for Georgia, held at Mercer University in
April.
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How to prove the theorem? One way is to get it as a corollary of Lehmer’s Theorem,
which we will prove in the next section.

Remarks. The Governor’s Theorem appears as problem 239b in [15]. The theorem
is also true if the word “degrees” is replaced by “radians”. That is a standard conse-
quence of the Lindemann-Weierstrass Theorem, and is Exercise 1 in §4.13 of [8].

Degrees

Since all the angles in the standard trig table are rational when measured in degrees,
below we only consider angles of that type.

Naively, we might want to fill our trig tables with angles θ such that θ (measured
in degrees), sin θ , and cos θ are all rational. But the Governor’s Theorem—still to be
proved—tells us that there are no such θ’s with 0 < θ < 90◦. So we should include
more angles in our trig table.

For example, our standard trig table includes familiar friends like 45 degrees, for
which sine and cosine are both 1/

√
2, which is not rational. Rather, 1/

√
2 is algebraic,

i.e., there is a nonzero polynomial f (x) with rational coefficients such that f (1/
√

2) =
0, namely f (x) = 2x2 − 1.

We might ask: What rational angles are such that sin θ and cos θ are algebraic? The
hope would be that these angles θ would make up a nice trig table. But this doesn’t
work, because sin θ and cos θ are always algebraic when θ is rational. Gauss said that
this was well known in Article 337 of his Disquisitiones [4], and indeed we can see it
by using multiple-angle formulas (or reading the rest of this section).

So we need a finer notion of “nice” to pick out angles θ that one would want in a trig
table. Recall that the degree of an algebraic number is defined to be the minimum of
deg f (x) as f (x) varies over the nonzero rational polynomials such that f (r) is zero.
For example, rational numbers have degree 1 whereas 1/

√
2 and

√
3/2 have degree 2.

Write θ as 360k/n where k and n are relatively prime natural numbers. The famous
number-theorist D.H. Lehmer proved in [10]:

LEHMER’S THEOREM. If n ≥ 3, then the degree of cos(360k/n) is φ(n)/2. If n is
positive and �= 4, then the degree of sin(360k/n) is⎧⎪⎨

⎪⎩
φ(n) if gcd(n, 8) = 1 or 2
φ(n)/4 if gcd(n, 8) = 4
φ(n)/2 if gcd(n, 8) = 8.

In the theorem, the symbol φ denotes Euler’s φ-function. Recall that φ(1) is defined
to be 1 and that φ(mn) = φ(m)φ(n) for relatively prime numbers m and n. Finally,
for p a prime we have:

φ(pe) = pe−1(p − 1).

The first few values of φ are given by the table

n 1 2 3 4 5 6 7 8

φ(n) 1 1 2 2 4 2 6 4

Let us check Lehmer’s Theorem on 30 degrees. We can write 30 as 360/12. The
theorem says that cos(30) = √

3/2 has degree φ(12)/2 = 2—which is true—and that
sin(30) = 1/2 has degree φ(12)/4 = 1—which is also true. Also, the excluded values
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of n are genuine exclusions. For cosine, we exclude n = 1, 2, corresponding to mul-
tiples of 180 degrees. The cosines of such angles are 0 or ±1, hence of degree 1 (and
not 1/2). For sine, we exclude n = 4, corresponding to 90 and 270 degrees, for which
sine is 0, hence of degree 1 (and not 1/2).

Note that Lehmer’s Theorem implies Gauss’s assertion that sin θ and cos θ are al-
gebraic for every rational angle θ .

Note also the asymmetry between sine and cosine in Lehmer’s Theorem. The
author finds this unsettling, in light of the complementary angle formula sin θ =
cos(90◦ − θ).

We apply Lehmer’s Theorem to draw up a table. In each row of the following table,
we specify a degree d (less than 8). For each degree, we list the denominators n such
that sin(360k/n) has degree d or cos(360k/n) has degree d. To construct such a table,
one applies Lehmer’s Theorem to all the natural numbers n such that sine or cosine of
360/n can have degree at most 7; finding the list of such n’s is an exercise with the
definition of φ given above. (Lehmer’s article gives a similar table, but its entries for
sine are incorrect because the theorem for sine is not stated correctly there; Niven’s
book [11] has the correct version of the theorem—reproduced above—but no table.
Also, in Lehmer’s cosine table there is a 36 that should be a 30.)

TABLE 1: Denominators n such that sin 360k/n or
cos 360k/n have degree d < 8.

d sine cosine

1 1, 2, 4, 12 1, 2, 3, 4, 6
2 3, 6, 8, 20 5, 8, 10, 12
3 28, 36 7, 9, 14, 18
4 5, 10, 16, 24, 60 15, 16, 20, 24, 30
5 44 11, 22
6 7, 9, 14, 18, 52, 84 13, 21, 26, 28, 36, 42
7 none none

The d = 1 row of Table 1 says that—for θ a rational acute angle—sin θ is rational
if and only if θ is 30 degrees, and cos θ is rational if and only if θ is 60 degrees. (For a
proof of this using trig identities, see [13].) This proves the Governor’s Theorem.

The reasoning in the previous paragraph also shows that no rational angle has a sine
of 3/4. This answers the question posed in the introduction, albeit in an unsatisfying
way.

Now that we understand how to apply Lehmer’s Theorem, we prove it. Following
the stated goal of this paper, we use Galois theory. A proof that appears more concrete
but is really the same can be found in Section 3.4 of [11]. We write θ for 360k/n.

Put

z := e2π ik/n = cos θ + i sin θ,

a primitive nth root of unity in the complex numbers. Then

cos θ = z + z

2
,

where z denotes the complex conjugate of z. Since k and n are relatively prime, there
is some natural number � such that k� is congruent to n − k (mod n). Therefore,

z = e−2π ik/n = (e2π ik/n)� = z�.
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In particular, z belongs to Q(z). (Alternatively, we can remember the fact that Q(z) is
a Galois extension of Q.) Now z satisfies the equation

z2 − 2z cos θ + 1 = 0

because zz = 1, so the dimension of Q(z) over Q(cos θ) is 1 or 2. On the other hand,
these two field extensions are not the same: z cannot belong to Q(cos θ) because z
is not a real number (because n is at least 3) and Q(cos θ) consists of real numbers.
That is, the dimension [Q(z) : Q(cos θ)] is 2. Since the dimension of Q(z) over Q is
φ(n)—see e.g. [2, §13.6, Cor. 42]—we obtain:

[Q(cos θ) : Q] = [Q(z) : Q]
[Q(z) : Q(cos θ)] = φ(n)

2
.

This proves the part of Lehmer’s Theorem regarding cosine.
The result for sine can be derived from the result for cosine using the complemen-

tary angle formula

sin

(
360

k

n

)
= cos

(
360

k

n
− 90

)
= cos

(
360

4k − n

4n

)
.

This part of the proof is identical to the one on p. 38 of Niven’s book, so we just sketch
it. First, observe that since n is not 4, the fraction (4k − n)/(4n), when put in lowest
terms, has denominator at least 3, so we may indeed apply the cosine result. Next,
divide the proof into cases depending on the highest power of 2—say 2e—dividing n.
For example, if e = 1, then (4k − n)/(4n) in lowest terms has denominator 2n, and
sin(θ) has degree φ(2n)/2. But n = 2m for some m odd, so

φ(2n)

2
= φ(4m)

2
= φ(4)φ(m)

2
= φ(m) = φ(2)φ(m) = φ(n).

The remaining cases are left to the reader. This completes the proof of Lehmer’s The-
orem.

For later use, we note that Q(z) is Galois over Q with abelian Galois group, as
we learned in our Galois theory course. Consequently, every subfield of Q(z) is also
Galois over Q with abelian Galois group, including Q(cos θ) and any subfield of it.

Remark. The proof of the cosine part of Lehmer’s Theorem amounts to the obser-
vation that Q(cos θ) is the maximal real subfield of Q(z), i.e., the intersection of Q(z)
with the real numbers.

An expanded trig table

Our motivation is to answer the question: Why does the standard trig table include
exactly the angles 0, 30, 45, 60, and 90 degrees? If you want to pick angles to put in a
trig table and you know Table 1, it would make sense to include exactly those rational
angles θ such that sin θ and cos θ both have degree at most d for some choice of d. If
you do this with d = 2, you find n = 1, 2, 3, 4, 6, 8, 12 corresponding to angles that are
multiples of 360, 180, 120, 90, 60, 45, or 30 degrees. Surprise! You find the standard
trig table. This explains why the standard trig table includes exactly the angles that it
does.

Taking d = 3, we find no new angles by Table 1.
Taking d = 4, we find new denominators n = 5, 10, 16, 20, 24, corresponding to

angles that are multiples of 72, 36, 22 1
2 , 18, and 15 degrees respectively. An expanded

trig table including these angles is given in Table 2 below.
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TABLE 2: An expanded trig table including 72◦ and all
rational angles θ between 0◦ and 45◦ such that sin θ

and cos θ have degree ≤ 4.

θ (in degrees) sin θ cos θ

0 0 1

15
−1 + √

3

2
√

2

1 + √
3

2
√

2

18
−1 + √

5

4

√
5 + √

5

2
√

2

22 1
2

√
2 − √

2

2

√
2 + √

2

2

30 1/2
√

3/2

36

√
5 − √

5

2
√

2

1 + √
5

4

45 1/
√

2 1/
√

2

...

72

√
5 + √

5

2
√

2

−1 + √
5

4

This table warrants some remarks. First: How does one compute sin θ and cos θ

for the new angles θ? The only difficult one turns out to be θ = 72◦; once sin 72◦
and cos 72◦ have been computed, all the other entries can be filled in using the half-
angle and complementary-angle formulas and known entries from the standard table.
To compute sin 72◦ and cos 72◦, we follow the proof of Lehmer’s Theorem and put

z := cos 72◦ + i sin 72◦ = e2π i/5.

Note that z5 = 1, i.e., z is a 5th root of unity. Since 5 is of the form 221 + 1, it is
a Fermat prime, and Gauss gave a general method for computing pth roots of unity
for such primes p, see [4, §VII], [3, §§20–27], or [17, Ch. 12]. An explicit form of
z can be found in almost any book on Galois theory where this method is presented.
(Alternatively, one can use trigonometric formulas as in [6, pp. 39, 40] or geometry as
in [1].)

Second, some of the entries are noteworthy. For example, the half-angle formula
gives

sin 15◦ =
√

1 − cos 30◦

2
=

√
2 − √

3

2
,

but in the table we find (−1 + √
3)/2

√
2. Which is it? Indeed they are equal, since

they are positive real numbers whose squares agree. The second version is in the table
due to the author’s general aversion to “nested” square roots.

We can similarly calculate sin 22 1
2

◦
by applying the half-angle formula to cos 45◦

and finding
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sin 22
1

2

◦
=

√
2 − √

2

2
.

This nested expression is the one listed in the table. This is not due to some lazi-
ness on the author’s part, but rather to mathematical reality: this expression cannot
be rewritten to eliminate the nesting. Indeed, in the previous paragraph, the field
Q((−1 + √

3)/2
√

2) is (exercise!) the same as Q(
√

2,
√

3), a Galois extension of Q

whose Galois group is the Klein four-group (exercise!). Here the field Q(
√

2 − √
2/2)

is also a Galois extension of Q of degree 4, but with Galois group Z/4Z. (This as-
sertion is Exercise 14 in §14.2 in [2].) The reader who verifies these assertions about
the Galois groups will see that they imply that sin 22 1

2

◦
cannot be rewritten so as to

remove the nested square root.

Bibliographic references. Hoehn [5] gives a nice geometric derivation of sine and
cosine for the angles 15◦ and 75◦. Generally, one can find sin θ and cos θ whenever θ

is an integer multiple of 3 degrees once one knows the values for θ = 36◦ and various
trig identities, see e.g. [18]. For the general question of unnesting square roots, see [9].

Can we expand the table a little further?

Continuing the procedure from the previous section, we could consider angles θ such
that sin θ and cos θ have degree ≤ 5. By Table 1, no new angles θ are found. (In
general, for every odd number d ≥ 3, the angles θ such that sin θ and cos θ have degree
≤ d are exactly the same angles as those whose sine and cosine have degree ≤ d − 1.
Proving this claim is an exercise combining Lehmer’s Theorem and the definition of φ

which we leave to the reader.)
If we consider those angles with degree ≤ 6, there are lots of new angles, but also

an ugly phenomenon. Consider the case n = 18, corresponding to the angle θ = 20◦.
Table 1 says that cos θ has degree 3,2 and it is a root of the polynomial 8x3 − 6x − 1, as
can be seen by the triple-angle formula. (This fact is familiar from a course on Galois
theory, because it is part of the standard proof that the angle 20◦ cannot be constructed
with straightedge and compass.) The graph of this polynomial is

–1.0 –0.5 0.5 1.0

–3

–2

–1

1

2

It clearly has three real roots. However, Cardano’s formula for finding the roots of a
cubic polynomial gives the three seemingly complex roots3

x = 3

√
1 + √−3

16
+ 3

√
1 − √−3

16
.

2We only include 20◦ at the degree ≤ 6 stage because sin(20◦) has degree 6.
3Each complex number has three cube roots, so the displayed expression a priori gives 9 complex numbers.

The roots of the polynomial 8x3 − 6x − 1 are the values of x where the sum of the two cube roots is a real
number.
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This is an example of the famous “casus irreducibilis” of the cubic formula, and it
is well known that one cannot avoid using complex numbers in writing down these
roots (see e.g., [2, §14.7] or keep reading this article). Since cos(20◦) is so ugly, we
shouldn’t include it in our table.

In fact, this example is typical. Write θ = 360k/n where k and n are relatively
prime integers. We have:

THEOREM. The numbers cos θ and sin θ can be written using only rational num-
bers, addition, subtraction, multiplication, division, and roots of positive numbers if
and only if φ(n) is a power of 2.

In the example of 20 degrees above, φ(18) is 6, which is not a power of 2. When we
prove the theorem below, we will have in particular proved that cosine of 20 degrees
cannot be written using only field operations and roots of positive numbers.

The theorem says that the only candidates for angles θ to be added to our trig table
are those θ = 360k/n where φ(n) is a power of 2. Such natural numbers n are pre-
cisely those n such that regular n-gon is constructible with compass and straightedge—
proved by Gauss and Wantzel. Gauss listed the 38 such n ≤ 300 at the end of [4], and
in principle the list is known for n < 2222 + 1 (approximately 2 × 101262611), see [12,
Seq. A003401].

In the next section, we will investigate what new entries could be added to our trig
table. But first we prove the theorem stated above. Write E for the field consisting
of real numbers that can be written as in the statement of the theorem, i.e., that can
be written using only rational numbers, addition, subtraction, multiplication, division,
and roots of positive real numbers.

We first prove the “if” direction, i.e., we suppose that φ(n) is a power of 2. This is
the easier implication, and the proof proceeds just as for constructibility of a regular
n-gon. By the observation just after the proof of Lehmer’s Theorem, the extension
Q(cos θ) of Q is Galois with abelian Galois group of order φ(n)/2. Therefore, there is
a chain of fields

Q = K0 ⊂ K1 ⊂ · · · ⊂ Kr = Q(cos θ)

such that each Ki+1 is a 2-dimensional extension of Ki . It follows that Ki+1 is obtained
from Ki by adjoining the square root of some element ai ∈ Ki . Since Ki+1 is contained
in Q(cos θ) and hence in R, the element ai is positive. We conclude that cos θ belongs
to E . The pythagorean identity sin2 θ + cos2 θ = 1 implies that

sin θ = ±
√

1 − cos2 θ,

hence sin θ also belongs to E . This completes the proof of the “if” direction.
To prove the more difficult “only if” direction, we suppose that φ(n) is not a power

of 2, i.e., is divisible by an odd prime p. Note that this implies that n is at least 7. For
sake of contradiction, suppose that cos θ or sin θ belongs to E . In the latter case, the
pythagorean identity implies that cos θ belongs to E , so in any case we have that cos θ

belongs to E . Lehmer’s Theorem gives that p divides the dimension of Q(cos θ) over
Q. We observed after the proof of that theorem that Q(cos θ) is Galois over Q with
abelian Galois group, so there exists a Galois extension K of Q contained in Q(cos θ)

such that the dimension of Q(cos θ) over K is p.
Since cos θ belongs to E , there is a tower of fields

Q = F0 ⊂ F1 ⊂ · · · ⊂ Fr ⊂ R

such that Fr contains cos θ and each Fi+1 is obtained from Fi by adjoining a real ni th
root of some positive ai ∈ Fi . By inserting additional terms in this tower if necessary,
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we may assume that ni is a prime number for all i . Fix i such that the compositum
K Fi does not contain cos θ , but K Fi+1 does.

R

K Fi+1

ni

t
t
t
t
t
t
t
t
t

Q(cos θ) K Fi

K

t
t
t
t
t
t
t
t
t
t

p

Q

The field K Fi (cos θ) properly contains K Fi and (since K is Galois over Q) the
dimension of K Fi(cos θ) over K Fi divides the dimension of K (cos θ) over K , which
is the prime p. So K Fi(cos θ) has dimension p over K Fi . On the other hand,
K Fi+1 = K Fi(ni

√
ai ) is a proper extension of K Fi of degree dividing the prime ni ;

since K Fi (cos θ) is contained in K Fi+1, we conclude that ni = p and

K Fi(cos θ) = K Fi+1 = K Fi(
p
√

ai )

is Galois over K Fi . It follows that K Fi+1 contains a full set of pth roots of unity.
But this is impossible because p is odd and K Fi+1 consists of real numbers. This
contradicts the assumption that cos θ or sin θ belongs to E and completes the proof of
the theorem.

Remarks. (i) One reader of this paper asked what the correct theorem would be if
the word “positive” were removed from the statement of the theorem. Or, to restate
the question: What rational angles θ have values of cos θ and sin θ that are solvable by
radicals? In the proof of Lehmer’s Theorem, we saw that cos θ generates an abelian
extension of Q, so the answer is “all rational angles θ” by Galois’s criterion.

(ii) The proof of the difficult direction of the theorem did not involve the result
about constructibility of regular n-gons, despite the similarity in the two statements.
Indeed, the restriction that φ(n) be a power of 2 arose here because φ(n) is—up to
multiplication by a power of 2—the degree of a real Galois extension Q(cos θ) of Q
obtained by taking roots of positive real numbers. This implied that Q(cos θ) can be
obtained by adjoining only square roots, hence that φ(n) is a power of 2. In contrast, in
the theorem about n-gons, you begin with the hypothesis that you can only take square
roots.

(iii) A more general version of the proof above is given in [7] or with Exercises
12–14 in §14.7 of [2]. Our proof is much simpler because the number that we assume
belongs to E—namely, cos θ—generates a Galois extension of Q.

What the next few numbers look like

By the previous section, our trig table should only include angles 360k/n where φ(n)

is a power of 2. If we want to expand Table 2, how should we do it?
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We have already considered the denominators n = 1, 2, . . . , 6, 8, 10, 12, 16, 20, 24.
The smallest natural number n not in that list and with φ(n) a power of 2 is n = 15,
corresponding to angles that are multiples of 24 degrees. To compute sin 24◦ and
cos 24◦, we can use the familiar trick from the construction of regular n-gons. Namely,
factor 15 as 3 · 5 and recall that we know e2π i/3 and e2π i/5 because we know the values
of sine and cosine for 120◦ and 72◦, so we can explicitly compute

e2π i/3 · e2π i/5 = e2π i ·8/15.

Moreover, 2 · 8 = 15 + 1, so

(e2π i ·8/15)2 = e2π i/15.

Performing these computations and extracting the real part, we find:

8 cos 24◦ = (1 + √
5) + (

√
5 − 1)

√
3

2
(5 + √

5) = (1 + √
5) + 2

√
3

2
(5 − √

5).

The next n for which the corresponding θ does not appear in Table 2 is n = 17,
corresponding to the angle θ = 21 3

17

◦
. Seventeen is a Fermat prime, and the values

of sine and cosine can be computed by Gauss’s algorithm. Gauss himself gave the
following explicit formula for cos θ in Article 365 of [4]:

16 cos 21
3

17

◦
= −1 + √

17 +
√

34 − 2
√

17

+ 2

√
17 + 3

√
17 −

√
34 − 2

√
17 − 2

√
34 + 2

√
17

These numbers look pretty ugly! Another strategy is to apply a friendly trig identity
like a half-angle formula to entries in the table. Doing this with 18 degrees, we find for
example that

cos 9◦ = 1

2

√√√√
2 +

√
5 + √

5

2
.

The reader is encouraged to continue along these lines until their personal limits of
expression complexity are attained.

Summary

We observed that we can construct a trig table for each natural number d by including
precisely those rational angles θ such that cos θ and sin θ are algebraic of degree at
most d. For d = 1, the table only included multiples of 90◦. For d = 2, we got the
standard trig table consisting of multiples of 30◦ and 45◦. For d = 4, we found a
larger table, and we exhibited a portion of it in Table 2. Unfortunately, for d ≥ 6, it is
impossible to write the cosine of some angles without using complex numbers. Further
investigation revealed that, without using complex numbers, we can only write down
cos θ and sin θ if φ(n) is a power of 2, where n is the denominator of θ . The proof
of this last fact was different from the similar-sounding result about constructibility of
regular n-gons with straightedge and compass.
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