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Abstract

Hilbert’s 10th problem, stated in modern terms, is
Find an algorithm that will, given p ∈ Z[x1, . . . , xn], determine if there

exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.
Davis, Putnam, Robinson, and Matiyasevich showed that there was no

such algorithm. But what if we bound the degree of the polynomial? The
number of variables? This paper survey’s what is known for these cases.

1 Hilbert’s Tenth Problem
In 1900 Hilbert proposed 23 problems for mathematicians to work on over the
next 100 years (or longer). The 10th problem, stated in modern terms, is

Find an algorithm that will, given p ∈ Z[x1, . . . , xn], determine if there
exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.

Hilbert probably thought this would inspire much deep number theory. And
it did inspire some. However, through the efforts of Davis, Putnam, Robinson [3]
and Matiyasevich [8] (see also the book by Matiyasevich [9]) it was shown that
there is no such algorithm. That is, they showed that there is a d, n such that the
problem of, given p ∈ Z[x1, . . . , xn] of degree d, does it have a solution in Z, is
undecidable.

This raises the obvious question of what happens for particular numbers of
variables n and degree d. I thought that surely there must be a grid on the web
where the d-n-th entry is

• D if the problem for degree ≤ d, and ≤ n variables is Decidable.

• U if the problem for degree ≤ d, and ≤ n variables is Undecidable.

• ? if the status of the problem for degree ≤ d, and ≤ n variables is unknown.
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Why was there no such grid? I speculate

1. Logicians worked on proving particular (d, n) are undecidable. They sought
solutions in N. By contrast number theorists worked on proving particular
(d, n) decidable. They sought solutions in Z. Hence a grid would need to
reconcile these two related problems.

2. Logicians and number theorists didn’t talk to each other. Websites and
books on Hilbert’s Tenth problem do not mention any solvable cases of
it.

3. There is a real dearth of positive results, so a grid would not be that inter-
esting.

4. The undecidable results often involve rather large values of d, so the grid
would be hard to draw.

That last point is correct. A grid would be hard to draw. However, there is still
a need for a paper to collect up all that is known and point to open problem.s This
article is that paper. None of the results are original.

Notation 1.1.

1. H10Z(d, n) is the problem where the degree is ≤ d, the number of variables
is ≤ n, and we seek a solution in Z.

2. H10N(d, n) is the problem where the degree is ≤ d, the number of variables
is ≤ n, and we seek a solution in N.

3. H10Z(d, n) = D means that there is an algorithm to decide H10Z.

4. H10Z(d, n) = U means that there is no algorithm to decide H10Z.

5. Similarly for H10N(d, n) equal to D or U.

Lemma 1.2.

1. For every x ∈ N, there exists y1, y2, y3, y4 ∈ N such that

x = y2
1 + y2

2 + y2
3 + y2

4.

2. For every x ∈ N where x is not of the form 4a(8b + 7), there exists y1, y2, y3 ∈

N such that
x = y2

1 + y2
2 + y2

3.



3. For every x ∈ N where x ≡ 1 (mod 4), there exists y1, y2 ≡ 0 (mod 2) and
y3 ≡ 1 (mod 2), such that

x = y2
1 + y2

2 + y2
3.

Proof. 1) This is Lagrange’s 4-square theorem.
2) This is Legendre’s 3-square theorem. It is sometimes called the Gauss-Legendre
Theorem.
3) Since x ≡ 1 (mod 4), x satisfies the hypothesis of part 2. Hence there exists
y1, y2, y3 such that

x = y2
1 + y2

2 + y2
3.

Take this equation mod 4.

1 ≡ y2
1 + y2

2 + y2
3 (mod 4).

It is easy to see that the only parities of y1, y2, y3 that work are for two of them
to be even and one of them to be odd.

�

Theorem 1.3.

1. If H10Z(2d, 4n) = D, then H10N(d, n) = D.

2. If H10N(d, n) = U, then H10Z(2d, 4n) = U. This is the contrapositive of
part 1.

3. If H10Z(2d, 3n) = D, then H10N(d, n) = D.

4. If H10N(d, n) = U, then H10Z(2d, 3n) = U. This is the contrapositive of
part 3.

5. If H10Z( f (d, n), 2n + 2) = D, then H10N(d, n) = D where

f (d, n) = max{2d, (2n + 3)2n}.

6. If H10N(d, n) = U, then H10Z( f (d, n), 2n + 2) = U. This is the contraposi-
tive of part 5.

Proof. 1) Assume H10Z(2d, 4n) = D. We show that H10N(d, n) = D.
Let p ∈ Z[x1, . . . , xn]. We want to know if there is a solution in N.
Let q be the polynomial of degree 2d with 4n variables that you get if you

replace each xi with y2
i1 + y2

i2 + y2
i3 + y2

i4 where yi1, yi2, yi3, yi4 are 4 new variables.



By Lemma 1.2.1 and the fact that for all w, x, y, z ∈ Z), w2 + x2 + y2 + z2 ≥ 0, we
have:

p has a solution in N iff q has a solution in Z.
Use that H10Z(2d, 4n) = D to determine if q has a solution. Hence H10N(d, n) =

D.

3) Let p ∈ Z[x1, . . . , xn]. We want to know if there is a solution in N.
Let q be the polynomial of degree 2d with 3n variables that you get if you

replace each xi with y2
i1 + y2

i2 + y2
i3 + yi3 where yi1, yi2, yi3 are 3 new variables. By

Lemma 1.2.3 and the fact that for all w, x, y ∈ N, w2 + x2 + y2 + y ≥ 0, we have:
p has a solution in N iff q has a solution in Z.
Use that H10Z(2d, 3n) = D to determine if q has a solution. Hence H10N(d, n) =

D.

5) This was proven by Sun [12].
�

Theorem 1.4.

1. If H10N(d, n) = D then H10Z(d, n) = D.

2. If H10Z(d, n) = U then H10N(d, n) = U. This is the contrapositive of part
1.

Proof. Let p ∈ Z[x1, . . . , xn]. We want to know if there is a solution in Z. For
each ~b = (b1, . . . , bn) ∈ {0, 1}n let q~b(x1, . . . , xn) be formed as follows: for every i
where bi = 1, replace xi with −xi. It is easy to see that

p has a solution in Z iff
(∃~b)[q~b has a solution in N ].
The result follows. �

In the next section we summarize what is known about H10N(d, n).

2 When Is H10N(d, n) = U? H10Z(d, n) = U?
The following theorem has many H10N(a, b) = U, all due to Jones [6]. From
those we use Theorem 1.3 to obtain several H10Z(c, d) = U results.

Theorem 2.1.

1. H10N(4, 58) = U hence H10Z(8, 174) =Uand H10Z(119 × 258), 118) = U.

2. H10N(8, 38) = U hence H10Z(16, 114) =Uand H10Z(79 × 238), 78) = U.



3. H10N(12, 32) = U hence H10Z(24, 96) =Uand H10Z(67 × 232), 66) = U.

4. H10N(16, 29) = U hence H10Z(32, 87) =Uand H10Z(61 × 229), 60) = U.

5. H10N(20, 28) = U hence H10Z(40, 84) =Uand H10Z(59 × 228), 58) = U.

6. H10N(24, 26) = U hence H10Z(48, 78) =Uand H10Z(55 × 226), 54) = U.

7. H10N(28, 25) = U hence H10Z(56, 75) =Uand H10Z(53 × 225), 52) = U.

8. H10N(36, 24) = U hence H10Z(72, 72) =Uand H10Z(51 × 224), 50) = U.

9. H10N(96, 21) = U hence H10Z(192, 63) =Uand H10Z(45 × 221), 44) = U.

10. H10N(2668, 19) = U hence H10Z(5336, 57) =Uand H10Z(41 × 219), 40) =

U.

11. H10N(200000, 14) = U hence H10Z(400000, 42) =Uand H10Z(31×214), 30) =

U.

12. H10N(6.6×1043, 13) = U hence H10Z(13.2×1043), 39) = U and H10Z(13.2×
243), 28) = U.

13. H10N(1.3 × 1044, 12) = U hence H10Z(2.6 × 1044), 36) = U H10Z(2.6 ×
244), 26) = U.

14. H10N(4.6 × 1044, 11) = U hence H10Z(9.2 × 1044), 33) = U H10Z(9.2 ×
244), 24) = U.

15. H10N(8.6 × 1044, 10) = U hence H10Z(17.2 × 1044), 30) = U H10Z(17.2 ×
244), 22) = U.

16. H10N(1.6 × 1045, 9) = U hence H10Z(3.2 × 1045), 27) = U H10Z(3.2 ×
245), 20) = U.

3 When is H10Z(d, n) = D? When is H10Z(d, n) =

D?
Theorem 3.1.

1. For all d, H10Z(d, 1) = D. This is elementary.

2. For all d, H10N(d, 1) = D. This is elementary.

3. For all n, H10Z(1, n) = D. This is elementary.



4. For all n, H10N(1, n) = D. This is elementary.

5. H10N(2, 2) = D. This is a difficult result of Lagarias [7].

6. H10Z(2, 2) = D. This follows from H10N(2, 2) = D and Theorem 1.4.1.
(There is a solver on the web here:

https://www.alpertron.com.ar/QUAD.HTM

7. For all n, H10Z(2, n) = D. This is a sophisticated theorem due to Siegel [11].
See also Grunewald and Seigel [4].

4 Discussion
If I was to draw the grid for H10N or H10Z mentioned in the introduction there
would be a large space of problems that are open. We give an example of a part
of that space.

Recall that H10Z(d, 1) = D, (∀n)[H10Z(2, n) = D], and H10Z(8, 174) = U.
The folloiwng are unknown:

1. H10Z(3, 2),H10Z(3, 3),H10Z(3, 4), . . . .

2. H10Z(4, 2),H10Z(4, 3),H10Z(4, 4), . . . .

3. H10Z(5, 2),H10Z(5, 3),H10Z(5, 4), . . . .

4. H10Z(6, 2),H10Z(6, 3),H10Z(6, 4), . . . .

5. H10Z(7, 2),H10Z(7, 3),H10Z(8, 4), . . . .

6. H10Z(8, 2),H10Z(8, 3),H10Z(8, 4), . . . ,H10Z(8, 173).

The situation is worse than it looks. Consider the equation

x3 + y3 + z3 = k.

It is easy to show that, For k ≡ 4, 5 (mod 9), there is no solution in Z. What
about for k . 4, 5 (mod 9)?

1. Health-Brown [5] conjectured that there were an infinite number of k . 4, 5
(mod 9) for which there is a solution in Z.

2. So far all 0 ≤ k ≤ 33 with k . 4, 5 (mod 9) there is a solution in Z. The
case of k = 33 was solved by Booker [2] in 2019. This work was rather
difficult and required both hard mathematics, clever computer science, and
massive computing time.

https://www.alpertron.com.ar/QUAD.HTM


3. For more on this history of this problem, and some references, see the paper
of Booker.

Consider the function that, on input k, determines if x3 + y3 + z3 = k has a
solution in Z. Is this function computable? I suspect yes since I cannot imagine
coding Turing Machine computations into such a restricted equation. Plus the
least n for which there is any H10Z(d, n) = U is H10Z(3.2 × 245, 20) = U.

What is the smallest n such that for some d, H10Z(d, n) = U? We present an
informed opinion by paraphrasing Sun [12] (Page 4):

It is not known if there is a d such that H10Z(d, 3) = U. Baker [1] showed
that if F(x, y) ∈ Z[x, y] is irreducible, homogenous, and of degree ≥ 3, then for
any m ∈ Z there is an effective algorithm to find integral solutions of the equation
F(x, y) = m. Baker [1], Matiyasevich and Robinson [10] believed that this is
about as far as you can go, in terms of number of variables, and hence there is a
d such that H10Z(d, 3) = U.

I have some suggestions and thoughts:

1. Study particular equations such as x3 + y3 + z3 = k. I suspect this is already
happening.

2. Catalog them so that the open problems are clear.

3. Work on showing H10N(d, n) = U or H10Z(d, n) = U seems to have stalled.
Perhaps the problems left are to hard. Perhaps the problems left could be
resolved but it would be very messy. Perhaps computer-work could help.
Perhaps the problems left are decidable. In any case, there should be an
effort in this direction.

5 Acknowledgement
We thank David Marcus for proofreading and commentary.

References
[1] Alan Baker. On the representation of integers by binary forms. PTRS, 263:173–

191, 1968.

[2] Andrew Booker. Cracking the problem with 33, 2019.
https://arxiv.org/abs/1903.04284.

[3] Martin Davis, Hillary Putnam, and Julia Robinson. The decision problem for
exponential diophantine equations. Annals of Mathematics, 74:425–436, 1961.

https://arxiv.org/abs/1903.04284


[4] Grunewald and Siegel. On the integer solutions of quadradic equations. J.
Reine Angew. Math., 569:13–45, 2004.

[5] Roger Heath-Brown. The density of zeros of forms for which weak approxi-
mation fails. Mathematics of Computation, 59(200):612–623, 1992.

[6] James Jones. Universal Diophantine equations. Journal of Symbolic Logic,
47(3):549–571, 1982.

[7] Jeffrey Lagarias. Succinct certificates for the solvability of binary quadratic
diophantine equations. In 20st Annual Symposium on Foundations of Computer
Science (FOCS), pages 47–54. IEEE, 1979.
https://arxiv.org/pdf/math/0611209.pdf.

[8] Yuri Matijasevic. Enumerable sets are diophantine (Russian). Doklady
Academy Nauk, SSSR, 191:279–282, 1970. Translation in Soviet Math Dok-
lady, Vol 11, 1970.

[9] Yuri Matijasevic. Hilbert’s Tenth Problem. MIT press, Cambridge, 1993.

[10] Yuri Matijasevic and Julia Robinson. Reduction of an arbitrary diophantine
equation to one in 13 unknowns. Acta Arithmetica, pages 521–553, 1975.

[11] Siegel. Zur theoire der quadratischen formen. Sitzungsberichte der Preusss-
chen Akademie der Wissenschaften Physicalisch-Mathematische Klasse, 2:21–
46, 1972.

[12] Zhi-Wei Sun. A new relation-combining theorem and its application. ZL,
38:209–212, 1992.
http://maths.nju.edu.cn/~zwsun/14z.pdf.

https://arxiv.org/pdf/math/0611209.pdf
http://maths.nju.edu.cn/~zwsun/14z.pdf

	Hilbert's Tenth Problem
	When Is H10N(d,n)=U? H10Z(d,n)=U?
	When is H10Z(d,n)=D? When is H10Z(d,n)=D?
	Discussion
	Acknowledgement

