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ON THE SUCCINCTNESS OF DIFFERENT REPRESENTATIONS
OF LANGUAGES*

J. HARTMANIS’

Abstract. The purposes of this paper is to give simple new proofs of some interesting recent results about
the relative succinctness of different representations of regular, deterministic and unambiguous context-free
languages and to derive some new results about how the relative succinctness of representations change when
the representations contain a formal proof that the languages generated are in the desired subclass of
languages.
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Introduction. It has been shown recently that there exist dramatic compressions of
the length of representations of languages in subclasses of context-free languages as we
go from restricted to unrestricted representations of these languages [3], [5], [6]. For
example, when we consider the representation of deterministic context-free languages
by deterministic versus nondeterministic pushdown automata, then there is no recur-
sive function which can bound the size of the minimal deterministic pushdown automa-
ton as a function of the size of the equivalent minimal nondeterministic pushdown
automaton [6]. It is well known that we cannot recursively decide whether a given
pushdown automaton has an equivalent deterministic pushdown automaton, but the
above result makes a considerably stronger statement: even if we would know (or be
given) which pushdown automata describe deterministic languages, we still could not
effectively write down the corresponding deterministic pushdown automata because of
their enormous size which grows nonrecursively in the size of the nondeterministic
pushdown automata. Therefore we see that though nondeterminism is not needed in
the description of deterministic context-free languages its use in the description permits
nonrecursively bounded shortening of infinitely many representations.

Similar results hold for the relative succinctness of the description of unambiguous
context-free languages by unambiguous and ambiguous context-free grammars [5], and
the description of finite or regular sets by finite automata and pushdown automata [3].

Some of the original proofs of these results are quite hard and they require special
results about context-free languages. In the first part of this paper we give a very simple,
elementary proof that the relative succinctness of representing deterministic context-
free languages by deterministic or nondeterministic pushdown automata is not recur-
sively bounded, and using a result about inherently ambiguous context-free languages
and Turing machine computations [4], derive an equally simple proof for the represen-
tation of unambiguous context-free languages by unambiguous or ambiguous context-
free grammars. The results about the representation of finite and regular sets ,can be
easily proven by the same methods.

We observe that in the representation of deterministic context-free languages by
deterministic pushdown automata we can easily check whether a given pushdown
automaton is deterministic, on the other hand, for a nondeterministic pushdown
automaton we have no uniform way of verifying that it accepts a deterministic
context-free language. Therefore the question arises whether the relative succinctness
of the two representations is caused by the fact that in one representation we can prove
what we are accepting but that no such proofs are possible in the other representation.
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REPRESENTATIONS OF LANGUAGES 115

Indeed a close inspection of the original proof [6] reveals that it does not hold when
we represent deterministic context-free languages by deterministic pushdown
automata and pushdown automata with attached proofs that they accept deterministic
context-free languages.

In the second part of this paper we show that our proof techniques furthermore
prove that, for example, the relative succinctness results hold for the representation of
deterministic context-free languages by deterministic pushdown automata and
nondeterministic pushdown automata with attached proofs that they accept deter-
ministic context-free languages.

Finally, to gain further insight how the inclusion of formal proofs or correctness in
representations of languages affects their succinctness, we consider the representation
of finite sets. We show that there is no recursive bound in the relative succinctness of the
representation of finite sets by finite automata or Turing machines (even if we attach
proofs that the Tm accepts a finite set). On the other hand, we show that the relative
succinctness is recursively bounded for the representation of finite sets by finite
automata or Turing machines with proofs which explicitly give the cardinality of the
finite set accepted.

It follows from the results that the relative succinctness is not recursively bounded
for the representation of finite sets by finite automata (or tables) or Turing machines
which accept them, but that there is a recursive bound for the representation of finite
sets by finite automata (or tables) and Turing machines which list them and halt.

It is interesting to observe that the succinctness results discussed in this paper do
not directly follow from Blum’s well known size of machines theorem [1]. This theorem
asserts that for any infinite, recursively enumerable set $ of Turing machines one can
effectively exhibit Turing machines in S which are arbitrarily (by any given recursive
function) bigger than other equivalent Turing machines. This is actually not a succinct-
ness result, in the sense used in this paper, since there is no guarantee that the shorter
descriptions are not in S itself. One can derive a succinctness result between restricted
and unrestricted Turing machine descriptions from Blum’s theorem if the minimal
machines in $ can be recursively enumerated (for example, if the machines in S are
total), Even then the results in this paper do not follow from this general theorem
because they deal with succinctness between two restricted representations and
furthermore, in several cases the class of machines (or grammars) considered in this
paper is not recursively enumerable, for example the class of unambiguous context-free
grammars.

Succinctness results about eli’s. We first establish notation and summarize some
well known facts about context-free languages (cfl’s).

We denote pushdown automata (pda) by Ai and deterministic pushdown automata
(dpda) by D.. Let IA, denote the length of the description of the automaton Ai over
some finite alphabet and L(A) the language accepted by A. We consider only one-tape
Turing machines, denoted by M, and for technical reasons we assume (without any loss
of generality) that M can halt only after an even number of moves, M accepts by
halting and that it makes at least two moves before halting, finally assume that M
cannot print a blank. An instantaneous description ofM depicts the symbols written on
the tape, indicates the tape square scanned by M,. and its state; they are strings of the
following form:

-X*(a, q)X*-, -(-, q)X*- or -X*(-, q)-,

where denotes a blank tape square, X is the finite alphabet of symbols m can print,
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116 j. HARTMANIS

a .V_, and q is a state of Mi. For TmM IDo(x) denotes the instantaneous description of
the starting configuration on input x and IDl(x), ID2(x),. denote the successive
instantaneous descriptions of Mi on input x. If x=ala2,...,an then xr=
anal_l, , a2al. Let VALC [Mi] denote the set of valid computations ofM in which
every second instantaneous description is reversed, i.e.,

VALC [M] {ID0(x) 4 [ID (x)]r : ID2(x) # [ID2k-l(X)]"r

and IOEk (x) is a halting conngurauon}.

Let

INVALC IMp] F* VALC [M].

It is well known that INVALC [Mi] can be accepted by a nondeterministic pda and
therefore it is a cfl [2]. On the other hand, VALC [M] is a cfl itI L(M) is a finite set, since
otherwise for arbitrarily large inputs x the three first instantaneous descriptions must be
related and the cfl pumping lemma does not hold. This yields the well known auxiliary
result.

LEMMA 1. INVALC [M/] is a deterministic cfl iff L(Mi) is finite.
Proof. If L(M) is finite then INVALC [M] is a regular set and therefore a dcfl. If

L(M) is infinite then VALC IMp] is not a cfl and therefore INVALC [M] cannot be a
dcfl.

LEMMA 2. The set R {Ai IL(Ai) is not a dcfl} is not recursively enumerable.
Proof. Since INVALC [M] is a deterministic cfl iff L(M) is finite, a recursive

enumeration of R would yield a recursive enumeration of the set {M L(M) is infinite},
which is seen not to be possible by Rices’s theorem.

For two representations, such as the representation of deterministic cfl’s by
deterministic and nondeterministic pda’s, we will say that their relative succinctness is
not recursively bounded, if there does not exist a recursive function F such that for any
pda, A, that accepts a deterministic cfl, there exists an equivalent deterministic pda, D,
for which [D] -< F(IA I).

THEOREM 3. The relative succinctness of representing deterministic cfl’s by deter-
ministic and nondeterministic pda’s is not recursively bounded.

Proof. If such a recursive function F exists then for any pda A we can compute
F([A [) and effectively list the dpda’s whose length of description does not exceed F([A 1),
say D1, D2, , Ds. Then L(A) is a nondeterministic cfl iff none of the Dj, 1 <- ] <= s, is
equivalent to A, but if this is so then we can detect it by comparing the Dij and A on
successive inputs from X*. Therefore the existence of F implies that the set

{A [L(A) is not a dcfl}

is recursively enumerable, which we know is not the case by Lemma 2. Therefore, F
does not exist as was to be shown. I-1

Next we consider the relative succinctness between the representation of unam-
biguous cfl’s by unambiguous and ambiguous cfg’s.

We exploit a recent result, which is given in a somewhat different formulation in
[4]. For any Tm, M, let

As(M)={#IDo (x) # ([IDi]T # IDi+l # )’1
IDa.+1 follows from ID/by one operation of M, x e E*},

A(Mi) {:(ID/4 [IDi+]T : )*ID2k 4 IDi+I follows from IDi in one operation
of M and ID2k is a halting configuration}
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REPRESENTATIONS OF LANGUAGES 1 17

and define

A(Mi) As(Mi) A(Mi).

It is easily seen that A(Mi) is a context-free language and it links the ambiguity question
for A(M/) to finiteness of sets accepted by the Turing machine M/.

THEOREM 4. A(Mi) is an inherently ambiguous cfl iff L(Mi) is infinite.
Proof. For the proof see [4].
THEOREM 5. The relative succinctness of representing unambiguous cfl’s by unam-

biguous and ambiguous cfg’s is not recursively bounded.
Proof. If a recursive bound F exists, then the set

AMB {GIG cfg and L(G) is inherently ambiguous}

is recursively enumerable. To see this note that we can list for any cfg G all cfg’s whose
representations are shorter than F(IGI) and then cross off those grammars which are
found to be ambiguous or not equivalent to G as we test them on successive strings from
,*. L(G) is inherently ambiguous iff eventually all grammars from the list are crossed
off. Thus the set AMB is recursively enumerable and therefore, (by Theorem 4) so is the
set

{M IL(Mi) is infinite},

which leads to a contradiction. Therefore the recursive bound F does not exist.
By the same method we can give an easy proof for the next result [3].
THEOREM 6. The relative succinctness of the representation of cofinite sets by finite

automata and pushdown automata is not recursively bounded. Therefore the relative
succinctness of the representation of regular sets by finite automata and pushdown
automata is also not recursively bounded.

Proof. The proof is similar to the proof of Theorem 3, by using the set

R {A [L(A) is not cofinite}. 71

The same reasoning shows that there is no recursive bound between the size of
context-free grammars (which generate cfl’s whose complements are also cfl’s) and the
size of the cfg’s generating the complements.

THEOREM 7. There is no recursive function F such that ]:or any cfg G ]:or which
,*-L(G) is a cfl, there exists a cfg, G’, with L(G’)= E*-L(G) and IG’I _-<F(IG[).

Proof. The proof is similar to the proof of Theorem 3.

Succinctness results about verified representations. In the representation of
deterministic cfl’s by deterministic and nondeterministic pda’s we can easily verify that a
given automaton is indeed deterministic, but for an equivalent nondeterministic pda we
have no fixed way of verifying that it will accept a deterministic cfl. This lack of
symmetry in our representations suggests that we should consider only representations
by nondeterministic pda’s with attached proofs that they accept a deterministic
language and add the length of the proof to the length of the representation of the pda.

A close inspection of the original proofs [3], [5], [6] reveals that they do not extend
to representations with added proofs. On the other hand our proof techniques show that
the previous succinctness results can be extended to representations with attached
verifications that they accept the desired type of language.

More precisely, let FS be an axiomatizable, sound formal mathematical system
which is powerful enough to express and prove elementary facts about Turing
machines, context-free languages and pushdown automata. Since FS is axiomatizable
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118 J. HARTMANIS

we know that we can recursively enumerate the set of provable theorems and soundness
assures us that the provable theorems are true. Instead of specifying FS in detail we will
describe what must be easily provable in FS.

(a) Let M(r be a simply and uniformly constructed Tm which for each input x
computes and saves the length of x, Ix[= n; then enumerates all one-tape Tm’s
up to length r, i.e., IM, I-> r, and simulates in a dove-tail manner the compu-
tations of this finite set of machines on blank tape. M(r halts (and therefore
accepts) iff M, IM, l<-_r, halts after performing n or more steps. From this
construction we see that for all r, r => 1, M,( accepts a finite set. We assume that
FS is sufficiently powerful that we can prove in FS that L(M() is finite and that
the length of these proofs is recursively bounded in r.

(b) We furthermore assume that there is a simple and uniform construction p which
yields for each Tm Mi a pda Ao(i such that

L(Ao(i)) INVALC [Mi]

and that it cata be proven in FS (by a proof whose length is recursively bounded
in i) that:

if L(M) if finite then L(Aoi) INVALC [Mi] is a deterministic cfl.

From these assumptions it follows that we can prove (easily) in FS that:

accepts a deterministic cfl.

It should be observed that in any logic designed to reason about computations we
should be able to formulate and prove easily the above result. Furthermore, to any
given sound formal system we can add the above assertions as an axiom scheme to
obtain the desired FS.

A nondeterministic pda with a proof in FS that it accepts a deterministic cfl is called
a verified pda or vpda.

THEOREM 8. The relative succinctness ofrepresenting dcfl’s by dpda’s and vpda’s is
not recursively bounded.

Proof. For r, r => 1, let M( be a Tm which accepts all inputs up to length Nr, where
Nr is the maximal running time before halting achieved by a Tm of size r on blank tape.
Let Ao(i be a nondeterministic pda which accepts INVALC [Mi]. It is assumed that or(r)
and p(r) are simple enough to compute and that FS is sufficiently rich that there exist
short proofs (whose length is recursively bounded in r) that L[M(r] is finite and
therefore L[Ao((r)) is a deterministic cfl.

If there exists a recursive bound F between IAo(([ and the shortest equivalent
dpda, then we can list all the dpda’s

Di1, D2, D,s, such that _-<f_-<s.

From this list of dpda’s we can effectively construct a list of dpda’s which accept the
complements of these languages. From this new list we can effectively select the dpda’s
which accept finite sets and compute the longest string accepted by these dpda’s. Clearly
the length of this string is bigger than N and therefore Nr is recursively bounded in r,
which is a contradiction. [3

We get the next result by exploiting the fact that the length of the proof of
"L[Ao((r)) is a dcfl" (in FS) is recursively bounded in r.

COROLLARY 9. The relative succinctness of representing dcfl’s by dpda’s and
verified pda’s with attached proofs that they accept dcfl’s is not recursively bounded.
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REPRESENTATIONS OF LANGUAGES 119

By assuming that we can easily prove in FS relations between A(Mi) and ambi-
guous cfl’s (i.e., Theorem 4) we obtain the next result.

COROLLARY 10. There is no recursive succinctness bound between the representation
of unambiguous cfl’s by unambiguous cfg’s and cfg’s with proofs that they accept
unambiguous cfl’s.

Representation of finite sets. The situation changes drastically if we consider
representation of finite sets and finite sets of known size.

THEOREM 11. (a) There is no recursive succinctness bound for the representation of
finite sets by finite automata and by Tm’s with proofs that they accept finite sets.

(b) There is a recursive succinctness boundfor the representation offinite sets by finite
automata (or tables) and Tm’s with proofs which explicitly give the size of the finite set
accepted.

(c) There is a recursive boundfor the relative succinctness ofrepresentingfinite sets by
finite automata (or lists) and Tm’s with proofs that they print a list and halt.

Proof (a) Let Mr(r) be the Tm constructed for the proof of Theorem 8 and recall
that we have assumed that Our formal system FS is sufficiently rich to prove, by proofs
whose length is recursively bounded in r, that L(M(r)) is finite. Therefore the length of
M(r) plus the length of the proof in FS that L(M() is finite is recursively bounded in r.
On the other hand, since L(M() is finite the number of states of any finite automaton
accepting L(M() must be no less than the length of the longest string in L(M(),
which by construction of M(r) is not recursively bounded in r. Therefore, the relative
succinctness of these two representations cannot be recursively bounded.

(b) The relative succinctness bound F can be constructed as follows. For n
construct all proofs of "Mi accepts a set of size k", i, k 1, 2, , such that [M] plus the
length of the proof is less or equal to n. For the M with such proofs let kn be the
cardinality of the largest set accepted and an the length of the longest string accepted.
Clearly kn and an are effectively computable and

F(n)=an kn +2

is such a recursive bound.
(c) For any n we can effectively list the finite set of Tm’s Mil, M2," , Mik, such

that

IM ,I + Iproof that Mii prints a list and haltsl _-< n.

Therefore we can run all the Tm’s on this list, which are guaranteed to halt because FS is
sound, and determine the length of the longest string printed, n,. Clearly n, is
recursively computable from n, by the above procedure, and, furthermore, the size of
the largest minimal finite automaton accepting the sets L(MiI), L(M2), ..., L(Mk) is
recursively bounded in n,. Therefore the size of the finite automata representation of
these sets is recursively bounded to n and therefore to the size of the Tm representation
with proofs.
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